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Abstract
Computational models of semantic memory exploit information about cooccurrences of words in
naturally-occurring text to extract information about the meaning of the words that are present in
the language. Such models implicitly specify a representation of temporal context. Depending on
the model, words are said to have occurred in the same context if they are presented within a
moving window, within the same sentence or within the same document. The temporal context
model (TCM), a specific quantitative specification of temporal context has proved useful in the
study of episodic memory. The predictive temporal context model (pTCM) uses the same
definition of temporal context to generate semantic memory representations. Taken together
pTCM and TCM may prove to be part of a general model of declarative memory.

The importance of temporal context in learning the meaning of words has long been central
to our understanding of the acquisition of word meaning. Contemporary computational
models of semantic memory exploit this basic idea. However, the definitions of temporal
context they use are contradictory with one another and often not theoretically motivated.
For instance, in the BEAGLE model (Jones & Mewhort, 2007), the semantic representation
of a word is the weighted average of all other word vectors that were presented in the same
sentence as the word. In BEAGLE temporal context is operationalized as being constant
within a sentence but changing completely between sentences. That is, words within the
same sentence are in the same temporal context, but words in adjacent sentences are in
completely different temporal contexts. Similarly, in LSA and the topic model (Landauer &
Dumais, 1997; Griffiths, Steyvers, & Tenenbaum, 2007), a word×document matrix is the
starting point for the calculations. This implies a representation of temporal context that is
constant within a document, but that changes completely between documents.1 Both of these
approaches, BEAGLE and LSA and the topic model, share the assumption that temporal
context is a categorical variable but differ in the time scale associated with the rate of
change of temporal context. The fact that temporal context is only implicitly defined by
these (and related) models makes the task of comparing the models, which vary on a number
of other dimensions as well, considerably more diffcult.

The basic strategy of the research program described here is to use an explicit representation
of temporal context inherited from work on episodic memory as a starting point for
developing a computational semantic model. We will first briefly describe temporal context
as defined by the temporal context model (TCM, Howard & Kahana, 2002; Howard,
Fotedar, Datey, & Hasselmo, 2005; Sederberg, Howard, & Kahana, 2008). We will then
describe how retrieval of temporal context can function to efficiently extract relationships
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between stimuli. Next, we describe the predictive temporal context model (pTCM, Shankar,
Jagadisan, & Howard, 2009) as a solution for how to efficiently extract the meanings of
words embedded in natural sequences. We then present evidence that pTCM can provide a
useful description of information extracted from natural text. We close by describing several
significant challenges that remain.

Temporal context in episodic memory
The initial goal of TCM was to account for the recency and contiguity effects observed in
episodic recall tasks. The recency effect refers to the finding that, all other things being
equal, memory is better for more recently experienced information. The contiguity effect
refers to the finding that, all other things being equal, items experienced close together in
time become associated such that when one comes to mind it tends to bring the other to
mind as well. The contiguity effect has been extensively studied in episodic recall tasks,
where it exhibits a characteristic asymmetry (see Kahana, Howard, & Polyn, 2008, for a
review). Somewhat surprisingly, the contiguity effect, like the recency effect, persists over
relatively long time scales, extending at least hundreds of seconds (Howard, Youker, &
Venkatadass, 2008). Similarly, the contiguity effect is observed in the very earliest stages of
immediate free recall (Howard, Venkatadass, Norman, & Kahana, 2007), a prediction
unique to TCM among models of the recency effect.

Table 1 summarizes verbally the assumptions that constitute TCM. In TCM episodic recall
proceeds by cuing with the current state of a distributed representation of temporal context.
This state of context changes gradually over time. Studied items are activated by a context
cue to the extent that it overlaps with the state of context when they were studied. The
recency effect results from the combination of these two properties. After study of a list,
items presented more recently in time were encoded in states of context that more strongly
resemble the probe context. The concept that a gradually-changing memory signal
contributes to forgetting is not unique to TCM, but has a long history in the mathematical
psychology of learning and memory (e.g., Estes, 1955;Anderson & Bower, 1972, see also
Mensink & Raaijmakers, 1988;Murdock, 1997;Brown, Neath, & Chater, 2007). TCM builds
on these models, but makes the additional assumption that contextual drift is caused by the
items themselves. This assumption enables the model to account for the contiguity effect in
episodic memory (Howard & Kahana, 2002;Howard, Kahana, & Wingfield, 2006;Sederberg
et al., 2008;Polyn, Norman, & Kahana, 2009a). Because the input to the context vector is
caused by items, repetition of an item causes the state of context to change to a state similar
to that during study of the neighbors of the original presentation repeated item, resulting in a
contiguity effect. A further assumption of TCM is that repeated items can recover or retrieve
their study context. That is, they can cause the context state to be partially reset to the state
prior to the previous presentation of the repeated item.

An example may make this more concrete. Suppose that the model is presented with a list of
words that includes the sequence … ABSENCE, HOLLOW, PUPIL, RIVER, DARLING …
The temporal context in which PUPIL is encoded includes input caused by HOLLOW, and,
to a lesser extent because it was further in the past, input caused by ABSENCE. Similarly,
the temporal context in which each of the other items was encoded is composed of the input
caused by the preceding items, weighted by their recency. If the context immediately after
presentation of this sequence is used as a cue, DARLING would be most strongly activated
because it’s encoding context is most similar to the cue context. In this way the model
accounts for the recency effect. The model accounts for contiguity as well. Suppose that
PUPIL is repeated at some later time, and it successfully recovers its encoding context.
Then, the context cue recovered by PUPIL provides a better cue for RIVER than for
DARLING because the encoding context for RIVER did not drift as far from PUPIL.
Similarly, recovery of PUPIL’s encoding context makes a more effective cue for HOLLOW
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than ABSENCE for the same reason. In this way, the model accounts for the contiguity
effect in both the forward and backward directions.2

The ability of items to recover their prior contextual states endows TCM with a number of
important properties. For instance, the backward association manifest in the contiguity effect
depends on the ability of items to recover their prior temporal contexts. Similiarly, because
the prior state of context includes input caused by the items that preceded the initial
presentation of the repeated item, recovering this state results in a mixing of the input
patterns caused by items on the basis of their contiguity. This property can be exploited to
describe effects in relational memory, as we shall see shortly. A more formal description of
TCM follows. Readers who wish to avoid a mathematical description may choose to skip
this subsection.

Formal description of TCM—We will deviate from some of the details (and notation)
used in previous papers in order to create as much consistency as possible with the
development of the semantic memory model used here. In the discussion that follows we
will assume, unless otherwise noted, that the subject studies an extremely long list without
repetitions of items. The state of temporal context at time step i, ti, is a result of the previous
state of context and an input pattern tIN, caused by the item presented at time step i:

(1)

where ρ is a scalar less than one. We assume that the input vectors are chosen such that the
sum of their components is unity. Under these conditions, the sum of the components of t is
also unity. Equation 1 implements the assumption that context changes gradually over time;
all other things being equal, the state of temporal context at time step i resembles the
previous state of context more than other states more distant in the past. Temporal context
changes gradually as more (unique) items are successively presented.

We use an outer product matrix associating contexts to items to enable items to be activated
by a contextual cue. During study, items are encoded in their temporal context. The matrix
M is updated such that the change in M is given by:

(2)

where fi is the vector associated with item i and the prime reflects the transpose. In order to
recall an item, the matrix M is multiplied from the right with the current state of context.
Equation 2 results in the property that each item fi is activated to the extent that its study
context overlaps with the context used as a cue.

It remains to describe the properties of the tIN vectors. The input pattern tIN caused by an
item is composed of a fixed component that does not change across repetitions of an item
over the time scale of a laboratory memory experiment that we will refer to as f and a
changing component we will refer to as h. Each fi and each hi are caused by the item
presented at time step i and depend only on the identity of that item and its previous history.
The f vectors for each item are fixed throughout the simulation. If item α is presented at time
step i, then

2The asymmetery observed in the contiguity effect is also explained by the model. This is because, unlike this simplified example, the
input pattern caused by PUPIL when it’s repeated also includes the input pattern it caused during study (see Eq. 3 below). Because this
overlaps with the encoding context for words that followed PUPIL but not those that preceded it, this accounts for the asymmetry.

Howard et al. Page 3

Top Cogn Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

The hat in the second term indicates that h is normalized prior to entering this expression.
We fix the fαs to be unit vectors that serve as the bases for the t space. With learning, hα
changes from one presentation of item fα to another according to

(4)

The function of h is to enable items to recover the temporal context in which they were
studied. This implements property 4.

Relational memory, retrieved context and the hippocampus
Consider the case of a repeated item that recovers its study context when it is repeated. This
means that the input caused by this item is not consistent across its two presentations. The
change in the input patterns with repetitions has wide-reaching implications. The mixing of
input patterns creates the ability for the model to describe associations between items that do
not actually co-occur. Consider the case in which the subject learns a pair of items A-B and
then much later learns B-C. If contextual retrieval takes place (i.e., if γ is nonzero), then
during learning of A-B, the input pattern caused by B comes to include the temporal context
that preceded it. This state of context includes information contributed by item A. As a
consequence, during learning of B-C, the input pattern caused by B includes information
about A. This means that the encoding context for C includes “parts of” A, even though A
and C were not presented close together in time.

In fact, such transitive associations among items that have not been presented close together
in time are observed (e.g. Bunsey & Eichenbaum, 1996; Slamecka, 1976; Howard, Jing,
Rao, Provyn, & Datey, 2009). For instance, Howard et al. (2009) taught human subjects a
long list of paired-associates with overlapping pairs. That is, subjects learned a list of thirty
five pairs of the form A-B, B-C, C-D … presented in a random order for a total of twelve
presentations each. During a final free recall session, subjects were asked to recall all the
items from all the pairs in the order they came to mind. If a subject had just recalled a
double-function word from the list, the next word they recalled would tend to come from a
nearby pair, even if it was not from the same pair as the just-recalled word. For example, if
the subject had just recalled B, the next word that came to mind would be more likely be D
than E. In other words, subjects showed behavioral evidence for transitive associations
between items across pairs that fell off as a function of the number of links in the chain
between items. It is as if the subjects were able to integrate the pairs into a common global
memory structure. Howard et al. (2009) demonstrated that TCM provides a good description
of this behavior.

Although transitive associations actually make paired associate learning more difficult (see
especially Provyn, Sliwinski, & Howard, 2007), they provide an extremely useful
computational function in allowing the model to infer relationships between items that are
not explicitly instructed. That is, the model does not have to be explicitly instructed that A
and C “go together.” A successful model of semantic memory needs to be able to place tens
of thousands of symbols in the proper relation to one another. If each of those relations
needed to be explicitly instructed, the number of presentations necessary would be
extremely large. Moreover, the model does not need to make a priori assumptions about the
possible structure present in the learning set (Tenenbaum, Griffiths, & Kemp, 2006; Kemp
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& Tenenbaum, 2009). This is possible because retrieved context “spreads” along the links in
the chain such that the representation at the end of training reflects the topology of the pairs
it was trained on. Note that this functionality depends on a training set in which relationships
can be directly inferred from contiguity.

The function of contextual retrieval in TCM is in some sense analogous to the function of
dimensional reduction in LSA and the topic model. To ilustrate this, Figure 1 shows results
for TCM, LSA and the topic model trained on a “corpus” that consisted of a set of
“documents” each of which contained a single double function pair.3 That is, document 1
consisted of the words A and B, document 2 consisted of the words B and C and so on. Each
panel shows the similarity of the representation of each word to each other word. Transitive
associations can be seen by the shading among pairs of items that did not co-occur. TCM,
LSA (with two dimensions) and the topic model (with two topics) all build transitive
associations that bridge across pairs. Interestingly, LSA only exhibits transitive associations
if the number of dimensions retained is less than the number possible. That is, if all seven
dimensions were retained for LSA, the model does not exhibit across-pair associations.
Rather it only makes similar words that occur in the same document. Similar results are
observed for the topic model with seven topics (one for each document). It should be noted
that HAL and BEAGLE also illustrate transitive associations, although this is not
attributable to dimensional reduction in those models.

Contextual retrieval enables the development of a representation of the items that reflects
their global co-occurrence structure. For instance, suppose that we train the model on a set
of overlapping pairs A-B, B-C … Z-A, with the pairs presented in a random order and each
pair completely isolated from the others. After training, the input caused by B will resemble
the input caused by C more than the input caused by D. Similarly, the input caused by B will
resemble the input caused by D more than that caused by E and so on. Retrieved temporal
context enables TCM to place the input vectors caused by each item in the proper global
relationship to each other. Rao and Howard (2008) showed that TCM with retrieved context
can not only learn a one-dimensional topology, the ring, but also a two-dimensional
topology in which items form a sheet, and more realistic topologies corresponding to
naturally-occurring language. Figure 2a shows a miniature version of a small-world network
(Watts & Strogatz, 1998; Strogatz, 2001) used to train the model. The network was
generated with 10,000 nodes (500 are shown in Figure 2a) with connectivity comparable to
that of the English language, as estimated by the network analysis of WordNet performed by
Steyvers and Tenenbaum (2005). We trained TCM on pairs chosen by selecting nodes
connected by an edge of the graph. Figure 2b shows the cue strength between items 4 as a
function of the length of the shortest path between them in the network. Note that pairs with
a value of shortest path greater than one were never presented together during training.
Nonetheless, the model correctly decribes the distances among items from remote areas of
the network. Further, this behavior depends on contextual retrieval—the cue strength is zero
for remote items if contextual retrieval does not take place (open symbols).

pTCM: Learning Structure by Predicting the Future
We have seen that contextual retrieval enables TCM to discover latent structure from
presentation of isolated stimulus events and integrate them into a global representation. We
have also seen that the model can learn complex topologies believed to underlie natural
language. This seems like it might be sufficient to construct a model of semantic structure.
Our initial strategy was to take TCM as just described and present it with a very long

3The results for the topic model were generously provided by Mark Steyvers.

4More explicitly,  is the cue strength between item α and item β.
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sequence of natural language and evaluate the model’s behavior. As it turns out, this is a
deeply theoretically unsatisfactory model.5 The reason turns out to be that, unlike the
artificial examples explored above, proximity in natural language is not a strong proxy for
similarity.

Consider the meaning we would learn for a novel word presented in the following sentence
“The baker reached into the oven and pulled out the FLOOB.” What is the meaning of
FLOOB? In TCM, the representation of FLOOB would be updated to include information
from the preceding context; i.e., FLOOB would become similar to the representation of
“out,” “pulled,” “oven,” “baker,” etc. While it is reasonable to infer that a FLOOB has
something to do with those words, it is not at all the case that FLOOB is synonymous with
the preceding context. If it were, it would be redundant and there would be no purpose to use
the word FLOOB in that context. A much more natural way do describe the meaning of
FLOOB would be to make FLOOB similar to the words that would have fit into that
temporal context, for instance “cake” or “bread.”

Figure 3 illustrates this problem more concretely. We trained TCM with a set of sentences
generated by the simple language generator program (SLG, Rohde, 1999) using a simple
grammar previously used in a connectionist simulation of language acquisition (Borovsky &
Elman, 2006). The SLG generated a set of sentences from words drawn from several
categories of nouns (e.g., animals, people) and verbs (e.g., perception, action) subject to both
syntactic and semantic constraints (examples can be found in Figure 3a). Figure 3b reflects

the semantic space generated from TCM. More explicitly, we calculated  between
different words and aggregated the results according to their category relationships. As
shown by Figure 3, words become similar to the words that precede them; because the
sentences all have either a N-V-N or a N-V structure, nouns become similar to verbs and
vice versa.

The predictive temporal context model (pTCM, Shankar et al., 2009) builds on the
framework of TCM (Table 2). Just like TCM, it uses a representation of temporal context
that changes gradually over time. Similarly, context is used to cue items and the input to
context is caused by items. However, in pTCM, the context is used as a cue not only when
items are to be recalled, but also at each time step to create a prediction about what will
happen next (Property 2, Table 2). The semantic representation of an item is composed of
the prediction vectors in which the word is experienced over time. This semantic
representation for each word becomes part of the input to the temporal vector that the word
causes when it is presented. A more formal definition follows in the next subsection. This
subsection can be ommitted by the reader not interested in the mathematical details of the
model’s operation. Before this, we briefly demonstrate that the adjustments present in
pTCM enable us to solve the problem of learning semantic representations from
sequentially-organized materials.

Figure 3c shows the results of the simulation with the SLG conducted with pTCM. In
pTCM, the representations of words become similar to other words from the same category
(dark boxes along the diagonal). To the extent that there is residual similarity across
categories, it respects the part of speech of the words. For instance, the shaded box in the
upper right of Figure 3c reflects the fact that verbs are more similar to other verbs than they
are to nouns. This ability to simultaneously capture syntactic and semantic roles is common

5Actually, one can get practically useful results out of the model if one allows γ to be zero during study but nonzero during retrieval.
This representation ends up being similar to the “semantic” representation in BEAGLE or the vectors of the HAL model. Given TCM,
though this account is theoretically unsatisfactory. If retrieved context is useful, why wouldn’t it be used during the thousands of hours
of study that are presumably reflected by the corpus?
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to the simple recurrent network (Elman, 1990) and the syntagmatic-paradigmatic model
(Dennis, 2004, 2005).

Formal description of pTCM
Let us describe the process of computing the prediction vector and exploiting this
information to develop a semantic representation more formally. The prediction vector at
time step i, pi, is calculated using

(5)

where M differs from the matrix in Eq. 2 by virtue of being row-normalized. The vector pi
can be thought of as the prediction for what item will be presented at time step i + 1. It has
been proven that for bigram languages this prediction can be perfect (Shankar et al., 2009).

Each word α in the language is associated with a semantic representation sα that is built up
from the prediction vectors available when the item is presented. If word α is presented at
time step i, then sα is updated such that the change in sa is given by:

(6)

Finally, the semantic vector contributes to the input pattern (tIN) to context when the
corresponding item is presented. If item α is presented at time step i, then the cortical part of
the input pattern  (see Eq. 3) is given by

(7)

where fα is a fixed vector orthonormal for each item and φ is a parameter that controls the
degree to which the semantic representation enters context. Because our focus in this paper
is on the learning of semantic representations, we will assume that recovery of a prior
context states does not take place (i.e., γ = 0 in Eq. 3) throughout the remainder of this paper.

Shankar et al. (2009) demonstrated several useful results regarding the behavior of pTCM
using toy languages (even simpler than the SLG) to be able to quantitatively compare the
model’s behavior to the generating function of the language. One key finding is that φ
enables the model to generalize across items that have similar roles in the language in much
the same way that γ enables TCM to generalize across contiguity relations among items. In
addition, Shankar et al. (2009) derived an expression that enables one to calculate the steady
state behavior of the model in a much more computationally efficient way. In pTCM,
calculation of the p vector at each time step requires a matrix multiplication. Hence pTCM
is much more computationally intensive than TCM. The expression for the steady state
behavior of the model exploits the somewhat surprising fact that at asymptote the semantic
representations can be calculated just with knowledge of M. Similarly, at asymptote, the
steady state, M can be calculated directly if the semantic representations are known.

Shankar et al. (2009) proved that this steady state aproximation precisely describes the
simulation model’s behavior with a sufficiently long training set and also closely
approximated the simulation model’s behavior with shorter training sequences. An
important point to note is that pTCM is history-dependent. That is, the effect of being
trained on a particular sequence early in training is different from the effect of being trained
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on the same sequence later in training. If the model is being used to estimate a language with
a constant generating function, this property is a nuisance. The approximation can be
thought of as the “history-independent” model that would result from averaging over all
possible sequences that could lead to the same initial estimate of M.

pTCM as a model of natural language processing
The foregoing results suggest that pTCM ought to be able to learn semantic structure from
natural language. In order to test this, we trained pTCM on the TASA corpus and examined
the model’s behavior on a synonym test and a free association test. Because of the size of
the corpus, it was not practical to run the entire simulation model. Instead, we used the
history-independent steady state approximation of the simulation model (Shankar et al.,
2009).

Simulation Methods
In order to test the applicability of the model to real-life language acquisition, we trained
pTCM on a widely-used corpus of the English language—the Touchstone Applied Science
Associates (TASA) college level corpus. The TASA corpus contains about 11 million words
across 37,000 documents and 93,000 unique words. To preprocess the corpus, we stripped it
of punctuation, numbers, very frequent and commonly occurring words (including function
words like ‘a’, ‘the’, etc.), and words that occurred in fewer than three documents and fewer
then 10 times in the whole corpus. This resulted in a reduced corpus of about 5 million
tokens and 48,000 unique words. The individual documents or paragraphs in the corpus
were treated as independent, i.e., the context vector did not evolve across paragraphs. The
sentence separators, on the other hand, were treated as being equivalent to distractor tasks,
and ρ was changed transiently during the transition from one sentence to the next, assuming
a value of ρD between sentences.

The computation time for the steady-state approximation was sped up further by writing a
parallel sparse implementation using the message passing interface (MPI) library in C++.
Throughout the simulations described here, we set the sparsity threshold to 10−5. However,
the amount of time required to run the approximation on a dual Xeon quadcore (3.16 GHz)
machine with 8 Gb of RAM made it impractical to evaluate the model many times with
varying parameters. To reduce the processing time further, we collapsed a large number of
low-frequency words remaining in the preprocessed tokens into a single token. This token
was treated differently from the others in that it did not have an entry in M or a semantic
representation |s〉. The effect of our treatment was such that when this special token was
encountered in the corpus, the context vector was multiplied by ρ, but no other action was
taken. After reducing the number of words to 10,152 in this way, calculating the model on
the corpus with a single set of parameters took about 16 hours.

We evaluated the model parameters based on the model’s ability to describe the semantic
structure of English. For this, we assembled a pool of cue words such that

1. Each word was normed in the USF free association database (Nelson, McEvoy, &
Schreiber, 2004).

2. Each word was present in our reduced corpus.

3. Each word had a synonym as evaluated by WordNet.

4. Each word’s first associate was present in our reduced corpus.

5. Each word’s first listed synonym was present in our reduced corpus.
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There were 1040 such words. These had 591 unique synonyms and 583 unique first
associates. In order to evaluate the models’ ability to describe performance on the synonym
test in a fair manner, it was necessary to find a nonparametric measure of the degree to
which the model captures the structure of the space. Let us arbitrarily separate the synonym
pairs into cues and targets for expository purposes. For each cue, we calculated the inner
product of the semantic representation of each of the targets to that cue and retained the rank
of the cue’s target relative to the set of all targets. Ties were addressed by taking the mean
rank of the values tied with that of the target. The distribution of ranks was retained and the
mean log rank on the synonym test was minimized. The results presented in this paper are
based on the parameters for which the mean log rank is minimal. An analogous procedure,
wherein the mean log rank on the free association test is minimized, can be adopted to
evaluate the model’s parameters based on the models’ performance on the free association
test. In this paper, we do not report results from these parameters. We computed ranks for
pTCM using two measures of similarity between word α and β. One measure, which we
refer to as the pTCM free associate strength, is constructed by taking the cortical input for
item α, multiplying it by the context-to-item matrix and measuring the degree to which word
β is present in the output 6. This is analogous to presenting item α, allowing it to provide
input to the state of temporal context, and seeing to what extent β is predicted. The other
method compares the similarity of the cortical input of α to the cortical input of β.7 We refer
to this latter measure as the pTCM vector space model.

The time necessary to compute pTCM on the corpus precluded a thorough search of the
parameter space. We adopted the strategy of attempting to search the parameter space
retaining 3000 dimensions, then evaluating the best-fitting parameters for the model
retaining 10,152 dimensions. We used a downhill simplex algorithm to minimize
performance on a variety of synonym tests; these ultimately did not completely converge to
a solution and we took the most satisfactory solution that was available. We evaluated the
simulation model with the same parameters and 3000 dimensions. However, optimization of
the simulation model was not practical and we only report results from the approximation.

In order to compare pTCM to a version of LSA trained on the same inputs, we computed an
LSA solution on the reduced corpus. This corpus did not include the stop words, short words
and extremely infrequent words omitted at the parsing stage, but did include the words
collapsed into a single string. We varied the number of dimensions retained in steps of fifty
to find the value that resulted in the best performance (as measured by mean rank) on our
synonym test. This value was 800. One might argue that our use of an impoverished version
of LSA is somewhat unfair to that method—unlike pTCM, LSA is not subject to
computational limitations that make it impractical to run on the entire corpus. For this
reason, we also calculated results for LSA calculated on the entire corpus with 300
dimensions. This calculation was done with the same in-house LSA implementation we used
to compute the reduced corpus. The results of this calculation were checked against the
SEMMOD package (Stone, Dennis, & Kwantes, 2008).

Results
The best-fitting value of ρ, .68, was much greater than zero, indicating that multiple
preceding content words contributed to the model’s estimate of temporal context. The value
of ρD describing the rate of contextual drift across sentence boundaries was also much
greater than zero indicating that information across sentence boundaries contributed

6That is, we compute 

7That is, we compute 
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positively to model performance. Critically, the best-fitting value of φ, .41, was greater than
zero, indicating that the ability to generalize across experiences was important to the
model’s performance. We found that a broad variety of values of φ yielded roughly similar
ranks on the synonym test as long as the value of φ did not approach zero or one, at which
point performance fell off dramatically.

Figure 4a shows the cumulative distribution of ranks for the pTCM vector space model
(dark blue) and LSA (light red) when both are trained on the reduced corpus. The graph
gives the cumulative probability that the similarity of the cue word’s synonym obtained a
given rank relative to the other targets. Good performance is reflected as a large number of
low ranks, which means that the cumulative probability increases at low ranks. Put another
way, good performance is manifest as a higher line in Figure 4a. As can be seen from Figure
4a, the distribution of ranks generated by the pTCM vector space model for synonyms was
robustly lower than the ranks generated by LSA when they were both trained on the reduced
corpus. Figure 4 compares performance on the synonym test for the pTCM vector space
model trained on the reduced corpus (dark blue) to LSA trained on the entire corpus (light
red). Although the performance of the two models appears very similar, it can be established
statistically that LSA trained on the entire corpus outperforms pTCM trained on the reduced
corpus. For instance, the rank on the synonym test was lower for LSA trained on the entire
corpus for 551 synonyms whereas pTCM trained on the reduced corpus only produced a
lower rank for 461 synonyms (p < .005 by the binomial distribution; there were 28 ties). The
results of the analysis of the synonym test indicate that pTCM trained on the reduced corpus
(approximately 10,000 unique words) outperforms LSA trained on the same corpus, and
comparable, although slightly worse, to LSA when it was trained on the entire corpus
(approximately 100,000 unique words).

Performance by pTCM on the synonym test was moderately correlated with performance by
LSA. The correlation across pairs between the rank assigned to synonyms by pTCM and by
LSA trained on the reduced corpus was .56. The correlation between pTCM and LSA
trained on the entire corpus was .69. However, both of these numbers were reliably less than
the correlation between LSA trained on the reduced corpus and LSA trained on the entire
corpus, .74. Note that although this comparison led to the highest correlation, it also
corresponded to the largest difference in performance.

We obtained comparable results for the free associate test. First, Figure 5a shows the
cumulative probability functions for the distribution of ranks of the first free associates for
the pTCM vector space model (light red) and the pTCM free associate model in which the
semantic representation of the cue item is used to predict the subsequent item (dark blue).
There is a strong advantage for the pTCM free associate model over the pTCM vector space
model in modeling free associates. Figure 5b shows the cumulative probility distribution for
the pTCM free associate model trained on the reduced corpus (dark blue), LSA trained on
the reduced corpus (light red) and LSA trained on the entire corpus (lighter green). As with
the comparison with the synonym test, pTCM produced reliably lower ranks than LSA when
they were both trained with the reduced corpus. As with the synonym test, when LSA is
trained on the entire corpus, there is a small but reliable advantage over pTCM trained on
the reduced corpus. For instance, the rank of the first free associate was lower for LSA
trained on the entire corpus for 551 cues whereas pTCM trained on the reduced corpus only
produced a lower rank for 388 cues (p < .001 by the binomial distribution; there were 101
ties).

On the free associate test, the pTCM free associate model was only moderately correlated
with LSA and with the pTCM vector space model, and the pTCM vector space model was
more strongly correlated with LSA trained on the entire corpus. The correlation across pairs
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of the rank assigned by the pTCM free associate model to the first free associate to the rank
assigned by the pTCM vector space model was .48. The correlations between the pTCM free
associate model and LSA trained on the reduced and entire corpus were also moderate, both
r = .49. Interestingly, the correlation between the ranks assigned by the pTCM vector space
model and LSA trained on the entire corpus were reliably higher, .68, and also higher than
the correlation between LSA trained on the entire corpus and LSA trained on the reduced
corpus, .64.

There are several conclusions that can be reached from these analyses. First, the two
measures derived from pTCM, the vector space similarity and free associate strength,
produce in general different results. In particular, the vector space model was inferior at
modeling human free associate performance (Figure 5a). For both the synonym and free
associate test, pTCM produced a dramatic advantage over LSA when both methods were
trained on the reduced corpus. When LSA was trained on all the words in the corpus,
approximately 100,000 unique words, it produced superior results to pTCM trained on about
10,000 unique words. It is tempting to assume that if pTCM were also provided more
information by means of training it on the entire corpus it would dramatically outperform
LSA. While this is a possibility, it is possible that information about low-frequency words
would provide a source of noise that would actually reduce pTCM’s performance.

Nonetheless, there are clearly qualitative differences between what is being responded to by
the different pTCM measures and LSA. Table 3 shows the nearest neighbors of the word
BAKER for the pTCM vector space model, the pTCM free associate model and LSA trained
on the entire corpus. Several results can be obtained from examination of Table 3. First, the
pTCM vector space model has exclusively identified proper names, with an emphasis on last
names (e.g., QUIMBY, FRITS, and WIGGLE all appear as last names in the TASA corpus).
The vector space model ultimately rates as similar words that occur in similar contexts. In
the TASA corpus, proper names often occur in similar roles in descriptions of conversations,
as well as in the context of first names.

The pTCM free associate measure of BAKER generates words with a variety of origins that
can be understood from examination of the TASA corpus. For instance, the presence of
TENNESSEE in this list is due to several passages that discuss former Senator Howard
Baker of Tennessee. The presence of CINDY in the list is attributable to a single passage in
which a student (Cindy) has a conversation with her teacher (Mr. Baker). A majority of the
entries for BAKER are related to the baking profession (e.g., LOAF, SHOP, BAKED). In
most cases, the pTCM free associate measure produces words that appear in close proximity
to BAKER in the corpus.

In contrast, LSA’s responses are grouped according to several broad themes that occur in the
corpus. One easily identifiable theme are words related to the profession of baking (e.g.,
PASTRY, CAKES, TARTS, DOUGH). The documents describing former Senator Howard
Baker give rise to several near-neighbors that are related to politics and news in the late
sixties and early seventies (e.g., SIRHAN, HUMPHREY, WALLACE, DALEY,
ASSASINATIONS). In addition, multiple LSA near-neighbors are related to passages
describing the fictional detective Sherlock Holmes (e.g., GASLIGHT, HOLMES,
SHERLOCK, BEGRIMED), who lived on Baker Street in London.

Although these measures provide comparable performance on synonym tests (Figure 4b)
and free associate tests (Figure 5b), Table 3 suggests that the measures accomplish this level
of performance by responding to different sources of information. Examination of Table 3
relects the fact that LSA responds to thematic information available at the level of the
document. The vector space model of pTCM responds by rating words that are preceded by
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similar temporal contexts as similar to one another. The pTCM free associate measure rates
as similar words that occur in close temporal proximity to one another. The fact that these
different sources of information lead to similar performance suggests the possibility that
these measures could be combined to provide a metric more useful than any one of the
measures taken in isolation.

General Discussion
Previous work on TCM demonstrated that gradually-changing temporal context can provide
a good account of recency and contiguity effects observed in episodic memory (Howard &
Kahana, 2002; Howard, Youker, & Venkatadass, 2008; Sederberg et al., 2008; Polyn et al.,
2009a). Here we discuss efforts to construct a model of semantic memory within the same
framework. Contextual learning enables generalization across multiple experiences that lack
overlapping elements placing stimuli into the correct global arrangement (Howard et al.,
2009; Rao & Howard, 2008). The predictive temporal context model (pTCM Shankar et al.,
2009) enables generalization to take place in sequentially-organized materials, such as
natural language. We then showed several demonstrations that pTCM can be applied to
natural language by training the model on a reduced version of the TASA corpus. pTCM
dramatically outperformed LSA trained on the same reduced corpus and produced results
close, although statistically inferior, to those of LSA trained on the entire corpus.

The point of this excercise was not to claim that pTCM is of superior practical utility than
LSA, or other computational models of semantic memory at this time. At present, the
computational demands of pTCM and the necessity of fitting multiple parameters make it
unwieldy for many applications. However, because of its tight coupling with a successful
model of episodic recall, it has theoretical advantages over other existing computational
semantic memory models. The fact that a common description of temporal context can be
used as a core concept of both a model of episodic memory performance and a model of
semantic memory acquisition suggest that these concepts can form the basis of a common
account of all of declarative memory. pTCM may be uniquely suited for describing the
process of learning and memory retrieval that combines both semantic and episodic
information.

Where is pTCM in the space of computational models of semantic learning?
A natural question to ask is how pTCM relates to extant computational models of semantic
memory. Here we briefly discuss the commonalities and differences between pTCM and
several widely-used models.

HAL—The hyperspace analogue to language (HAL Lund & Burgess, 1996) model uses a
semantic representation that codes each word as the vector of counts of other words in the
language appeared in a moving context window with that word. This is somewhat analogous
to a linearly-decaying temporal context. There are numerous similarities between HAL and
pTCM. These include the fact that more recent words within a document contribute more
strongly to the meaning of a word (this property is not shared with LSA or the topic model).
In HAL, a word recovers the set of words that occurred nearby it during learning—a process
not dissimilar to retrieval of temporal context. This property enables HAL, along with the
other models considered here, to account for transitive associations among items that did not
co-occur in the corpus.

One of the differences between HAL and pTCM is that the range over which temporal
context is defined in pTCM can quite long in pTCM—many prior words can contribute to
the context. Although it remains to be seen how the “tail” of this distribution contributes to
the semantic representations obtained from natural language, it is worth noting that the best-
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fitting parameters obtained here indicate that performance was optimal when many prior
items contributed. A quick calculation reveals that in our natural language simulations as
many as 27 prior items could have contributed to the context vector before passing under the
sparsity threshold with the parameters used.8 This difference between HAL and pTCM is
perhaps analogous to the distinction between buffer models of short-term memory (e.g.
Atkinson & Shiffrin, 1968;Raaijmakers & Shiffrin, 1980) and TCM in understanding
episodic free recall. There, the primary advantage of gradually-changing temporal context
over buffers with finite range is that temporal context can provide a more natural account of
recency and contiguity accounts that extend over multiple time scales (see Usher, Davelaar,
Haarmann, & Goshen-Gottstein, 2008;Howard, Kahana, & Sederberg, 2008;Kahana,
Sederberg, & Howard, 2008;Sederberg et al., 2008, for a thorough discussion of the
relationship between TCM and buffer models). The other major point of distinction between
HAL and pTCM is that in HAL there is no generalization across word meaning during
learning.

BEAGLE—In BEAGLE (Jones, Kintsch, & Mewhort, 2006; Jones & Mewhort, 2007), each
word is intially assigned a random vector of some length (Jones & Mewhort, 2007 used
vectors of dimension 2048). During learning, an item, or semantic, representation and an
order representation is aggregated for each word. This distinction between item and order
information, as well as much of the mathematical machinery of BEAGLE, is inherited from
the TODAM model of episodic memory tasks (Murdock, 1982, 1997). In BEAGLE, the
semantic representation is formed by summing the vectors of the other words that co-occur
in the same sentence. The order representation is used by constructing an N-gram
convolution between successive words.

pTCM has many commonalities with BEAGLE. BEAGLE’s contextual representation can
be understood as analogous to the average prior context in which an item is presented (i.e., it
is similar to h if it were averaged over all prior presentations of the item). If it were possible
to set γ to zero during learning, but non-zero during retrieval, the h that would result would
be very similar to the context representation in BEAGLE. In both models, there is a natural
model of free association that emerges—in BEAGLE this is taken from the order
representation used to support the cued recall task (Murdock, 1982). There are however,
important differences. As discussed above, context in pTCM changes continuously and
persists across sentence boundaries, allowing for long-range contingencies between words.9
In contrast, BEAGLE stops at sentence boundaries. The major difference between the
models is that in pTCM the representation of a word that is used to make subsequent
predictions changes during learning. BEAGLE relies on statistical averaging of the initial
word vectors to build up the representations. In pTCM, the changing semantic representation
of a word contributes to the temporal context vector, so that all of the information that has
been learned up to that point can be brought to bear in making a prediction and thus
updating the representation of the other items in the language. This may result in more
robust generalization during learning.

LSA—Latent semantic analysis (LSA Landauer & Dumais, 1997) has set a standard for
computational models of semantic knowledge for more than a decade. It has been successful
in a broad range of applied settings and has shed considerable light on the basis of
knowledge formation in a theoretical sense. Although the end-state of learning in pTCM and
LSA are similar to some extent (e.g., Figure 4b), pTCM and LSA are conceptually very
different.

8This is an upper limit calculation that assumes that there are no sentence boundaries in this string of words.
9This can be seen from the fact that the best-fitting value of ρD was not zero.
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pTCM is a learning model in which information is gradually built up over experience. In
contrast, the algorithm of LSA requires that all experience be accessible prior to calculating
the semantic representation. LSA is consistent with a representation of temporal context that
changes abruptly between documents but does not change at all within a document. The
parameters of pTCM are sufficiently flexible to approximate a very-slowly changing context
vector by setting ρ ≃ 1 and ρD = 1. The best-fitting parameters were far from these values,
suggesting that the there are meaningful changes in temporal context within a document. As
mentioned previously, although a vector space can be extracted from pTCM, this is not the
only, or even necessarily the best, representation of meaning possible within pTCM. The
free associate measure is not subject to the constraints of a vector space. For instance, the
associative strength between two words is asymmetric and can violate the triangle
inequality. With all these differences in mind, it is remarkable that the end-state of pTCM is
as similar to that of LSA as it is.

The topic model—The probabilistic topic model (Griffiths et al., 2007), like LSA, starts
with a word-by-document co-occurrence model. It makes the assumption that the words in a
document are sampled from mixtures across a latent variable referred to as a topic. The
model constructs a prior on the degree of mixing of topics in a given document, then
estimates the probability of sampling a word given each topic using latent Dirichlet
allocation (Blei, Ng, & Jordan, 2003). The distribution of words across topics gives an
estimate of their meaning.

Many of the points of contrast between pTCM and the topic model are the same as those
with LSA: the construction of topics makes the assumption that meaning does not change
within a document, the topics calculation is taken after study of the entire corpus. Both
pTCM and the topic model have a natural account of retrieval from memory, although in
pTCM’s case this is embedded more strongly in a model of episodic retrieval. The primary
advantage of the topic model over pTCM is its natural treatment of polysemy, which does
not currently have an analogue in pTCM.

The syntagmatic-paradigmatic model: The syntagmatic paradigmatic model (SP Dennis,
2004, 2005) attempts to automatically extract knowledge from naturally-occurring text by
using training exemplars to mutually satisfy syntagmatic and paradigmatic constraints.
Syntagmatic association are formed between words that occur in series in language—for
instance RUN and FAST. In contrast, paradigmatic associations are formed between words
that have similar meaning—or that fulfill similar roles in language—e.g., RUN and WALK.
SP utilizes both types of associations to model the generation of language. In pTCM,
paradigmatic associations are analogous to those constructed using the vector space
representation. Paradigmatic associates are words that fit into similar contextual roles and
thus have similar semantic representations in pTCM. Syntagmatic associates also have an
analogue in pTCM. Given a semantic representation of an item α, when multiplied by M,
this gives the set of items that are predicted to follow α based on experience with the corpus
(see Table 3). A single matrix, however, cannot capture the rich syntactic structure of
English as may be possible with the SP model.

Does pTCM provide additional insight into the neural basis of memory?
One of the strengths of TCM as a model of episodic memory is the existence of a linking
hypothesis between the structures of the model and physical processes that take place in the
medial temporal lobe of the brain (Howard et al., 2005). This linking hypothesis has led to
predictions about the behavior of brain states that have been confirmed with measurements
from neural ensembles (Manns, Howard, & Eichenbaum, 2007). The confirmation of these
neurophysiological predictions, coupled with the confirmation of numerous behavioral
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predictions (Schwartz, Howard, Jing, & Kahana, 2005; Howard et al., 2007; Howard,
Youker, & Venkatadass, 2008; Unsworth, 2008; Howard et al., 2009; Polyn et al., 2009a;
Polyn, Norman, & Kahana, 2009b) make TCM a strong model of episodic recall. Although
our understanding of pTCM is at a much earlier stage, it is possible that the extenstion to
pTCM will enhance the set of neural phenomena that can be addressed in a common
cognitive framework.

Because pTCM is a superset of TCM (compare Table 1 with Table 2), a linking hypothesis
between pTCM and the brain shares many of the same contact points—the context vector
should reside in extrahippocampal medial temporal lobe (MTL) regions, especially the
entorhinal cortex (see Polyn & Kahana, 2008, for a different hypothesis) and the
hippocampus should be responsible for the recovery of temporal context. There are two
unique predictions of pTCM. One is that the semantic representation of items should come
to reflect the temporal contexts in which they are experienced. The second is that the brain
uses the current state of temporal context to generate a prediction about what will happen
next.

There is neurophysiological evidence that suggests both of these predictions hold. Neurons
in area TE of the monkey inferotemporal cortex, a region one synapse away from the MTL,
respond to high-level visual stimuli during and following their presentation in a way that is
not dependent on their coarse physical properties (Miyashita & Chang, 1988). Remarkably,
neurons that respond to a particular stimulus are also more likely to respond to other stimuli
that are repeatedly experienced close together in time (Miyashita, 1988) or as members of a
bidirectionally presented pair of stimuli that predict one another (Sakai & Miyashita, 1991).
Because the neurons are responding to an arbitrary temporal pairing of the stimuli rather
than any physical property they have, these findings are as one would expect if the neurons
were coding a semantic representation constructed from prediction vectors. This pair-coding
phenomenon has been observed both in TE and perirhinal cortex (Erickson, Jagadeesh, &
R., 2000; Messinger, Squire, Zola, & Albright, 2001; Naya, Yoshida, & Miyashita, 2003),
an extrahippocampal medial temporal lobe region one synapse from the entorhinal cortex.
The pair-coding phenomenon also depends on feedback from the medial temporal lobe
(Naya et al., 2003; Higuchi & Miyashita, 1996). Both of these properties are as one would
expect if the change in the neurons’ responsiveness with experience depended on a
prediction generated by a temporal context vector residing in extrahippocampal medial
temporal lobe, especially the entorhinal cortex.

The other large-scale prediction of pTCM, that the brain generates a prediction about
subsequent stimuli based on the current state of temporal context, may also have a
neurophysiological analog. The N400 is a negative potential observed most prominently
when subjects are perceiving words that are semantically incongruous (Kutas & Hillyard,
1980), i.e., “The baker reached into the oven and pulled out the BOAT.” The N400 is
observed to the extent that a word is not well-predicted by its preceding semantic context
(Bentin, McCarthy, & Wood, 1985; Berkum, Hagoort, & Brown, 1999; Federmeier, 2007).
Notably, the prediction can be generated both by proximate words (Bentin et al., 1985) and
more remote semantic context (Berkum et al., 1999), suggesting that the prediction is
generated across multiple time scales at once. These findings suggest that the N400 could
reflect a mismatch between a prediction generated from a temporal context vector and a
presented stimulus.

The identification of these ERPs with the mismatch between a prediction vector and the
presented stimulus may facilitate development of another strong link between the
mathematical framework of pTCM and MTL physiology. The N400 has a large generator in
extrahippocampal MTL cortical regions (McCarthy, Nobre, Bentin, & Spencer, 1995). The
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N400 may be understood, at least in part, as a modulation of ongoing oscillatory activity in
the MTL (Fell et al., 2004). While we do not wish to claim that the MTL generator is the
sole source of the scalp ERP, presentation of a stimulus that is poorly-predicted by its
semantic context apparently has a profound effect on human MTL physiology. Moreover,
the N400 in the anterior MTL to a studied stimulus predicts whether that stimulus will
subsequently be recalled (Fernandez, Effern, Grunwald, et al., 1999, similar effects are also
recorded at the scalp, see Paller & Wagner, 2002 for a review). The involvement of the
N400 in the MTL in both integration with semantic context and episodic memory encoding
could eventually lead to a number of interesting constraints on a physical model of
declarative memory.

Episodic memory and semantic memory
We have shown that it is possible to build a model of semantic memory acquisition in the
same framework occupied by a model of episodic memory. This framework leads to
predictions about a tight coupling between episodic and semantic memory that we have not
yet explored. For instance, in the simulations of natural language using pTCM we did not
allow contextual recovery, a process we believe to be an essential aspect of episodic
memory (Howard et al., 2005; Sederberg, Miller, Kahana, & Howard, accepted pending
minor revision), to take place. One challenge of this future work is to specify the conditions
under which episodic recovery succeeds. One intriguing possibility is that words that are
poorly predicted by their study context are bound effectively to that context such that they
can recover the context in the future. Another challenge is to determine which context is
recovered by a word that is experienced multiple times. On the one hand, the function of
episodic memory as recall of a specific event situated in a specific spatiotemporal context is
defeated if all prior contexts in which a word has been experienced contribute to the context
it recovers. On the other hand, simulations of learning double-function lists within a
particular experiment suggest a gradual change in the temporal context recovered by an
item, reflecting multiple study events in the same experiment (Howard et al., 2009). It is
possible that these simulations mistake recovery of temporal context for the buildup of a
prediction vector such as that utilized here. These distinctions may be teased apart by future
experimentation.

The specific integration of semantic memory into the TCM framework offered by pTCM
potentially places strong constraints on TCM as a model of episodic recall. Since the earliest
treatments of TCM, the input caused by an item when it is initially presented is to be
understood as reflecting its prior history. In more recent treatments of TCM, a distinction is
made between the preexperimental context-to-item matrix and the newly-learned part of the
context-to-item matrix which encodes information about the study items’ encoding context
(Sederberg et al., 2008; Polyn et al., 2009a). Polyn et al. (2009a) used the preexperimental
matrix to carry information about semantic relationships among words which was sufficient
to account for the existence of semantic clustering in free recall. In the context of modeling
episodic memory, pTCM may be understood as a method to intialize the values of the
preexperimental context-to-item matrix and the input patterns caused by items when they are
initially presented. Taken together, the two models reflect a shared hypothesis about the
interaction between semantic and episodic factors on memory retrieval.
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Figure 1. The temporal context model (TCM), a model of episodic recall based on contextual
overlap, and computational models of semantic memory both predict transitive associations
In all three panels, the figure shows the similarity of the representation of each item in a
double function list of paired associates after training. a. Retrieved temporal context as
defined by TCM shows transitive associations. The shading of each square codes for the
similarity of the temporal context vector retrieved by the corresponding pair of items after
ten trials of learning on the corresponding double function list. Vector similarity was
assessed using the inner product. High values of the inner product are shaded dark. b. A
representation generated using Latent Semantic Analysis (Landauer & Dumais, 1997) shows
transitive associations. A singular value decomposition was computed for an item-context
matrix corresponding to training on a double function list of pairs. Two dimensions were
retained. Similarity of each pair of vectors was assessed using the cosine of the angle
between them. High values of cosine are dark. c. The topic model (Griffiths, Steyvers, &
Tenenbaum, 2007) was trained on a set of contexts simulating presentation of a double
function list. The simulation used two topics and α = 0.1 and β = 0.1 (see Griffiths, Steyvers
& Tenenbaum, 2007 for details). The similarity between each pair of items was estimated by
comparing the Kullback-Leibler divergence of the distribution over topics induced by each
item. Small values of divergence, corresponding to high similarity, are dark.
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Figure 2. Contextual retrieval enables the extraction of global structure from isolated episodes
a. Miniature example of a small-world network with connectivity chosen according to the
structure of English as estimated by Steyvers & Tenenbaum (2005). b. The cue strength
between pairs chosen from the small-world network are shown as a function of the shortest
path between the items. Filled symbols show TCM with contextual retrieval. The open
symbol shows the value for TCM without contextual retrieval. Only one point is shown for
the model without contextual retrieval because the cue strength is zero for items not
presented as part of the same pair.
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Figure 3. pTCM as a model of semantic learning
a. Sample sentences generated by the simple language generator. b-c. Similarity between the
representations of words belonging to each category of the simple language. Dark boxes
correspond to high similarity. The similarity between each word and itself is excluded from
this plot. b. Category structure for TCM after being trained on sentences sampled from the
simple language. c. Same as b, but for pTCM. Unlike the standard version of TCM, pTCM
has learned an appropriate category structure from the simple language.
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Figure 4.
pTCM’s vector space model performs comparably to LSA on a synonym test. A set of 1040
synonym pairs was assembled. For each model, we calculated the similarity between a word
and its synonym and expressed that as a rank relative to all the other words’ synonyms. Low
ranks indicate the model is doing well at placing words with similar meanings in similar
locations. a. Cumulative probability distribution of the rank of the synonym for the pTCM
vector space model (dark blue) and LSA trained on the same words (light red). The higher
curve indicates a larger proportion of low ranks, and thus better model performance. pTCM
shows a marked improvement over LSA trained on the same words. b. Same as a, but
comparing pTCM trained on the reduced corpus (dark blue) to LSA trained on the entire
corpus (light red). Despite the fact that pTCM only had detailed information about 10,000
words (as opposed to 93,000 for LSA), there are relatively modest differences between the
performance of pTCM and LSA.
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Figure 5.
Performance on free association norms. Similarity ratings were evaluated for a list of 1040
words paired with their strongest associates. The strength of the relationship between the
prime and its first associate was calculated and turned into a rank relative to the first
associates of the other primes. Cumulative probability distributions of ranks are shown.
Lower ranks reflect better model performance, meaning that higher curves reflect better
model performance. a. The cumulative probability distribution of ranks of the first
associates for the pTCM “recall” model (dark blue) and the pTCM vector space model (light
red). For the pTCM recall model, the semantic representation of the cue item was used as a
cue via the context-to-item matrix. The activation of each target was used to generate its
rank. The vector space model simply uses the inner product of the semantic representation of
items to generate similarity values. b. Cumulative probability distributions of ranks for the
pTCM recall model (dark blue), LSA trained on the same words (light red) and LSA trained
on the entire corpus (lighter green). pTCM trained on the reduced corpus shows dramatic
improvement over LSA when it was trained on the same words. LSA trained on the entire
corpus shows a modest improvement over pTCM trained on the reduced corpus.
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Table 1

Principles of operation of the temporal context model (TCM).

1 Temporal context changes gradually over time.

2 Items are cued by a state of context to the extent it overlaps with their encoding context.

3 Presentation of items causes a change in the state of context.

4 Repeated/recalled items can recover the state of context in which they were previously studied.
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Table 2

Principles of operation of the predictive temporal context model (pTCM). Compare to Table 1.

1 Temporal context changes gradually over time.

2 Items are cued by a state of context to the extent it overlaps with their encoding context; cuing at each time step of learning yields a
prediction.

3 Presentation of items causes a change in the state of context.

4 Repeated/recalled items can recover the state of context in which they were previously studied.

5 The semantic representation of an item is composed of the prediction vectors that obtained when it was presented.
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Table 3

Nearest neighbors to the word “baker” using various measures of semantic similarity.

pTCM vector space pTCM free associate LSA

quimby helper gaslight

frits tennessee pastry

wiggle cindy holmes

liza peel sherlock

roberts shoemaker kendrick

rogers cooper passersby

miyo loaf sirhan

mandy rotten richard

frances lazy cakes

cass shop tarts

handing baked humphrey

pooh blacksmith wallace

jed cakes dough

gregory onion hubert

nicky dough irwin

oswald novels daley

zaphod baking assasinations

pippi huddled begrimed

gran batter leavened

The first column shows the nearest neighbors in the pTCM semantic space. The second column shows the free associates of “baker” using pTCM.
The third column shows the LSA nearest neighbors with pseudodoc weighting from lsa.colorado.edu with words that appeared in the corpus less
than or equal to three times removed. The highest ranking word for all three measures was baker, which has been removed from this table.
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