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Tuberculosis (TB) disease remains one of the highest causes of
mortality in HIV-infected individuals, and HIV–TB coinfection con-
tinues to grow at alarming rates, especially in sub-Saharan Africa.
Surprisingly, a number of important areas regarding coinfection
remain unclear. For example, increased risk of TB disease begins
early in the course of HIV infection; however, the mechanism by
whichHIV increases this risk isnot wellunderstood. Inaddition, there
is lack of consensus on the optimal way to diagnose latent TB
infectionandtomanageactivedisease in thosewhoareHIV infected.
Furthermore, effective point-of-care testing for TB disease remains
elusive. This review discusses key areas in the epidemiology, patho-
genesis, diagnosis, and management of active and latent TB in those
infected with HIV, focusing attention on issues related to high- and
low-burden areas. Particular emphasis is placed on controversial areas
where there are gaps in knowledge and on future directions of study.

Keywords: tuberculosis; HIV; diagnosis; management; epidemiology

Concurrent infection with HIV and Mycobacterium tuberculosis
(MTb) remains a serious and evolving global health crisis. There
are 34 million persons infected with HIV worldwide and 15
million are also infected with MTb (1). Tuberculosis disease (TB)
is a leading cause of death among HIV-infected persons, and
diagnosis of TB remains challenging in HIV-infected persons
because of limited resources and atypical presentations. Alarm-
ingly, early reports suggested mortality approached 100% in
HIV-infected persons infected with multidrug-resistant (MDR)
or extensively drug-resistant (XDR) MTb (2, 3), although more
recent reports suggest mortality may not be as high (4). Despite the
enormity of the crisis, there remains limited understanding of the
underlying mechanisms driving high susceptibility to TB in HIV-
infected patients and incomplete and sometimes conflicting clinical
data to direct diagnosis and management in coinfected patients.

This review focuses on adult HIV–TB coinfection and em-
phasizes the current unique and expansive challenges facing this
highly vulnerable and expanding population. Particular emphasis
is placed on identifying select gaps in knowledge in the un-

derstanding of HIV–TB coinfection in the areas of global epide-
miological trends, cellular responses, latent infection, diagnosis,
and management.

EPIDEMIOLOGY OF HIV–TB COINFECTION

Although the global incidence of TB has stabilized since 2004,
data from the World Health Organization (WHO, Geneva,
Switzerland) indicate that the percentage of HIV-associated TB
is significantly greater than previously estimated, with disease
burden in Africa responsible for most of this increase (1). In
2008, there were 9.4 million new cases of TB and 1.78 million
deaths from TB worldwide; of these, 1.4 million cases (15%)
occurred in HIV-infected individuals, resulting in 0.5 million
deaths (28% of total deaths from TB) (5). This estimate, double
the 2006 estimate of HIV-associated TB (0.7 million), is the
result of increased reporting of HIV prevalence in TB cases,
suggesting significant deficiencies in surveillance that may result
in further increases in the future, particularly with newer active
case-finding approaches (6). The relative risk of developing
TB in HIV-positive individuals, compared with HIV-negative
individuals, is 21 in high HIV prevalence countries and 37 in
low HIV prevalence countries (1). Geographically, sub-Saharan
Africa continues to shoulder the vast majority of disease burden.
In 2008, 78% of HIV-associated TB cases occurred in Africa,
with the highest incidence in South Africa, and 13% of cases
occurred in the Southeast Asia region (mainly India) (5).

Despite the global rise in TB incidence in the 1990s attribut-
able to the HIV epidemic and the rapid progression to active
TB disease in patients with HIV (7), the overall prevalence of
TB has been declining since 1990 (1). This paradox may be
explained, in part, by the relatively shorter duration of disease
in HIV-infected individuals seen in some communities, with
increased mortality (8). Because prevalence is the greatest fac-
tor in disease transmission rates, HIV may not be a significant
factor contributing to the increase in global transmission rates.
However, individual cohort studies have shown HIV-driven
increases in TB transmission in some communities (9). Another
important factor affecting the impact of HIV on TB disease
transmission is the relative infectiousness of coinfected patients.
HIV-infected patients have a lower rate of sputum smear pos-
itivity, which is the strongest predictor of infectivity (10).
However, several reports of nosocomial outbreaks of TB have
been reported among HIV-infected individuals (11). Studies of
this topic are conflicting; a meta-analysis from 2001 concluded
that HIV has no impact on the infectiousness of TB, both in the
nosocomial and community settings (11). A study of guinea pigs
exposed to air from a TB ward showed that patients coinfected
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with HIV and TB demonstrated marked variability in infec-
tiousness, and 90% of transmission in this case resulted from
a few suboptimally treated patients with MDR TB (12).

Because HIV is associated with both malabsorption of TB
drugs (3) and higher rates of TB treatment failure (3), HIV may
be a risk factor for TB drug resistance. Although institutional
outbreaks of drug-resistant TB have affected primarily HIV-
infected patients, including the first report of XDR TB in South
Africa (2), whether HIV is an independent risk factor for drug-
resistant TB in the community remains unclear. This may be
due primarily to the lack of available drug susceptibility testing
in most of the world (13). The limited available data, summa-
rized in a meta-analysis review (14), thus far have shown that
HIV is a risk factor for primary (transmitted), but not acquired,
drug-resistant TB. However, small studies on this topic in va-
rious settings have suggested that HIV is a risk for rifampin
resistance (15, 16). The most recent analysis from the Global
Project on Anti-tuberculosis Drug Resistance reported drug
resistance stratified by HIV status from only 7 of 83 countries.
Of these, five countries (Cuba, Honduras, Russia [17], Spain,
Uruguay) showed no association between MDR TB and HIV.
However, two countries—Latvia and Ukraine—reported a sig-
nificant association, with odds ratios of 2.1 and 1.5, respectively
(17). Significantly, the area of greatest burden, Africa, did not
report resistance according to HIV status, thus leaving the
association between HIV and MDR TB unclear.

Although the risk of TB disease increases as CD41 T-cell
counts decline (18), TB still occurs at a higher rate in HIV-
infected persons with preserved CD41 T-cell counts. A longi-
tudinal study of South African gold miners who received regular
HIV and TB testing showed that within 1 year of HIV se-
roconversion and in the absence of highly active antiretroviral
therapy (HAART) or TB preventive therapy, the incidence of
TB doubled compared with HIV-negative peers (19). Although
limited in generalizability given the unique susceptibility of this
population to inhalational disease, this study nonetheless may
provide some important insights into the effects of HIV on TB
incidence and transmission in a high-prevalence community.
Restricted fragment length polymorphism analysis suggests that
the early cases of active TB are due to reactivation and the later
cases to primary infection (19). Extension of the study to 11
years of follow-up revealed a persistent, linear increase in TB
risk over time and, importantly, that onward transmission,
measured by the doubling of TB incidence in HIV-negative
workers, contributes to this risk (9) (see Figure 1A).

HAART reduces the incidence of TB in HIV-infected in-
dividuals by up to 90% (20–22) in studies with follow-up averaging
5 years. Despite this efficacy, there seems to remain a persistently
elevated risk of TB above population baseline levels (23) (see
Figure 1B). This risk is greatest in those who have the lowest
CD41 T-cell counts at HAART initiation (21, 24). Furthermore,
several studies have noted an unchanged or temporary increase in
TB incidence in the first 3 months after HAART initiation (24,
25), possibly due to increased case detection and the impact of
immune reconstitution. Finally, because HAART increases the
life expectancy of HIV-infected persons without eliminating the
increased risk of TB, limited data suggest that it is unclear whether
HAART alone will significantly decrease the overall community
burden of TB, particularly without simultaneous active case
finding and widespread institution of isoniazid preventative ther-
apy (IPT) for latent tuberculosis infection (LTBI) (26, 27).

PATHOGENESIS OF HIV–TB COINFECTION

Although the biological synergy between HIV and MTb is well
described, a number of aspects concerning the pathogenesis of

HIV–TB coinfection are not well understood. It is clear that TB
infection greatly impacts the course of HIV disease in several
ways. TB disease is associated with a 10-fold increase in serum
viral load for a given CD41 T-cell count (28), and HIV mRNA
levels are highest in lung areas with active TB infection (29).
MTb infection directly increases viral production in both
lymphocytes (30) and alveolar macrophages (31). Severe pul-
monary TB infection is also associated with a fall in the CD41

T-cell count (32). Consequently, TB infection in HIV-infected
persons is associated with an almost twofold increase in the risk
of death at 1 year (33), with a threefold increase in death for
subjects with a CD41 T-cell count greater than 200 cells/ml (33).
Why TB in particular increases the risk of death in early HIV
infection, more so than bacterial pneumonias that also occur
early in the course of HIV infection and have similar effects on
viral replication, is incompletely understood.

It is also well known that the risk of TB is greatly increased in
HIV-infected persons, and some of the underlying mechanisms
are being elucidated. Effective immunity to TB involves co-
ordination of responses between the innate and adaptive immune
systems, both of which are altered by HIV (34). The strongest risk
factor for developing TB disease in HIV lies in helper T-cell type
1 (Th1) adaptive immunity, specifically the progressive decline in
CD41 T-cell count associated with advanced HIV (26). In
patients with prior TB exposure as assessed by a positive PPD
response, the incidence of TB is 2.6%/year for those with a CD41

T-cell count greater than 350/ml, 6.5%/year for those with a CD41

T-cell count from 200 to 350/ml, and 13.3%/year for those with
a CD41 T-cell count less than 200/ml (35). With decline of the
CD41 T-cell count, there is also a higher risk of anergy to skin test
reactions, suggesting dysfunction of delayed-type hypersensitiv-
ity dependent on Th1-type immunity (36). There is also in vitro
evidence for qualitative dysfunction of CD41 T cells in HIV.
Compared with TB-infected patients without HIV infection,
peripheral blood mononuclear cells from patients coinfected
with HIV and TB have decreased proliferative T-cell responses
and reduced IFN-g production to MTb in vitro, whereas antiin-
flammatory IL-10 production is preserved (37).

However, the observation that TB incidence increases
shortly after HIV seroconversion, and before reduction in
peripheral blood CD41 T-cell counts (19), suggests that HIV
confers additional mechanisms of susceptibility to TB infection.
Investigations into the progression of primary HIV infection to
AIDS suggest that primary HIV infection is associated with
a precipitous decrease in mucosal CD41 memory T cells (38),
which may set the stage for chronic immune activation and
CD41 T-cell depletion through mucosal translocation of bacte-
ria through the gut (39). Thus, mucosal CD41 memory T-cell
depletion may provide a potential mechanism to account for
disrupted T-cell function in early HIV infection, although
whether similar events occur in the lung mucosa has not yet
been established (40). Indeed, primary HIV infection is associ-
ated with decreased PPD-specific IFN-secreting T cells (41, 42)
and ESAT (early secreted antigenic target)-6–specific T cells
(42) in the blood, suggesting that early depletion of memory T
cells may affect specific immunity to TB. Lung lavage enzyme-
linked immunospot (ELISPOT) studies also suggest decreased
bacillus Calmette-Guérin (BCG)– or PPD-specific pulmonary
CD41 T cells in asymptomatic HIV-infected persons compared
with HIV-negative persons (43). HIV–TB coinfection may also
be associated with increased serum levels of IL-4, an anti-Th1
type cytokine that hinders immune response to MTb (44).
Interestingly, alveolar lavage cells from coinfected individuals
may have intact ability to secrete IFN-g in response to MTb
antigens in vitro (45), although this may not translate to
equivalent cell function and cell numbers in vivo.
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Independent of CD41 T-cell count, HIV also affects the
function of innate immune cells, especially alveolar macrophages
(AMs), which serve as the main reservoir for MTb infection (46,
47). MTb has evolved to persist within macrophages in part
through prevention of MTb phagosomal fusion with lysosomes,
thus preventing intracellular killing of MTb (48, 49). AMs can
combat intracellular parasitization by releasing immune-activating
cytokines or chemokines, and by programmed cell death or
apoptosis (50, 51). Apoptosis benefits the host by promoting
intracellular killing of MTb (50, 51) and improving antigen
presentation by additional phagocytes to activate adaptive im-
munity (52, 53) (see Figure 2). Whereas asymptomatic HIV
infection does not affect the intracellular growth of MTb (43,
54), AMs from asymptomatic HIV-infected subjects have in-
creased phagocytosis of MTb (54, 55), decreased release of
specific cytokines and chemokines (56), and similarly impaired
MTb phagosomal maturation (49) compared with AMs from
healthy subjects. AMs from HIV-infected subjects also have
decreased apoptosis in response to MTb (55) (see Figure 2); the
mechanism may involve increased lung levels of IL-10 in HIV,
which up-regulates BCL-3 (B-cell lymphoma 3–encoded pro-
tein), an apoptosis inhibitor (57). HIV infection of macrophages
also inhibits autophagy (58), another cellular process that may be
critical for macrophage intracellular killing of MTb (59).

As stated previously, HAART reduces the risk of TB in HIV
(20–22), but not to the level of non–HIV-infected subjects (23). In
vitro studies have found qualitative impairment in the T-cell re-
sponse to PPD in patients receiving HAART therapy (undetectable
viral load with CD41 T-cell count . 300 cells/ml), with decreased
percentages of PPD-specific IFN-g–producing T cells when com-
pared with HIV-negative patients (41). This provides further
evidence that immune recovery with HAART is incomplete.

LATENT TB INFECTION IN HIV

In patients with HIV and latent TB infection (LTBI), the rate of
progression to active tuberculosis disease is 5–8%/year, com-
pared with a 10% lifetime risk in the general population (7).
Among risk factors for progression, HIV (relative risk [RR],
9.9) ranks the highest compared with old healed tuberculosis
(RR, 5.2), chronic renal failure (RR, 2.4), or infliximab therapy
(RR, 2.0) (60). HIV is also associated with higher rates of
extrapulmonary and disseminated TB disease. For these rea-
sons, LTBI testing and treatment in HIV-infected patients is a
priority, and this is apparent in the available treatment guide-
lines from low-burden countries, as reflected by Centers for
Disease Control and Prevention (CDC, Atlanta, GA) recom-

mendations (61), and in high-burden countries, as reflected by
WHO recommendations in the ‘‘Three I’s’’ strategy (62). The
‘‘Three I’s’’ of Isoniazid Preventive Treatment, Intensified case
finding for active TB, and TB Infection control are key public
strategies focused on decreasing the impact of TB on people
living with HIV (62).

The diagnosis of LTBI requires a positive tuberculin skin test
(TST) or IFN-g release assay (IGRA), or a compelling history of
likely infection such as recent close contact (61). In HIV-infected
individuals, a positive TST is defined as an induration of at least
5 mm in response to intradermal placement of PPD. IGRAs are
more recently developed assays that detect in vitro IFN-g release
by peripheral blood monocytes in response to MTb-specific
peptides (61). However, controversy exists as to the equivalence
of a positive IGRA and TST. Given the T-cell defects of HIV-
infected patients, both of these tests underperform in this setting,
and render false negative results, but this should not preclude
routine screening (61, 63). In addition, retesting after reconstitu-
tion of the immune system in patients receiving HAART has
merit as LTBI test performance improves as CD41 T-cell counts
recover to greater than 200 cells/mm3 (61).

IGRAs, the QuantiFERON-TB Gold In-Tube (QFT; Cel-
lestis Limited, Carnegie, Victoria, Australia) and T-SPOT.TB
(Oxford Immunotec Ltd, Abingdon, UK) tests, are commer-
cially available worldwide. Compared with TST, IGRAs offer
the advantage of a lower false positive rate due to BCG
vaccination, better standardization of testing, and lack of need
for a repeat visit (63). However, sensitivity may be similar to
TST (64). Studies generally suffer from the lack of a ‘‘gold
standard’’ in the diagnosis of LTBI, and therefore data are
extrapolated from results in patients with active TB. In this
regard, the T-SPOT.TB, an ELISPOT assay, may have im-
proved sensitivity compared with the QFT (64), and in one
small series from Zambia, T-SPOT.TB had 90% sensitivity in
HIV-infected patients with active TB (65). Of major concern,
however, is that there are few longitudinal studies of patients
with positive IGRA assays, and therefore, it is unclear how
these sensitivities predict the risk of developing TB disease with
LTBI. One study from Austria found QFT to have a 90.9% rate
of predicting active TB disease in HIV-infected subjects.
However, this study was limited by its low-prevalence setting,
as active TB disease occurred in only 3 of 37 QFT-positive
subjects (a rate of 8.1%) (66). A comparison of the tests for
LTBI is presented in Table 1.

There are few studies that specifically compare the accuracy of
TST and IGRA for screening for LTBI in HIV-infected pop-
ulations. These studies show a number of discordant results,

Figure 1. Increased incidence of tuber-

culosis (TB) early in HIV and incomplete

protection from TB after HAART. (A) In-
cidence of TB in South African gold

miners who are HIV negative or who have

seroconverted to HIV-infected as a func-
tion of years since negative HIV test or

date of seroconversion. Data show early

doubling in incidence of TB among HIV

seroconverters after first year and con-
tinued rise thereafter. Adapted from Ref-

erence 9. (B) Incidence of TB among South

African cohorts divided who are HIV-

infected and taking or not taking highly
active antiretroviral therapy (HAART)

therapy, as a function of initial CD41 T-cell count at commencement of study. Data show that although HAART significantly reduced TB incidence
especially among those with low CD41 T-cells counts, protection is incomplete, and among those with relatively high CD41 T-cell count, protection

is minimal during study period (approximate follow-up, 16 mo). Adapted from Reference 20.
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where one test is positive and the other negative (65, 67, 68). TST-
positive/IGRA-negative results may be explained, in part, by
BCG vaccination although the rate of false negatives is unclear. It
is similarly unclear whether TST-negative/IGRA-positive tests
are true positives due to better IGRA sensitivity or false
positives. For example, one study in a low TB prevalence country
(the United States), performed by Luetkemeyer and colleagues,
found that the QFT and TST were concordant in only 28% of
patients with a positive result of either test (67). In addition, 16%
of subjects from this study with a CD41 T-cell count less than 100
cells/mm3 had an indeterminant QFT result (defined as a lack of
interferon response to the assay’s positive control, making the
test uninterpretable).

A study in a high TB prevalence area (South Africa),
performed by Rangaka and colleagues, found that the IGRA
tests had a higher rate of positivity in HIV-infected persons
compared with TST (69), and that the T-SPOT.TB had a signif-
icantly higher positivity rate than QFT or TST among subjects

with CD41 T-cell counts less than 250 cells/mm3. Also observed
was a poor correlation between the IGRA and the TST in HIV-
uninfected persons (69). Similar results were obtained by Dheda
and colleagues (70) and Hoffman and colleagues (71) in low TB
prevalence areas in HIV-infected subjects. These data suggest
that the T-SPOT.TB ELISPOT may have the highest sensitivity
for LTBI in HIV-infected subjects and therefore may be the best
option for screening in this population. However, more studies
with longitudinal follow-up are needed to determine how pre-
dictive T-SPOT.TB ELISPOT testing is for the development of
active TB. In addition, expense, need for trained operators and
specific laboratory equipment, may limit its utility in resource-
poor settings. Because of incomplete and sometimes conflicting
data on the IGRAs, national guidelines differ on their use. Some
recommend using either TST or IGRA (61), whereas others
suggest use of the IGRA as an adjunct to TST (72–74).

Before initiating treatment of LTBI, it is important to first rule
out active TB disease, which can be difficult in HIV-infected

Figure 2. Immunity against Mycobacte-

rium tuberculosis (MTb) and the effects of

HIV. (A) Alveolar macrophages (AMs) are

the first cells to encounter and engulf
MTb bacteria when they are inhaled

deeply into the lungs. MTb bacteria have

evolved to escape intracellular killing by
AMs by arresting phagosomal matura-

tion and possibly escaping the phago-

some to allow for persistence and

growth within AMs. The defense mech-
anisms against this include chemokines/

cytokine secretion which activate anti-

mycobacterial defenses and adaptive im-

munity (56, 142, 143), autophagy (59),
and apoptosis (51) among others. (B )

HIV is known to affect a number of these

steps, including increased phagocytosis of
MTb to allow access to intracellular envi-

ronment (54, 55), decreased AM apopto-

sis (55) in response to MTb, decreased

autophagy (58), and decreased chemo-
kine/cytokine production (56). HIV also

affects function and numbers of CD41 T

cells, leading to increased bacillary loads,

inadequate granuloma formation, and
dissemination (144). DC 5 dendritic cell;

TNF 5 tumor necrosis factor.

TABLE 1. COMPARISON OF TESTS FOR LATENT TUBERCULOSIS INFECTION

TST QFT T-SPOT.TB

Relative sensitivity (drops with decreasing CD41 T-cell count) 11 11* 111*

Specificity 1 (for BCG vaccinated);

111 (for non-BCG)

111 111

Benefit of treating positives by IPT Yes† Unclear† Unclear†

Reproducibility 1 111 111

Costs 1 111 111

Laboratory infrastructure required No Yes Yes

Need for repeat visit Yes No No

Trained personnel required 1 11 111

Definition of abbreviations: IGRA 5 IFN-g release assay; IPT 5 isoniazid preventive therapy; LTBI 5 latent tuberculosis infection; QFT 5 QuantiFERON-TB Gold In-Tube

test; TST 5 tuberculin skin test.

Adapted from Reference 61.

1, indicates a comparison with other tests in Table 1.

* Data are based on studies of persons with active TB disease, which may or may not correlate with persons having LTBI. Data are suggestive that QFT has a sensitivity

similar to TST, while T-SPOT.TB may have increased sensitivity compared to TST, and the sensitivity of all three tests decreases with decreasing CD41 T-cell count.

However, prospective studies are needed in subjects with HIV to confirm that these findings can be applied to evaluating risk and initiating IPT.
† There are no prospective trials of IGRAs evaluating the benefit of IPT.
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patients because of atypical presentations (61). A large study of
HIV-infected subjects in Southeast Asia suggests that a screening
strategy focusing on three questions (cough for any duration,
fever, and night sweats lasting 3 wk or more) is adequate.
Absence of these symptoms accurately rules out TB in the vast
majority of patients (75) and this may in turn allow for safe
initiation of IPT. Similar results were obtained in a study from
South Africa emphasizing that absence of cough alone is in-
adequate for ruling out TB in HIV (76). The current recomm-
endations for LTBI treatment in HIV-infected patients are
isoniazid prophylaxis therapy (IPT) for 9 months; 6 months has
reduced efficacy (61). Several groups have shown that treatment
of LTBI in HIV-infected patients is both safe and effective in
preventing tuberculosis reactivation in both low TB prevalence
areas (77) and high TB prevalence areas (78), without evidence of
increased drug resistance (79–81). However, in a study by Grant
and colleagues, overall TB incidence in the population remained
high despite prophylactic therapy (79). Data also suggest that
primary prophylaxis of LTBI coupled with secondary prophylaxis
of previously infected individuals may provide an additional
benefit in high-prevalence areas (82, 83). However, few high-
prevalence countries follow these practices because of concerns
regarding drug toxicity and resistance, nonadherence, poor co-
ordination of HIV and TB programs, and reinfection issues (84).
Optimal management of LTBI likely involves concurrent initia-
tion of HAART and IPT (83). Studies suggest that concurrent
HAART with IPT carries no increase in drug toxicity (85).
Therefore, HIV antiretroviral therapy clinics may represent an
ideal setting to provide IPT (83). However, there are clear
concerns in having patients potentially coinfected with HIV
and TB in the same area as other HIV-infected individuals.

ACTIVE TB DISEASE DIAGNOSIS IN HIV

The diagnostic imperative for HIV-infected patients regarding
active tuberculosis remains early and accurate detection of TB
and drug-resistant TB. This task demands sensitive, specific, and
relatively rapid testing algorithms and tools, and is made more
challenging by the altered clinicopathological presentation of
HIV-associated TB (76, 86, 87).

In the presence of HIV coinfection, the clinical presentation of
active TB is increasingly modified as the CD41 T-cell count
declines (88). Clinicians evaluating patients with HIV should
recognize the importance of testing for active TB in patients
presenting with nonspecific symptoms. An especially challenging
aspect of this is in recognizing atypical presentations in patients
with undiagnosed HIV presenting with TB as their first oppor-
tunistic infection. Not only are HIV-associated TB symptoms
more diverse than in non-HIV TB, but the differential diagnosis
of conventional cough, fever, and malaise is much more extensive
in the presence of HIV coinfection (89). For this reason, if an
HIV-infected patient suspected of having TB is not shown to have
active TB disease, that patient should not necessarily proceed
straight to IPT, but rather remain under evaluation until the
cause of their symptoms is revealed (which could still include
active TB) or the symptoms resolve. Conventional radiological
hallmarks of pulmonary TB such as cavitation and apical lo-
calization are also less common (88). Sputum production is often
attenuated, which compromises collection of adequate diagnostic
specimens, and culture-positive pulmonary TB is more fre-
quently smear negative (88, 90, 91). For example, 69% of HIV-
infected persons diagnosed with active TB were smear negative in
one study (92). HIV-infected patients also more commonly
contract extrapulmonary TB (EPTB) (50 vs. 15%), which evades
or delays diagnosis, and are more likely to have disseminated
disease (10 vs. 1%) (93).

Although smear microscopy is less frequently positive in
patients infected with HIV and TB, advances in fluorescence
microscopy (94–97) and optimization of smear preparation (98–
101), coupled with important steps toward so-called front-
loaded microscopy, in which two samples are taken on the
same day (102), ensure that smear microscopy remains the
mainstay of diagnosis of TB globally. However, new diagnostic
tools for the detection of TB and drug-resistant TB have been
developed on the basis of both phenotypic and genotypic
methods. Liquid culture, which is more sensitive and rapid than
TB culture on solid media (making it particularly useful in HIV
coinfection) (103–105), has been endorsed by the WHO (62)
and there are both commercial and noncommercial methods
available. Culture requires a greater incubation time compared
with that for non–HIV-infected patients, consistent with lower
bacillary load of sputum (106). The study from Southeast Asia
suggests that in HIV-infected subjects with a positive screen for
TB (presence of cough, fever, or night sweats), TB could be
reliably ruled out only with a negative sputum culture, although
TB was relatively uncommon in patients with two negative
smears, negative chest radiograph, and a CD41 T-cell count
equal to or exceeding 350 cells/mm3 (75). Molecular (polymerase
chain reaction [PCR]– or gene probe–based) tests generally
perform less well on lower bacillary load smear-negative
samples (107), suggesting lower sensitivity with HIV. However,
one study showed high sensitivity for detecting TB in smear-
positive sputum from HIV-infected subjects, using the AMPLI-
COR PCR (Roche Diagnostic Systems, Branchburg, NJ)
(99.7%), and no significant difference in sensitivity compared
with smear-negative culture-positive specimens from HIV-neg-
ative subjects (89 vs. 95%) (108). Urine detection of the MTb
cell wall component lipoarabinomannan may improve detection
in smear-negative HIV-infected patients with advanced immu-
nosuppression in a high-prevalence setting (109, 110). Serological
tests currently have no proven role in the diagnosis of active TB
with or without HIV (111) and IFN-g release assays (IGRAs) do
not help to distinguish latent from active TB (63).

Large studies comparing diagnostic approaches to HIV-
associated EPTB are limited. Because most of this burden falls
on resource-limited settings, there are significant obstacles in
the diagnosis of EPTB. These include limited imaging capacity,
limited ability to obtain adequate tissue specimens (which could
potentially require laparoscopic peritoneal biopsy, computed
tomography–guided biopsy, or mediastinoscopy), and limited
availability of DNA amplification technology.

Although it is controversial whether HIV per se is associated
with drug resistance, the potential for rapid progression of
untreated or inadequately treated HIV-associated TB is clear,
and thus there is a need for rapid detection and treatment of drug-
resistant TB in HIV-infected patients (33). Drug resistance can
be identified phenotypically by culture-based methods or (for
some agents) genotypically by molecular methods to determine
the presence or absence of resistance-conferring gene mutations.
The performance of drug susceptibility–testing methods in
patients infected with HIV and TB does not differ significantly
from that for non-HIV populations, although methods such as the
microscopic observation drug susceptibility (MODS) assay dem-
onstrated to be effective when performed directly on smear-
negative, culture-positive sputum samples do confer a time
advantage (see Figure 3) (112). The MODS assay may also be
effective as part of a screening strategy to rule out active MTb
disease before initiating IPT (113) and has been recommended by
the WHO for interim use until capacity for genotypic or
automated liquid culture susceptibility testing is available (114,
115). Molecular methods, such as line probe assays (116), can
offer rapid detection of isoniazid and rifampicin resistance from
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smear-positive sputum samples and culture isolates, and are now
recommended by the WHO (117). Amplification of DNA from
paraffin-embedded biopsy samples can also identify MTb and
drug-resistant EPTB if cultures are not helpful (118).

Inexpensive and easily administered point-of-care tests re-
main a desirable goal but are not currently available. All existing
diagnostic tests and strategies require infrastructure (with vary-
ing safety, maintenance, and cost implications) and personnel
(who need to be trained and retained) and a strong quality as-
surance system. These remain huge challenges common to all
diagnostic test implementation programs even before consider-
ation of unit costs for tests, and whom to target for testing. How-
ever, developments using gene amplification technology (Xpert
MTB/RIF; Cepheid, Sunnyvale, CA) that can detect MTb and
rifampin resistance simultaneously from sputum samples in
a rapid assay (90 min), with minimal training required, with high
sensitivity in smear-negative samples (70% when using one Xpert
cartridge), and with minimal requirement for biosafety facilities
represent a significant advance, although expense may still be too
great for resource-poor settings (119).

MANAGEMENT OF HIV–TB COINFECTION

The standard treatment of drug-susceptible active TB in HIV-
infected patients does not differ significantly from the standard
regimen for HIV-uninfected patients. It consists of an initial
phase of four drugs (isoniazid, rifampin, ethambutol, and pyr-
azinamide) for 2 months, followed by a continuation phase of
isoniazid and rifampin for 4 to 6 months (120). However, there
are several considerations in administering this regimen to HIV-
infected persons. Several aspects of this topic have been reviewed
in detail elsewhere (120, 121). In resource-poor settings, because
of cost constraints, rifampin is sometimes omitted in the contin-
uation phase. However, there is clear evidence that continuation
phase non–rifampin-based regimens are associated with higher
relapse rates (122–124).

The optimal duration of anti-TB treatment in patients
coinfected with HIV and TB is controversial. There is some
evidence to suggest that longer treatment regimens reduce re-
lapse rates (125, 126) but not survival (127, 128) and a meta-
analysis suggests no statistically significant benefit beyond 6
months of therapy (123). However, more studies are required to
resolve this controversy, particularly because the influence of
early HAART on treatment duration is not well understood.
Because of the concerns of added complexity in treating HIV-
infected patients differently from non–HIV-infected patients,
WHO and CDC guidelines recommend at least 6 months of
standard daily short-course therapy and suggest that therapy
should be similar regardless of HIV infection status (61, 129).
Longer courses may be used in those with extensive disease,
sputum positivity at 2 months with confirmed drug-sensitive TB,
and in high-burden settings in retreatment cases as part of an
8-month regimen with a 5-month continuation phase. It should
also be noted that adverse events in response to antituberculous
drugs are more common in HIV-coinfected patients compared
with uninfected persons and in those HIV-infected persons with
lower CD41 T-cell counts (130), which may contribute to high
rates of nonadherence in high-prevalence settings (131).

There is some controversy as to the timing of HAART and
TB therapy in coinfected patients. The three main concerns for
concurrent HAART and anti-TB treatment include overlapping
toxicities, drug interactions, and immune reconstitution inflam-
matory syndrome (IRIS). The main overlapping toxicities are
skin reactions, hepatitis, peripheral neuropathy, and gastrointes-
tinal side effects. An important strategy for managing toxicities
includes initiating anti-TB treatment shortly before initiating

HAART, thus ensuring tolerability. The interactions between
HAART and anti-TB treatment are complex and reviewed in
detail elsewhere (132). Drug interactions arise from rifampin
and, to a lesser extent, rifabutin-associated induction of several
enzyme systems including the P450 cytochrome system (132) (see
Table 2). This results in a variable reduction of protease inhibitor
(PI), nonnucleoside reverse transcription inhibitor (NNRTI),
integrase inhibitor, and fusion inhibitor levels, but not levels of
nucleoside reverse transcriptase inhibitors (NRTIs). Hence the
WHO recommends that the first-line regimen should be two
NRTIs plus one NNRTI (typically efavirenz). Furthermore,
when a PI is required and rifabutin is not available (often due
to cost in high-prevalence settings), ritonavir-boosted lopinavir or
saquinavir is recommended in conjunction with rifampicin-based
anti-TB treatment. This regimen should be closely monitored for
treatment failure (129). Significantly, work by the Clinton Foun-
dation has lowered the price of rifabutin, which may make this drug
more accessible in resource-limited settings (133).

Paradoxical IRIS occurs when clinical deterioration, not due
to other opportunistic infection, drug resistance, or relapse,
occurs in individuals who commence HAART while already
undergoing antituberculous therapy (134, 135). By contrast,
unmasking IRIS occurs when paucisymptomatic individuals
who commence HAART develop clinical features of active
TB, although it may be impossible to determine whether the
event is due to recent infection or subclinical disease merely
unmasked by immune reconstitution. In either case, and by
definition, it is imperative to exclude nonadherence, drug-
resistant TB, and other opportunistic infections (134–136).
The median duration from treatment initiation to the develop-
ment of paradoxical IRIS is about 4 to 6 weeks. It is associated
with a short interval between TB treatment initiation and

Figure 3. The microscopic-observation drug susceptibility (MODS)

assay. (A) Typical cording formation characterized by M. tuberculosis

growth in liquid medium visualized by an inverted light microscope at
an original magnification of 3400. (B) Magnification of typical cords of

MTb. (C ) Picture of MODS culture plate. Cultures are prepared in a 24-

well tissue culture plate in six columns of four wells each. Each column

of four wells is used for a single sample–two wells are drug free and one
each contains rifampicin and isoniazid. Six columns allow for five

samples per plate and one negative control column. Plates are per-

manently sealed inside Ziploc bags after inoculation to avoid cross-

contamination and for safety and are examined within bags daily for
15 days and then on alternate days until Day 21. Nontuberculous

mycobacteria do not form cords, except for M. chelonae, which can be

identified by rapid growth.
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HAART, low CD41 T-cell counts, rapid reduction in viral load,
and disseminated TB and may be life-threatening (134). Most
cases, however, can be managed symptomatically (antipyretics
and antiinflammatory agents), although in a minority of cases,
aspiration of sterile abscesses, discontinuation of HAART, or
initiation of corticosteroids may be required. A randomized con-
trolled trial by Meintjes and colleagues suggested that corticoste-
roids reduce the need for hospitalization and procedures, and
resulted in symptom improvement in patients with IRIS (137).

Given these considerations, the psychological burden of
dealing with two diseases, and the high associated pill burden,
initiation of HAART has been delayed in some patients coin-
fected with TB and HIV, particularly those with higher CD41

T-cell counts. However, in high-burden countries, mortality is
high in coinfected individuals immediately after TB diagnosis,
suggesting specific HIV therapy may be of further benefit (138).
Hence, the WHO recommends that HAART be commenced as
soon as possible after initiation of TB treatment (and within the
first 8 wk) in all HIV-infected individuals with active TB,
regardless of CD41 T-cell count (139). These guidelines are
based, in part, on a randomized controlled trial of HIV-infected
individuals with CD41 T-cell counts not exceeding 500 cells/ml,
which showed a mortality benefit of integrated HAART and TB
therapy (average HAART commenced about 70 d after anti-TB
therapy) compared with sequential therapy (HAART com-
menced after TB therapy was completed) in patients both below
and above the cutoff of 200 cells/ml (140). Although not pub-
lished, preliminary results of the CAMELIA (Cambodian Early
versus Late Introduction of Antiretroviral Drugs) trial (avail-
able at www.nih.gov/news/health/jul2010/niaid-22.htm) showed
a 33% reduction in mortality in coinfected subjects with a CD41

T-cell count less than 200 cells/mm3 begun on HAART 2 weeks
after anti-TB therapy compared with 8 weeks after anti-TB
therapy. This study and additional prospective studies, such as
the A5221, of the Adult AIDS Clinical Trials Group of the
Division of AIDS (141), may further refine these guidelines, and
further study is needed to determine whether they are applicable
to high- and low-resource settings. Last, data are required to
guide the initiation of HAART in patients who have MDR and
XDR TB, although preliminary data indicate that HAART is
relatively well tolerated with second-line anti-TB drugs (4).

CONCLUSION

Increasing rates of HIV–MTb coinfection worldwide pose not
only an enormous threat to the HIV-infected population, but may
also pose a threat to the non–HIV-infected population especially
in resource-limited settings. Despite the magnitude of the
problem, our understanding of the underlying causes of coinfec-
tion and our ability to combat it remain limited. This review
highlights a number of areas where further study may greatly
improve efforts to prevent and treat coinfection. In particular,

several key areas such as impact of HAART on TB risk, diagnosis
and treatment of LTBI in resource-poor settings, and rapid point-
of-care diagnosis for active TB disease with susceptibility testing,
optimal timing of treatment of coinfection, and management of
IRIS are areas of critical need and the subjects of ongoing re-
search. Significant progress has been made, but much remains to
be done. Given the enormity of the problem, it is possible that
targeted study and implementation of simple interventions have
the potential to provide tremendous benefit in the care of these
patients, especially in resource-poor settings.
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