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Abstract

Objective—Sorting mechanisms that cause the amyloid precursor protein (APP) and the -
secretases and y-secretases to colocalize in the same compartment play an important role in the
regulation of Ag production in Alzheimer’s disease (AD). We and others have reported that
genetic variants in the Sortilin-related receptor (SORL1) increased the risk of AD, that SORL1 is
involved in trafficking of APP, and that under expression of SORL1 leads to overproduction of
Ap. Here we explored the role of one of its homologs, the sortilin-related VPS10 domain
containing receptor 1 (SORCSL1), in AD.

Methods—We analyzed the genetic associations between AD and 16 SORCS1-single nucleotide
polymorphisms (SNPs) in 6 independent data sets (2,809 cases and 3,482 controls). In addition,
we compared SorCS1 expression levels of affected and unaffected brain regions in AD and control
brains in microarray gene expression and real-time polymerase chain reaction (RT-PCR) sets,
explored the effects of significant SORCS1-SNPs on SorCS1 brain expression levels, and explored
the effect of suppression and overexpression of the common SorCS1 isoforms on APP processing
and AS generation.

Results—Inherited variants in SORCS1 were associated with AD in all datasets (0.001 < p <
0.049). In addition, SorCS1 influenced APP processing. While overexpression of SorCS1 reduced
y-secretase activity and AS levels, the suppression of SorCS1 increased y-secretase processing of
APP and the levels of AB.

Interpretations—These data suggest that inherited or acquired changes in SORCS1 expression
or function may play a role in the pathogenesis of AD.

Amyloid £ (AB), the putative culprit in Alzheimer’s disease (AD) is produced by successive
[S-secretase (BACE) cleavage of the amyloid precursor protein (APP) at the N-terminus of
the Ap peptide followed by y-secretase cleavage of the membrane-bound C-terminal APP
fragment.! This mechanism explains A accumulation in early-onset familial AD due to
mutations in the APP2 presenilin 1 (PSEN1),2 and presenilin 2 (PSEN2)* genes. The
explanation for the accumulation of AB40 and AB42 in the common late-onset form of the
disease remains largely unknown.

APP and the secretases are integral transmembrane proteins. They are dynamically sorted
into the plasma membrane and the membranes of intracellular organelles.?>8 As a
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consequence, sorting mechanisms that cause APP and the secretases to colocalize in the
same cellular compartment are expected to play important roles in the regulation of AS
production. During the last 2 decades, the trans-Golgi network and the endosome were
identified as the key organelles managing the complex movement of the transmembrane
proteins via secretory and endocytic pathways.’-8

We and others have previously reported®16 that variants in the Sortilin-related receptor
(SORL1), which maps to chromosome 11¢23.3, are associated with AD, that SORL1 is
involved in trafficking of APP from the cell surface to the Golgi-endoplasmic reticulum
complex, and that under expression of SORL1 leads to overexpression of AS and an
increased risk of AD.? SORL1 belongs to the mammalian Vps10p-domain sorting receptor
family, which is a group of 5 type-I membrane homologs (SORL1, Sortilin, SorCS1,
SorCS2, and SorCS3).17-20 All 5 proteins are characterized by a luminal, extracellular
VPS10 domain. In sortilin, the VPS10 domain is the only luminal, extracellular module. In
SORL1 the VPS10 domain is followed by low-density lipoprotein (LDL) receptor-like
regions and fibronectin type-111 domains. In the homologous SorCS1, SorCS2, and SorCS3
the transmembrane domain is preceded by a leucine-rich module.?! Following the
extracellular and transmembrane segment, each receptor carries a short (40-80 amino acids)
cytoplasmic domain comprising typical motifs for interaction with cytosolic adaptor
molecules. All of these receptors are prominently expressed in the nervous system and
particularly high in the brain, and may be important for neuronal activity,22:23 although their
precise function remains elusive.

We hypothesized that genetic variants in SORL1 homologues, in particular SORCS1, might
also affect the risk of AD. This was supported by the facts that: (1) we previously observed
an association of single nucleotide polymorphism (SNP) rs7082289 in SORCS1 (p = 0.013)
in late-onset AD families?; and that (2) Li et al.2 examined a Canadian dataset of 753 AD
cases and 736 controls, and SNP rs601883 in SORCS1 was associated with AD risk (hazard
ratio [HR], 3.41; 95% confidence interval [Cl], 1.87-6.23), and SNP rs7907690 was also
significant in logistic regression analyses (p = 0.05). In a chromosome 10-specific
association study with 1,412 SNPs in 4 independent Caucasian datasets,2> SNP rs600879 in
SORCS1 was significantly associated with AD in an exploratory sample set and an
independent replication sample set, although the authors used replication rather than
correction for multiple testing for evidence of association (uncorrected p-value across
datasets: 0.0043). In a case-control dataset of 506 cases and 558 controls, rs17277986 in
SORCS1 was significant in the overall datasets (p = 0.0025) and most significant in the
female subset (allelic association p = 0.00002) in single-marker and haplotype analyses.2

The goal of this study was to analyze the genetic associations between AD and SORCS1 in 6
independent data sets that had sufficient power to detect modest gene effects. We focused on
the SNPs that had been reported by the previous studies as described above, adding SNP
rs7082289 at 108,357,010bp that was associated with AD in a previous report by us.® We
also compared SorCS1 expression levels of affected and unaffected brain regions in AD and
control brains in expanded microarray gene expression and real-time polymerase chain
reaction (RT-PCR) sets, explored the effects of significant SORCS1-SNPs on SorCS1 brain
expression levels, and explored the effect of suppression and overexpression of the common
SorCS1 isoforms on APP processing and Af generation.

Patients and Methods

Participants

Six datasets included: (1) 371 cases and 349 controls of European descent (Toronto
dataset?’); (2) 229 Caucasian cases and 301 controls from the NIA-LOAD study?8; (3) 763
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cases and 1,170 controls from the MIRAGE Caucasian dataset?30; (4) 660 cases and 844
controls from the Miami Caucasian data-set3%; (5) 310 cases and 327 controls from the
MIRAGE African American dataset?%30; and (6) 476 cases and 491 controls from a
Caribbean Hispanic dataset (see Supporting Information Methods). While mean age of onset
and mean age of controls was slightly younger in the MIRAGE compared to the other
datasets, frequency of the apolipoprotein E (APOE)-e4 allele was higher in the NIA-LOAD
and MIRAGE African American datasets. The clinical characteristics of these datasets are
summarized in Supporting Information Table 1. The diagnoses of “probable” or “possible”
AD were defined according to the National Institute of Neurological and Communication
Disorders and Stroke—Alzheimer’s Disease and Related Disorders Association (NINCDS-
ADRDA) diagnosis criteria3! at clinics specializing in memory disorders or in clinical
investigations. Persons were classified as “controls” when they were without cognitive
impairment or dementia at last visit. Informed consent was obtained from all participants
using procedures approved by institutional review boards at each of the clinical research
centers collecting human subjects.

Each study site provided the results from genotyping of 16 SORCS1 SNPs and APOE.
Information on genotyping platforms used in each study is provided in Supporting
Information Table 2. The 16 SORCS1 SNPs included SNPs in the 5’ end of the gene that
were significant in preliminary analyses and previous studies,242> and SNP rs7082289 that
had been associated with AD our earlier report.? In order to facilitate interpretation of the
results for the reader, we refer to these 16 SNPs by sequential numbers (marker number)
reflecting their relative physical map positions. Information on numbering, location,
orientation, and type of the SNPs is given in Table 1.

Microarray Gene Expression

Expression profiling was performed separately for the cerebellum, parietal-occipital
neocortex, and amygdala regions from 19 AD and 10 control brains from the New York
Brain Bank (www.nybb.hs.columbia.edu). This 3-region approach allowed us to enhance the
signal-to-noise ratio,32 and to determine those changes in expression patterns of candidate
genes that are specific for late-onset AD and consistent with distribution of AD pathology.

For the expression profiling of AD and control brains, the Affymetrix GeneChip® Human
Exon 1.0 ST Arrays were used. Frozen brain tissue was ground over liquid nitrogen and
stored at —80°C until use. Total RNA was extracted and purified using TRIzol Plus RNA
purification kit (Invitrogen). Quantification and qualification of all RNA preparations was
performed using an Agilent Bioanalyzer (RNA 6000 nano-kit) and only samples with RNA
integrity number (RIN) > 8 were used in the subsequent RNA amplification and
hybridization steps. The GeneChip expression 2-cycle target labeling kit (Affymetrix) was
used for all samples according to Affymetrix protocols. Briefly, the procedure consists of an
initial ribosomal RNA (rRNA) reduction step and 2 cycles of reverse transcription followed
by in vitro transcription (IVT). For each sample, 1 ug of total RNA is initially subjected to
removal of rRNA using the RiboMinus™ Transcriptome Isolation Kit (Invitrogen) and
spiked with Eukaryotic PolyA RNA controls (Affymetrix). The rRNA-depleted fraction was
used for complementary DNA (cDNA) synthesis by reverse-transcription primed with T7-
random hexamer primers, followed by second-strand synthesis. This cDNA serves as
template for in vitro transcription to obtain amplified antisense complementary RNA
(cRNA). Subsequently cRNA from the first round was reverse-transcribed using random
primers to obtain single-stranded sense DNA. In this second reverse-transcription, dUTP is
incorporated into the DNA to allow for subsequent enzymatic fragmentation using a
combination of UDG and APE1. All reverse and in vitro transcription steps were performed
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using the GeneChip WT cDNA synthesis and amplification Kit (Affymetrix). The resulting
fragmented DNA was labeled with Affymetrix DNA Labeling Reagent. Labeled fragmented
DNA was hybridized to Affymetrix Human Exon 1.0 ST arrays, then washed and stained
using the GeneChip Hybridization, Wash and Stain Kit. Fluorescent images were recorded
on a GeneChip scanner 3000 and analyzed with the GeneChip operating software.

Candidate genes that showed changes in expression patterns were confirmed by RT-PCR
using TagMan Gene Expression Assays (Applied Biosystems), which included specific
primers and fluorogenic probes for each gene. The TagMan Assays use targeted regions
spanning exon-exon boundaries. Each cDNA sample from the same brain regions used in
the microarray gene expression analysis was analyzed in triplicate 20-ul reactions and only 1
gene assayed per reaction. The Assays Hs00364666_m1 and Hs01016139 m1 (Applied
Biosystems) were used to confirm SorCS1. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and bACTIN TagMan Endogenous controls (Applied Biosystems) were used for
normalization. In addition to all the individual samples, a calibrator sample comprised of a
pool of all cDNA samples was assayed in every plate for inter-run calibration. Reactions
were run on an iQ5 Real-Time Detection System (Bio-Rad). Efficiencies for each assay
were calculated from a standard curve using serial dilutions of the calibrator sample. Results
from these curves were used to determine appropriate cDNA sample dilution. Relative levels
of gene expression were obtained by the 22ACt method using iQ5 software (Bio-Rad).

Construction of Expression Plasmids and RNA Interference

The cDNAs encoding 2 common constitutively expressed SorCS1 isoforms with different
cytoplasmic tails (SorCS1a, NM_052918; and SorCS1b, NM_001013031) were purchased
from OriGene Technology. Both isoforms were cloned into the pCMV6-XL4 vector
(OriGene Technology). In addition, short hairpin RNA (shRNA) against SorCS1 and the
control scrambled sequence shRNA (TRC library; Open Biosystems) were used in the APP
processing assays.20 At least 3 of 5 shRNA were able to knockdown SorCS1-gene
expression (by 60-80%) by western blot analysis.

Cell Culture and Transfection

HEK?293 stably or transiently transfected with the APP Swedish mutation (APPsw),33 M17,
and SH-SY5Y cells were maintained in Dulbecco’s modified Eagle’s media (Invitrogen)
containing 10% fetal bovine serum and penicillin and streptomycin. Transfections were
performed by Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
recommendations. In the case of ShRNA transfections, HEK293 cells were transfected and
then media was changed the day after. After culturing for an additional 24 hours, the media
was changed and cells were incubated for additional 48 hours.? Conditioned media was
collected for the Af enzyme-linked immunoassay (ELISA) and cells were harvested for
western blotting. For the ShRNAs, the HEK293 or M17 cells were transiently transfected
and assayed after 5 days.

APP-GV Assay

The y-secretase activity and nuclear translocation of the APP/ Fe65/TIP60 protein complex
was monitored with the APP-GV assay.34 The APP-GV assay is a luciferase-based assay3*
consisting of the APP gene’s C-terminus (AICD) fused to a transcription factor composed of
the GAL4 DNA binding domain with VP16 transcriptional activator (GV). In addition, the
AICD fragment is fused to the GV domains as a positive control of AICD generation and
allows for the evaluation of the AICD-specific contribution to the observed modulation in
the APP-GV assay. Briefly, SorCS1 cDNA or SorCS1 shRNAs transiently transfected were
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evaluated in either the APP-GV or the AICD-GV assay, as previously described34 in the cell
lines HEK293 and the neuroblastoma M17.

Western Blotting and Immunoprecipitation

Antibodies against SorCS1 were purchased from R&D systems and Santa Cruz
Biotechnology. Anti-S-tubulin and anti-APP C-terminal (anti-APPc, 8717 and anti-APPn,
22C11) were from Sigma. Normal goat immunoglobulin G (IgG) and rabbit 1IgG were from
R&D systems and Sigma-Aldrich, respectively. Anti-Ag (6E10) was obtained from
Covance. For the immunoprecipitation, 5ml of the antibody was incubated with 500ug to
750ug of protein lysates and 20ul (bed volume) of protein G-Agarose beads (Sigma) at 4°C
overnight with rotation. After extensive washing with the lysis buffer (3 times diluted radio
immunoprecipitation assay [RIPA] buffer from Cell Signaling Technology), the bound
proteins were separated by boiling in 1x lithium dodecyl sulfate (LDS) sample buffer
(Invitrogen) and subjected to western blot analysis. All immunoblots were visualized by
enhanced chemiluminescence (ECL; GE Healthcare).

Colocalization Double-Labeling Immunohistochemical Study

AB Assays

SH-SY5Y cells plated on coverslips were fixed with 10% buffered formaldehyde followed
by multiple washes in phosphate buffered saline (PBS) and a 15-30-minute incubation in
0.01% triton-100, 2% bovine serum albumin (BSA; Sigma; B4287) in PBS. This was
followed by a 3-hour incubation at room temperature in the SorCS1 antibody (1:200; R&D
Systems) and anti-APP C-terminal (1:500; Sigma; #8717). A cocktail of secondary
antibodies containing donkey-anti-goat-Alexa Fluor 488 (1:100, Molecular Probes) and
donkey-anti-mouse Alexa-Fluor 594 (1:100; Molecular Probes) for SorCS1 and APP,
respectively, were applied for 1 hour at room temperature. Sections were then rinsed in PBS
3 times and mounted with the proper medium (Vectashield; Vector Labs). Confocal
fluorescence images were acquired with a confocal laser-scanning microscope (Fluoview
FV300-TP; Olympus).

Levels of Ap40 and Ap42 were measured using ELISA kits (Invitrogen), following the
manufacturer’s protocols.

Statistical Methods

First, SNP marker data were assessed for deviations from Hardy-Weinberg equilibrium
(HWE). Then, logistic regression models in PLINK
(http://pngu.mgh.harvard.edu/~purcell/plink) were used to assess genotypic and allelic
associations with AD. Multivariate logistic regression analysis, using PLINK, was
performed to adjust for APOE-¢4, sex and age-at-onset or age-at-examination. The false
discovery rate (FDR),3 which controls the expected proportion of incorrectly rejected null
hypotheses (type-I errors), was used to account for the error in multiple comparisons. At a
minor allele frequency (MAF) of 0.1 and a 0.05 a-level, we had 80% power to detect an
effect size of odds ratio [OR] 1.2.

Linkage disequilibrium (LD) structure was examined using Haploview
(http://www.broad.mit.edu/mpg/haploview/index.php). Haplotype blocks were defined using
the confidence intervals algorithm. The default settings were used in these analyses, which
create 95% confidence bounds on D’ to define SNP pairs in strong LD. Haplotype analyses
were carried out using a window of 3 contiguous SNPs using Haplo.stats v1.1.1 for case-
control data.
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We also performed a meta-analysis of all datasets. To determine the strength of associations
between the individual SORCS1 SNPs and AD, we calculated a pooled OR for each marker
using fixed and random effects models using PLINK. We first performed meta-analyses of
unadjusted results from the individual datasets, and then repeated the meta-analyses using
the results from the individual datasets adjusted for APOE-&4, sex and age-at-onset or age-
at-examination. The p values for each SNP were corrected for multiple testing (ie, analysis
of 16 SNPs in total) using the FDR.3® Between-data-set heterogeneity was quantified using
the 12 metric for inconsistency36 and its statistical significance was tested with the chi-
square distributed Q statistic.37 12 is provided by the ratio of (Q-df)/Q, where df = the
number of degrees of freedom (1 less than the number of combined datasets); it is
considered large for values above 50% and Q is considered statistically significant for p =
0.10.36:37

For analysis to determine genes in which expression levels differ between affected and
unaffected brain regions and AD and control brains, we performed both within-group and
between-group factors analysis of variance (ANOVA) using Partek Genomics Suite 6.4
(http://www.partek.com/partekgs). Prior to analysis, we logq-transformed rank invariant
normalized expression data. Also in these analyses, the FDR was used to account for the
error in multiple comparisons.

Statistical Analysis for the Cell Biology and Assays

Results

For these analyses, an ANOVA with post hoc correction was performed using Graphpad
Statistical software (Graphpad, Inc., San Diego, CA) to compare mean expression levels. All
of the data was normalized to transfection efficiency (eg, green fluorescent protein [GFP]),
and then to the control values on each plate for every assay to allow for comparisons across
experiments.

Association of SORCS1 SNPs with AD

Table 2 shows the single-SNP associations of the 16 genotyped SNPs with AD across the
various datasets. Five out of 6 datasets (all 4 Caucasian datasets and the Caribbean Hispanic
dataset) showed an association with at least 1 allele but the specific alleles and the direction
of the association differed, likely due to differences in LD patterns and allele frequencies. In
particular, the block of SNPs 4-9 in the 5’ end of SORCS1 was associated with AD in 3 of
the Caucasian datasets (NIA-LOAD, Toronto, and Miami datasets). In the NIA-LOAD and
Miami data-sets, alleles G, T, G, C, and C at markers 4, 5, 7, 8, and 9 were associated with
an increased risk of AD (0.003 < p < 0.049), while in the Toronto dataset alleles A, C, A, T,
and T were associated with AD risk (0.004 < p < 0.03). Within this block, SNP 6 did not
reach statistical significance, probably due to very low allele frequency.

In addition, in each of these Caucasian datasets, several of the remaining markers toward the
5" end (SNPs 10-16) showed associations that were marginally significant. In the Caribbean
Hispanic (p = 0.001) and the Toronto dataset (p = 0.03), the A allele of SNP 11 was
associated with AD, and this SNP showed also a trend toward a lower AD risk in the
MIRAGE African American dataset (p = 0.053). In the fourth Caucasian dataset, the
MIRAGE Caucasian sample, none of the markers of the block 4-9 reached statistical
significance, but the T allele of SNP 14 was associated with an increased risk of AD (p =
0.007). These effects were independent of age, sex, and APOE status (Supporting
Information Table 6). Supporting Information Figure 3 shows the LD pattern of SORCSL1 in
Caucasians and the relative location of the 16 genotyped SNPs. Supporting Information
Table 5 shows the genotype counts for each SNP.
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Consistent with the single-marker results for block 4-9, haplotypes T-T-G at SNPs 5-6-7
and C-C-G at SNPs 8-9-10 in the 3-SNP-window haplotype analyses were associated with
an increased risk of AD in the NIA-LOAD and Miami datasets and a decreased risk of AD
in the Toronto dataset (0.001 < p < 0.02; Table 3). In addition, a second set of haplotypes
(C-T-A at SNPs 5-6-7 and T-T-G at SNPs 8-9-10) was associated with AD risk in an inverse
fashion. In addition, consistent with the single-marker results for the A allele of SNP 11,
haplotype AAT at SNPs 11|12|13 was associated with a lower risk of AD in the MIRAGE
African American and the Caribbean Hispanics datasets (0.001 < p < 0.03), and haplotype
AGT wias significantly associated or close to significance in the Toronto and MIRAGE
African American datasets (0.02 < p < 0.06).

Finally, we performed a meta-analysis of the single-marker associations in which we first
excluded the Toronto dataset due to the differences in allele frequencies (Table 4). Because
there was no evidence for between-dataset heterogeneity of fixed effects estimates and the
random effects estimates across datasets were similar, we adopted the pooled estimate
derived by the fixed effects model. In these analyses, the block of SNPs 4-9 was
significantly associated with AD, with p values ranging from 0.0008 to 0.007. In addition,
SNP 13 was significantly associated with AD (p = 0.03). When the Toronto dataset was
included in the analyses, the associations were attenuated but remained significant for SNPs
7-9 (0.01 < p < 0.05).

SorCS1 Gene Expression

Microarray expression analyses of the amygdala tissue of the 19 AD and 10 control brains
showed significantly lower expression of SorCS1 in AD brains compared to control brains
(mean gene expression intensity: 3.69 + 0.03 vs 4.35 + 0.04, p = 0.00006; Figs 1A, B).
When we used tissue from regions that are less affected by the AD process (ie, cerebellum
and occipital lobe), SorCS1 expression did not differ between AD cases and controls (p =
0.8 and p = 0.9, respectively).

Quantitative RT-PCR of the amygdala brain tissue of the 29 brain samples confirmed these
results for SorCS1 (mean expression intensity: 2.4 + 0.64 in AD brains vs 3.0 £ 0.46 in
control brains, p = 0.05) and the SorCS1b isoform (mean expression intensity: 1.6 + 0.37 in
AD brains vs 3.1 + 0.37 in control brains, p < 0.0001).

Finally, in order to determine whether any of the disease-associated SNPs affect SorCS1
expression levels, we genotyped these 29 Caucasian brain samples for the 16 SORCS1
SNPs. In these analyses, several SNPs were associated with statistically significant
decreases (~40%) in expression levels at probe sites closely located to these markers
(Supporting Information Table 3). When the analyses were adjusted for affection status the
results remained essentially unchanged (Supporting Information Table 4). There was no
evidence that these associations were due to outliers (Supporting Information Fig 4).
Supporting Information Figure 5 shows gene expression levels of the commonly used
housekeeping genes ACTB and RPL5 for comparison. Due to the small sample size of gene
expression data, multivariable linear regression analyses that can control for confounders
such as age at death, gender, or RNA integrity number (RIN) was not possible.

Evaluation of the Role of SorCS1 in APP Metabolism

OVEREXPRESSION OF SORCS1—HEK?293 cells stably transfected with the APP
Swedish mutation (293APPsw) were transiently transfected with SorCS1 isoforms a or b.
Expression of an ~130-kDa protein was detected by western blotting with 2 SorCS1
antibodies in transfected cell lysates (Fig 2A). Overexpression of SorCS1 did not alter the
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expression of APP holoprotein or its maturation (see Fig 2B) as compared to beta tubulin
levels (see Fig 2C).

To determine whether the overexpression of SorCS1 affects Ag secretion, we measured
ApB40 and AB42 levels in conditioned media of HEK293APPsw cells transiently transfected
with SorCS1a and SorCS1b (Fig 3). Overexpression of both SorCS1 isoforms resulted in a
significant ~30% decrease of both AS40 (0.0001 < p < 0.0034) and AB42 secretion (0.0004
< p < 0.0321). The same conditioned media was analyzed using western blotting to detect
the secreted forms of APP and SorCS1. The results showed that the soluble N-terminal
ectodomain of APP (total SAPP) and the fragment generated by a-secretase cleavage
(sAPP«) were decreased in conditioned media of transfectants with the SorCS1 isoforms

(Fig 4).

KNOCKDOWN OF SORCS1—HEK?293 and M17 cell lines were used for the knockdown
experiments. Our western blot confirmed the endogenous expression of SorCS1 protein
(Supporting Information Fig 2). Five shRNAs targeting SorCS1 (shRNAs 41-45) and
control shRNA (scrambled shRNA) were obtained from Open Biosystems (Supporting
Information Table 7). To examine the knockdown efficiency, the HEK293 cell line was
transfected with each shRNA and then total cell lysates were analyzed by western blotting
with SorCS1 antibodies. We observed a reduction of endogenous SorCS1 protein using the
SorCS1 targeting shRNAs but not the control scrambled shRNA.

The effect of SorCS1 knockdown on AB40 secretion was measured in conditioned media
from HEK?293 cells co-transfected with SorCS1 shRNAs 41-45 and APP that effectively
reduced the expression of SorCS1 protein, but did not affect the levels of APP holoprotein,
presenilinl or nicastrin (Fig 5). Knockdown of SorCS1 also showed 2-fold to 3-fold
elevation of AB40 levels (p < 0.01 to p < 0.001 as compared to scrambled shRNA condition
(ANOVA with Bonferroni correction; Graph-Pad Software, La Jolla, CA) in conditioned
media from transfected HEK293 cells (Fig 6). The level of Ag42 was under the detection
limit.

In addition to the A ELISA measurements, we have also utilized the APP-GV assay to
monitor gamma secretase activity and nuclear translocation of the APP/ Fe65/TIP60 protein
complex.3* The shRNAs against SorCS1 were also used to further investigate the role of
SorCS1 in APP processing. The APP-GV assay was developed as a sensitive method to
detect y-secretase processing of APP and is based upon the nuclear translocation of the APP
C-terminus fragment (AICD) to activate a transcriptional reporter.34 In both HEK293 and
M17 (Fig 7), 4 of the 5 SorCS1-shRNAs caused a significant increase greater than 3-fold in
APP processing (p < 0.05 to p < 0.01) as compared to scrambled shRNA condition
(ANOVA with Bonferroni correction; Graph-Pad Software) while not affecting the nuclear
translocation of the control AICD-GV only-fragment.

INTERACTION OF APP AND SORCS1—To assess the potential mechanism by which
SorCS1 might modulate APP processing, we next investigated if it was mediated by a direct
interaction between APP and SorCS1. We performed co-immunoprecipitation experiments
using HEK293APPsw overexpressing SorCSl1a or SorCS1b. Immunoprecipitation of
SorCS1 using the SorCS1 antibody (R&D) and western blotting for SorCS1 (H120) or APP
(anti-APPn, 22C11) revealed a ~130-kDa band (SorCS1) or ~100-kDa band (FL-APP) only
in SorCS1-transfectants but not in the cells transfected with empty vector (XL4), which
express only low levels of endogenous SorCS1 (Fig 8). In addition, an endogenous
interaction between APP and SorCS1 was observed in SH-SY5Y cells (Supporting
Information Fig 6).
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Finally, confocal analysis supported the colocalization of SorCS1 and APP in SH-SY5Y
cells. SorCS1 and APP immunoreactive elements were identified in the perinuclear area by
Alexa Fluor 488 (green), and 594 (red) fluorescence, respectively (Supporting Information
Fig 7).

Discussion

The accumulated findings reported here suggest that variation in SORCS1 sequence,
expression, and function may influence the development of AD. Although the identity of the
specific AD-associated sequence variations in SORCS1 remains to be determined, our
results imply that (1) there are different AD-associated allelic variants in the SORCS1 gene
in different populations; (2) these variants are likely to be in intronic regulatory sequences
that effect cell type—specific or tissue-specific expression of SorCS1; and (3) that genetic
variation in SORCS1 might affect AD risk by altering the physiological role of SorCS1 in
the processing of APP holoprotein.

Similar to observations on the SORCS1 homologue SORL1° no single SNP or haplotype was
associated with AD in all datasets. In addition, the direction of the effect of some of the
disease-associated alleles differed between some of the datasets, which we attribute to
population differences in LD with the true genetic effector. Another potential explanation
for these series-related differences could be confounding genetic or environmental factors
that are influential in 1 dataset but not the others. Several issues diminish the possibility that
the association between SORCS1 and AD is spurious. First, the association was initially
identified in the NIA-LOAD family 6k dataset (rs7082289; SNP 1) using conservative
family-based association tests, which are less sensitive to confounding due to population
stratification. Second, several alleles and haplotypes were associated with altered risk for
AD in at least 2 unrelated data sets. Third, the associations of several SNPs remained
significant in meta-analyses that included the Toronto dataset. Differences in the LD
patterns between the datasets are a possible explanation for the inverse direction of the
association with AD in the Toronto dataset as compared to the other Caucasian datasets. It is
possible that the minor alleles of significant SNPs are in linkage with risk alleles in some
datasets or populations but in linkage with protective variants in others. Of note, the
direction of the effect of SNP 11 in the Toronto dataset was similar to the direction of the
effect in the Caribbean Hispanic and MIRAGE African American datasets. Alternatively,
the genotyped variants are not the disease-causing variants but rather identify protective or
harmful disease-modifying variations in SORCSL1. Fourth, the finding of association with
different SNPs in different ethnic groups is a not an unusual observation in complex
diseases.38 The occurrence of pathogenic mutations across multiple domains of disease
genes (allelic heterogeneity) and the absence of these variants in some datasets or ethnic
groups (locus heterogeneity) are frequently observed in both monogenic and complex
traits.39 Because the 16 genotyped SNPs do not cover the whole genetic variation in the
SORCS1 gene (see Supporting Information Fig 3), it is possible that additional
polymorphisms in nontagged regions of the gene are associated with AD risk.

Also, it needs to be acknowledged that the sample sizes of the individual datasets were
modest. Thus, it remains possible that larger individual datasets would have detected
additional genotype-phenotype associations with smaller effect sizes or allele frequencies.
Our meta-analyses of all Caucasian datasets, which included in total 2,309 cases and 3,482
controls, confirmed the findings for SNPs 4-9 derived from the individual study samples,
and in addition pointed to SNP 13 as significantly associated with AD.

Our finding of a role of SORCS1 in AD is also supported by the results of our RT-PCR and
brain microar-ray analyses. We found significantly lower SorCS1 expression levels in
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amygdala from AD brains compared to the controls, and decreases in SorCS1 expression
levels at several probe sites were associated with closely located SNPs. In contrast, when
tissue from regions that are less affected by the AD process (ie, cerebellum and occipital
lobe) was used, SorCS1 expression did not differ between AD cases and controls. However,
while plausible and consistent with our results from the genetic association studies and cell
biological experiments, alternative explanations for these differences in expression levels
must be discussed. It remains possible that SORCS1 expression levels in the amygdala were
influenced by differential cell loss that is more pronounced in AD brains. Alternatively,
differential expression between AD and control brains exists throughout the brain but could
be more pronounced in the amygdale, and smaller differences in the control brain regions
(ie, cerebellum and occipital cortex) may not have been detected due to small sample size.

Our data also revealed that high levels of SorCS1 result in modest (~30%) reductions in both
ApB40 and Ap42, which would be protective. Conversely, the RNAi knockdown of SorCS1
on APP processing had the inverse observation of an increase in Ag levels (2-3-fold). In
addition, the APP-GV assay, which detects y-secretase activity,3* demonstrated that the
reduction of SorCS1 leads to a greater than 3-fold increase of y-secretase activity on APP
processing. Reminiscent of AD, the APP protein level and maturation was found to be
unaffected, suggesting altered trafficking and/or increased activity of y-secretase, leading to
the generation of Ag as likely mechanisms.

The mechanisms by which overexpression of SorCS1 transcripts modulates A production is
not immediately clear, but likely involves binding of SorCS1 to the APP holoprotein or to its
processing enzymes, possibly separating APP away from BACE1 and y-secretase cleavage.

In summary, while the genetic and biochemical data both infer a relationship between
SorCS1 and the AD process, it is presently unclear how this is mediated. It is tempting to
speculate that intragenic, noncoding polymorphisms in SORCS1 might account for the
modest, yet consistent association with risk for AD, and might act by modulating SorCS1
expression. In particular, we hypothesize that high basal levels of SorCS1 expression in
some individuals might have a protective effect, whereas low levels of expression may lead
to elevated APP processing into A as found in AD. Additional studies will be needed to
determine whether carriers of alleles associated with differential risk for AD are indeed
protected and that protection arises because of high levels of expression of SorCS1.
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FIGURE 1.

(A) View of SORCS1 exon expression profile in 19 AD (red triangles) and 10 control (blue
squares) amygdala tissue. Each triangle dot represents least squares mean expression of an
exon in AD tissue; each square dot represents least squares mean expression of an exon in
control tissue. The mean gene expression intensity of AD vs controls was 3.69 + 0.03 vs
4.35 + 0.04 (p = 0.00006) across all exons. The top part of the graph shows the structure of
the SorCS1b (above) and SorCS1a (below) isoforms in this region retrieved from the UCSC
browser. (B) Dot plot showing the 2D distribution of amygdala expression levels of the 19
AD (red) and 10 control (blue) samples. 2D = 2-dimensional; AD = Alzheimer’s disease;
UCSC = University of California, Santa Cruz.
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FIGURE 2.

Overexpression of SorCS1 in HEK293 APPsw cells (XL4 transfected samples). (A) SorCS1
expression was confirmed by 2 different SorCS1 antibodies (R&D and H120). (B)
Expression of APP in SorCS1 transfectants. Overexpression of SorCS1 did not have an
effect on FL-APP expression or its maturation. (C) Western blot done on the same samples
with S-tubulin antibody (loading control). APP = amyloid precursor protein; APPsw = APP
Swedish mutation; FL-APP = APP holoprotein; XL4 = empty vector.
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FIGURE 3.

Measurement of Ag1-40 and AB1-42 from conditioned media of HEK293 APPsw
overexpressing SorCS1 isoforms. AS levels normalized to total protein were measured. Data
shown as percentages of control values (XL4; n = 3 per experiment, 3 independent
experiments). APP = amyloid precursor protein; APPsw = amyloid precursor protein
Swedish mutation; FL-APP = APP holoprotein; XL4 = empty vector.
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Overexpression of SorCS1 decreased the secretion of total APPs and sAPPa into culture
media. CM and total cell lysate from HEK293 APPsw transfected with SorCS1 isoforms
were analyzed by western blot with antibodies against APP (22C11 and 8717), Aj (6E10),
and SorCS1 (R&D). Total SAPP and sAPP« from CM were decreased compared with XL4
in spite of similar FL-APP expression in cell lysate. Western blot was done on the same
samples with g -tubulin antibody (loading control). The expression of both SorCS1 isoforms
in lysate was similar. APP = amyloid precursor protein; APPsw = amyloid precursor protein
Swedish mutation; CM = conditioned media; FL-APP = APP holoprotein; SAPPa = a-

secretase cleavage; XL4 = empty vector.
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FIGURE 5.

Knockdown of SorCS1 using shRNAs (41-45) did not affect the levels of transiently
transfected FL-APP, NCT, PS1-NTF, or g-tubulin. (See also Supporting Table 7 for
sequence information on shRNAs used and Supporting Fig 2 for western blot confirmation
of endogenous expression of SorCS1 protein). APP = APP = amyloid precursor protein; FL-
APP = APP holoprotein; NCT = nicastrin; PS1-NTF = pre-senilinl N-terminal fragment;
ShRNA = short hairpin RNA.
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Knockdown of SorCS1 by shRNAs did affect the level of Ap40. shRNA 41, 42, 43, 44, and
45, or scrambled sequence shRNA were transfected in HEK293 cells and 3 days after
transfection, the cells were incubated for additional 48 hours. Data are expressed as
percentages of control values. A51-40 secretion was measured in conditioned media and
normalized to total protein levels. The data are representative for the Afassays and the assay
has been performed in at least 3 separate experiments in replicates of 8 samples per
condition (24-well format), standard deviation error bars are shown, **p < 0.01, ***p <
0.001 as compared to scrambled shRNA condition (ANOVA with Bonferroni correction;
GraphPad Software, La Jolla, CA). ANOVA = analysis of variance; ShRNA = short hairpin
RNA.
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FIGURE 7.

Gamma secretase activity and nuclear translocation of APP assays with Sorcsl shRNAs. (A)
Both the APP-GV and AICD-GV assay were performed in HEK293 cells. The data from
SorCS1la cDNA and the 5 shRNA SorCS1 was normalized to either APP-GV only or AICD-
GV with the scrambled sequence shRNA (shRNA-scrambled), which was included as a
negative control. (B) APP-GV assay was also performed in the human neuroblastoma cell
line, M17 with SorCS1a cDNA or 5 of the Sorcs1 shRNAs along with the sShRNA-sc. The
data are representative for the APP-GV assays and the assay has been performed in at least 3
separate experiments in replicates of 8 samples per condition (96-well format), standard
deviation error bars are shown, *p < 0.05, **p < 0.01 as compared to APP-GV only
(ANOVA,; GraphPad Software, La Jolla, CA). AICD = APP gene C-terminus; GV =
transcription factor composed of the GAL4 DNA binding domain with VP16 transcriptional
activator; ANOVA = analysis of variance; APP = APP = amyloid precursor protein; cDNA
= complementary DNA; shRNA = short hairpin RNA.
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(R&D)

- FL-APP

-« CTF-APP

anti-APPc
(8717)

Interaction between APP and SorCS1 in HEK293 APPsw cells overexpressing SorCS1
isoforms. HEK293 APPsw cells transfected with SorCS1 isoform or XL4 were lysed using
one-third-diluted RIPA buffer and then immunoprecipitated with (A) SorCS1 or (B) APP.
(A) Immunoprecipitation for SorCS1 was successful (left). FL-APP was
coimmunoprecipitated with SorCS1 (middle). (B) SorCS1 was coimmunoprecipitated with
APP. The right immunoblot shows the expression levels of (A) SorCS1 and (B) APP in cell
lysate. APP = amyloid precursor protein; APPsw = amyloid precursor protein Swedish
mutation; FL-APP = APP holoprotein; XL4 = empty vector.
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