
THE ROLE OF MASS BALANCE EQUATIONS IN GROWTH
MECHANICS ILLUSTRATED IN SURFACE AND VOLUME
DISSOLUTION

GERARD A. ATESHIAN
Columbia University Departments of Mechanical Engineering and Biomedical Engineering 500
West 120th Street, MC4703, New York, NY 10027 ateshian@columbia.edu

Abstract
Growth mechanics problems require the solution of mass balance equations that include supply
terms and account for mass exchanges among constituents of a mixture. Though growth may often
be accompanied by a variety of concomitant phenomena that increase modeling complexity, such
as solid matrix deformation, evolving traction-free configurations, cell division, active cell
contraction, etc., it is important to distinguish these accompanying phenomena from the
fundamental growth process that consists of deposition or removal of mass from the solid matrix.
Therefore the objective of the current study is to present a canonical problem of growth, namely
dissolution of a rigid solid matrix in a solvent. This problem illustrates a case of negative growth
(loss of mass) of the solid, in a mixture framework that includes three species: a solid, a solvent
and a solute, where the solute is the product of the solid dissolution. By analyzing both volumetric
and surface dissolution, the two fundamental modes of growth are investigated within the unified
framework of mixture theory.

1. Introduction
In the mathematical framework of continuum growth theories two fundamental modes of
growth are recognized: Volumetric or interstitial growth; and surface or appositional growth.
In volumetric growth solid mass is deposited at locations inside a porous body, whereas in
surface growth solid mass is deposited on the boundary of a body.

A consensus on modeling volumetric and surface growth has been slow to emerge. For
volumetric growth, a common approach based on the principles advanced by Skalak et al.
[1] has been to model the total deformation of a solid as the combination of the effects of
growth and loading [2]. Thus, in the kinematic analysis of a continuum, the deformation
gradient is given by F = Fe · Fg, where Fg and Fe represent the deformation from growth and
loading, respectively [2]. Volumetric growth has also been modeled using only a mass
supply term in the equation of conservation of mass [3].

For surface growth, Skalak et al. [1, 4] proposed to define a vector growth rate G on a
surface experiencing mass deposition, which may have components both normal and
tangential to the interface, whose growth velocity is given by VG. Other investigators have
similarly proposed to incorporate a mass flux vector M on the boundary surface of a
material region, in the formulation of the axiom of balance of mass [5].

In our own approach [6], and in accordance with many authors [7, 8, 9, 10, 11], we have
advocated using the framework of mixture theory [12, 13, 14] to model volumetric and
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surface growth because this framework has established the foundations for the formulation
of mass exchanges among various mixture constituents, as would occur in growth processes,
using the axiom of balance of mass. In mixture theory, solid mass deposition (or removal)
represents a mass exchange between solvated species and the solid. In volumetric growth,
solutes transport through a porous solid matrix and may deposit onto the porous lattice at
points within the body. In surface growth, solutes present in a bathing solution may deposit
onto the surface of the body, producing an evolving or moving boundary surface.

The conventional approach for formulating the axiom of mass balance in integral form over
a control volume or material region yields the statement of mass balance in differential form
needed for volumetric growth [15]. Furthermore, when accounting for singular interfaces in
a material region, where certain variables may suffer a jump, the resulting jump condition
from the statement of balance of mass [16] produces the governing equation for surface
growth [6]. Therefore, mixture theory provides a uniform framework for modeling
volumetric and surface growth.

In recent studies, several applications of volumetric growth in biological tissues have been
demonstrated using this mixture theory framework. For example, the synthesis and
deposition of multiple solid matrix species (such as muscle, elastin, and collagen; [8]), or
charged molecular species (such as proteoglycan molecules; [17]) onto the extracellular
matrix of a porous-hydrated connective tissue (such as the aortic wall) has been analyzed
from this approach. The possibility that multiple generations of mass deposition from
growth may assume different reference configurations was similarly investigated [18, 19].
These analyses addressed the influence of growth on alterations in tissue residual stresses.
Tissue growth by cell division was similarly analyzed, where cell division was modeled as
the growth of intracellular solute and solid species by uptake from the extracellular
environment, resulting in a concomitant osmotic gradient driving water into the cell, thereby
doubling the cell size in the synthesis phase accompanying cell division (mitosis) [17].

These applications of mixture theory to biological tissue growth have demonstrated the
remarkable range of problems that may be tackled with this approach. However, it may also
be argued that these sophisticated applications may have obscured the simplicity of the basic
principles of growth mechanics from the axiom of mass balance, by addressing multiple
mechanisms simultaneously (such as intracellular and extracellular osmotic effects, or
multigenerational growth of constitutents with distinct reference configurations).

Therefore the objective of the current study is to present a canonical problem of growth,
namely dissolution of a rigid solid matrix in a solvent. This problem illustrates a case of
negative growth (loss of mass) of the solid, in a mixture framework that includes three
species: a solid, a solvent and a solute, where the solute is the product of the solid
dissolution. By analyzing both volumetric and surface dissolution, the two fundamental
modes of growth are investigated within the unified framework of mixture theory. Though
dissolution does not represent a dominant mechanism of growth in biological tissues, the
relative simplicity of this problem may serve as an easier introduction to the application of
mixture theory to biological tissue growth. Furthermore, in tissue engineering applications,
modeling volumetric dissolution of a porous scaffold may be highly relevant [20, 21]; in
drug delivery applications, modeling of surface dissolution of a pill or tablet may be
similarly useful [22, 23].

2. Balance of Mass
The fundamental governing equation for mass deposition or removal is based on the axiom
of mass balance. For interstitial growth, the differential form of this equation in a spatial
frame is given by [15, 16]
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(2.1)

where ρα is the apparent density of constituent α in the mixture;1vα is the velocity of that
constituent, and  is the volume density of mass supply from interstitial growth (with units
of mass of α per volume of the mixture in the current configuration, per time). The mass
supply  is also a function of the state variables in a problem, where the functional
dependence must be provided by a constitutive relation, as addressed below. To satisfy the
balance of mass for the mixture as a whole [12, 15], the mass supply terms are constrained
according to

(2.2)

where the summation is taken over all constituents of the mixture. This relation states that
mass gains by the products of a reaction must be at the expense of mass losses by the
reactants.

The equivalent balance of mass relation for surface growth on a singular interface is given
by [6, 16]

(2.3)

where Γ represents the singular surface on which growth occurs, vΓ is the velocity of Γ, n is
the unit normal on Γ whose direction defines the orientation of the interface (Figure 2.1),

and  is the area density of mass supply from surface growth (with units of mass of α per
area of Γ in the current configuration, per time). The double-bracket notation represents the
jump in value of its argument across the interface Γ; for the convention adopted here,

(2.4)

where f+ and f– represent the respective values of f in V+ and V–, such that n represents the
outward normal to the V+ side (Figure 2.1). The surface mass supply terms are also functions
of the state variables in a problem, to be defined by constitutive relations, and must similarly
satisfy the constraint

(2.5)

3. Canonical Problems of Dissolution
Consider a canonical problem of dissolution where the mixture consists at most of a solid
that can dissolve (α = s), a solvent in which it can dissolve (α = w), and a solute which is the
product of the dissolution (α = u). There are two domains that need to be considered in this

1The apparent density may be represented as ρα = dmα/dV, where dV is an elemental volume of the mixture and dmα is the mass of
constituent α in dV.
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canonical problem: The body  which is dissolving and the external bath  in which it is
dissolving, with Γ representing the interface between these two domains (Figure 3.1). 
contains, at most, two constituents (α = w, u) and all variables associated with the external
bath are denoted with a subscripted asterisk. If the body  is porous, it is represented by a
mixture of up to three constituents (α = s, w, u); if it is non-porous, it contains only one
constituent (α = s).2

Note that for the problem of dissolution, the singular interface Γ is defined on the solid
boundary surface of .3 This definition implies that (vΓ – vs) · n represents the surface
growth velocity, directed along n.

For simplicity, the canonical problems considered here assume that the solid constituent of
 undergoes negligible deformations. It is thus treated as a rigid solid whose motion consists

at most of a rigid body rotation and translation. In a quasi-static analysis (when inertia terms
are neglected), there is no loss of generality in assuming that the solid is stationary,

(3.1)

Another advantage of modeling the solid as rigid is that there is no longer a need to
distinguish between changes in solid apparent density resulting from growth versus loading
(an important topic in growth mechanics, addressed in greater detail elsewhere; 6, 17, 19).
Thus, in this canonical problem, changes in ρs only occur as a result of growth.

For a non-porous body, the only mechanism of dissolution is by surface dissolution, since
solvent can only be in contact with the outer boundary of the body. Therefore, a canonical
problem representative of this case will be considered first, followed by a canonical problem
of volume dissolution of a porous body.

3.1. Surface Dissolution of a non-Porous Body
When applied to each of the three constituents meeting on Γ, the jump condition of Eq.(2.3)
produces

(3.2)

where ρα and vα refer to the density and velocity in , whereas  and  refer to those
quantities in the bath . In the case of surface dissolution, since there is no reaction

producing or removing solvent on Γ, it follows that , so that  according to Eq.
(2.5). Since the solid is non-porous, its apparent density is constant and equal to the true
density4 of the solid species, thus . Furthermore,  since there is no solid in , and
ρw = ρu = 0 since there is neither solvent nor solute in a non-porous body . Combining all
these relations produces

2In this canonical problem we do not consider the more complex case where  may be initially a dry porous solid (with air-filled
pores, for example) later wetted by the bathing solution.
3In other problems of continuum mechanics the singular interface Γ need not be defined on a solid boundary; for example, in
compressible fluid mechanics, Γ may represent a shock wave within the fluid.
4The true density of constituent α may be represented as , where dVα is the elemental volume of constituent α in the

elemental mixture volume dV. It follows that .
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(3.3)

When using Eq.(3.1) these jump conditions further simplify to

(3.4)

The first of these jump conditions provides a direct relation for determining the surface
growth velocity component normal to Γ from the rate of mass loss on the boundary. In a

dissolution problem, since the solid is losing mass,  is a negative quantity so that vΓ · n
points inward (along –n) as expected. Since  is constant, loss of mass occurs entirely
by the shedding of material from the surface and is manifested in the motion of Γ relative to
the body as the solid dissolves.

The remaining jump conditions in Eq.(3.4) are needed for the boundary value problem
describing the motion of the solvent and the solute concentration in the bath . Evidently,
from the second relation in Eq.(3.4), the solvent must move inward as the solid dissolves.
The governing equations for this boundary value problem are obtained by combining the
balance of mass relations of Eq.(2.1) (using  in the bath) with the equations of
balance of linear momentum, along with requisite constitutive assumptions, as illustrated in
Section 3.3 below.

To complete these equations, a constitutive relation is needed for . For example, a relation
in the form of the standard Noyes-Whitney constitutive equation for dissolution [24] may be
adopted,

(3.5)

where h̄ is a material coefficient (positive, with units of length per time) that provides a
measure of the rate of material volume removal per area, and  is a material coefficient
(positive, with units of mass per volume) representing the saturation limit for the solubility
of u in solvent w ( ). In general, in order to solve for vΓ · n from the first relation in
Eq.(3.4), a solution for  from the boundary value problem is needed.

Example 1. In the special case when the volume of the bath  is much larger than that of
the body  and the bath is well stirred, the solute concentration may be negligible relative to
the saturation limit, so that

(3.6)
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This limiting case makes it possible to analyze the dissolution of  without solving the
solute diffusion problem in the bath. Consider a spherical non-porous bead of radius r
dissolving in a much larger, well-stirred bath. For this geometry it follows that vΓ · n = dr/dt.
Using the relations of Eq.(3.4)1 and Eq.(3.6) produces

(3.7)

and since h̄,  and  are constant in this problem, it follows that the bead radius decreases
at a constant rate,

(3.8)

where r0 = r (0) is the initial bead radius. Therefore, the time needed for complete
dissolution under these well-stirred conditions is

(3.9)

At any time t in the interval 0 ≤ t ≤ tf, the mass of the bead is

(3.10)

where  is the initial mass of the bead.

3.2. Volume Dissolution of Porous Solid
In a porous solid the solvent interacts with the solid skeleton, producing surface dissolution
at a microscopic level, which is manifested by a decrease in the apparent density ρs at the
macroscopic level (the level of a representative volume element of the porous structure,
Figure 3.2). Therefore, this alteration in ρs represents a mechanism of volume dissolution.
Since there is no reaction producing or removing solvent ( ), the loss of solid is
balanced by the production of solute, and  according to Eq.(2.2). Thus, when also
considering the solid to be rigid and stationary, the mass balance relations (2.1) for the three
constituents of the mixture reduce to

(3.11)

In a spatial frame, the solution for ρs is obtained by integrating the first of these relations to
produce
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(3.12)

where  must be given by a constitutive relation which is a function of state variables, such
as ρs, ρw and ρu.

The apparent density of any constitutent may be expressed as , where φα is the
volume fraction of α.5 If each of the constituents is considered intrinsically incompressible,
then  is invariant in time and space. This assumption may be combined with the mixture
saturation condition (the absence of voids), Σα φα = 1, and the mass balance relations of Eq.
(3.11), to produce a balance of mass for the mixture,

(3.13)

This equation expresses the fact that a difference between the true densities of the solid and
its solubilized form ( ) can lead to a net change in the mixture volume as dissolution
( ) takes place.6 Conversely, if , the solute occupies the same volume as the solid
from which it dissolves, producing no net change in mixture volume as dissolution
progresses.

In the chemistry of solutions, solute concentrations are usually expressed as the solute mass
per volume of the solution (solvent + solute). In mixture theory however, ρu represents the
mass of solute per volume of the mixture (solution + solid). Therefore, when adopting
constitutive relations derived from chemistry, the solute apparent density should be

renormalized according to  to produce a mass concentration on
a solution-volume basis, since 1 – φs = φw + φu represents the volume fraction of the
solution.7 For example, if a constitutive relation in the form of the Noyes-Whitney equation
[24] is adopted for volume dissolution, then

(3.14)

where ĥ is a material coefficient (positive, with units of reciprocal time) that represents the
rate of material volume removal per volume, and  is the saturation concentration in free
solution (no solid), as also used in Eq.(3.5).

Example 2. In general, the equations presented above are insufficient to solve for all the
unknowns (ρs,ρu, ρw, vw, and vu), because the motion of the solute and solvent (via
permeation, diffusion, osmosis, etc.) must be additionally described by equations of balance
of momentum. However, in the special case when , no net volume change occurs in

5Thus, φα = dVα /dV.
6A similar phenomenon occurs, for example, when ice melts into liquid water. Since ice has a lower true density than liquid water, the
resulting volume of the ice-water mixture will decrease with melting.
7The molar concentration cu of the solute is related to the apparent density via Mucu = ρu/ (1 – φs), where Mu is the solute molecular
weight.
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the mixture during dissolution according to Eq.(3.13), and it is easy to verify that this
equation may be satisfied by letting the solvent and solute be stationary,

(3.15)

and the apparent densities ρs, ρu and ρw be homogenenous. It follows from Eq.(3.11) that

(3.16)

and

(3.17)

Using the initial conditions  and ρu = 0 at t = 0, Eq.(3.16) may be integrated to produce

(3.18)

In this expression,  is a measure of the initial solid mass content (  is the initial
solid volume fraction); upon complete dissolution ρs reduces to zero and ρu increases to .
Substituting Eq.(3.18) into Eq.(3.14) and the resulting expression into Eq.(3.17) produces a
non-linear ordinary differential equation for ρs,

(3.19)

with the initial condition  at t = 0. A closed-form solution for this equation is not
readily available, though the steady-state response (dρs/dt = 0) is given by

(3.20)

The first case reflects the outcome when the interstitial fluid saturates with solute before
complete dissolution of the solid can occur, whereas the second case represents complete
dissolution of the solid.

A numerical solution of (3.19) is straightforward, however there are two limiting cases that
produce a linearized form of this equation. First, if the saturation concentration is small
compared to the initial solid content ( ), only a small fraction of the solid can
dissolve ( ) so that

(3.21)
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and, assuming that ĥ is constant, the solution is given by

(3.22)

This solution shows that the dissolution process decreases the solid content at an exponential
rate and steady state is achieved asymptotically with increasing time.

Second, if the initial solid content is very small ( ), then  at all times and
(3.19) reduces to

(3.23)

producing

(3.24)

There are two possible outcomes in this scenario. If , the solid cannot dissolve
completely because the solution saturates, and the steady-state response is achieved
asymptotically with time, as shown in (3.24). However, if , the solid dissolves
completely (ρs = 0) in a finite amount of time,

(3.25)

and, consistent with Eq.(3.18), the solute concentration at tf rises to .

3.3. Combined Mechanisms of Surface and Volume Dissolution
In a porous solid, both surface and volume dissolution are expected to occur simultaneously.
Surface dissolution will cause the boundary Γ to recede with a normal velocity component
(vΓ – vs)·n, while volume dissolution will cause a reduction in the solid apparent density ρs.
The statements of balance of mass, Eq.(2.1), and the mixture balance of mass in the case of
intrinsically incompressible constituents, Eq.(3.13), must hold in ,

(3.26)

and ,
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(3.27)

These equations are formulated under the simplifying assumption that the porous solid is
rigid and stationary, Eq.(3.1).

Since  is porous, the jump conditions on the balance of mass for each constituent across Γ,
Eq.(3.2), produce more general relations than in Eq.(3.4),

(3.28)

Constitutive relations are needed for the solid mass supply terms, as given for example in
Eqs.(3.5) and (3.14).

To solve for all these unknowns it is necessary to also include the equations of balance of
momentum for the fluid constituents (solvent + solute). (The balance of momentum for α = s
is not needed since the solid is assumed rigid and stationary.) Under quasi-static and
isothermal conditions, in the absence of external body forces, when viscous stresses in each
constituent are neglected, and when all constituents are uncharged, the balance of
momentum reduces to

(3.29)

where p is the fluid pressure, μα is the chemical potential of α (with units of energy per
mass), and  is the dissipative part of the momentum supply to α from all other constituents
in the mixture (e.g., the frictional drag exerted on α by the other constituents, with units of
force per volume) [6, 25, 26]. The corresponding jump conditions on Γ are given by

(3.30)

Constitutive relations are needed for μα and , which relate them to the state variables in
this problem. In general, since dissolution of a solid may produce non-dilute (and thus, non-
ideal) solutions, and since the transport properties within the porous solid (solute diffusivity,
solvent permeability) may be significantly altered by dissolution, the formulation of
constitutive relations that remain valid over the entire span of the dissolution process may be
highly specific to the nature of the solid, solvent and solute for a particular problem and
must be guided by experimental validation.

To illustrate this type of constitutive formulation, consider the case where the solution
remains dilute ( ) and ideal during the entire process of dissolution as would occur,
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for example, when solute diffusion or solvent convection carries solute away significantly
faster than the rate at which it is produced by dissolution. Also consider that the porous solid
imparts isotropic transport properties (diffusivity and permeability) and that the dissolution
process does not alter this material symmetry. Finally, assume that the mass exchange from
dissolution has a negligible contribution to the momentum supply between constituents [6].
Under these constitutive assumptions, the momentum balance equations produce the
following relations in ,

(3.31)

where R is the universal gas constant and θ is the absolute temperature. Mu is the solute
molecular weight, Du is its diffusivity in the mixture (solid+solution),  is its diffusivity in
free solution (no solid), and k is the solvent hydraulic permeability in the porous solid. For
dilute solutions  and Du may be considered independent of solute concentration. While 
may be constant, a constitutive relation is needed to relate Du to ρs such that

(3.32)

to account for the effect of dissolution on diffusivity through the porous solid matrix.
Similarly, a constitutive relation is needed to relate k to ρs such that

(3.33)

to reflect the fact that, following complete dissolution of the solid, there will be no frictional
interaction between solid and solvent.

The governing equations within  may thus be reduced from Eq.(3.34) by letting  and
recognizing that  in a dilute solution,

(3.34)

It may be noted that the second of these equations is Fick's law of diffusion. For dilute
solutions, the jump conditions of Eq.(3.30) further reduce to

(3.35)

In general, the solution to these coupled, nonlinear partial differential equations needs to be
obtained numerically. A numerical scheme for solving these equations must account for the
time-evolution of the interface Γ. No simple canonical solution is offered here.
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4. Discussion
The objective of this study was to illustrate the concept of growth mechanics in the
physically meaningful problem of dissolution, without the need to model phenomena that
often accompany growth processes and increase the modeling complexity. Thus, whereas
many growth problems in biomechanics are concerned with the effects of loading versus
growth on solid deformation, and the need to account for evolving traction-free
configurations of a growing body, these specific issues were set aside in the current study by
modeling the solid as rigid and stationary. This simplifying assumption naturally shifted the
focus of the growth analysis back to the fundamental principle that growth is governed by
the axiom of mass balance.

A fundamental principle emphasized in this study is that growth is embodied in the mass

supply term of the mass balance equations,  in Eq.(2.1) or  in Eq.(2.3), and that these
supply terms can only exist if there is more than one constituent in a mixture to allow for
mass exchanges, as implied by Eqs.(2.2) and (2.5). Therefore, the natural framework for
describing growth mechanics is the theory of mixtures. Since growth represents mass
exchanges with the solid matrix of a body, interstitial growth can occur only if the body is
porous-permeable to the constituents that bind to, or get released from, the solid matrix in
the growth process. In contrast, appositional growth can occur even if the solid is non-
porous.

Dissolution is a process of negative growth since it implies loss of mass from the solid

matrix. In the examples illustrated in this study, it was thus assumed that , or , for
the purpose of describing representative responses. However, positive growth (  or

) could have been assumed just as easily, with no alteration in the governing equations.
Thus, the surface growth of stalactites and stalagmites by the deposition of soluble minerals
onto the underlying impermeable substrate could have easily been used as an alternative
illustration, where the assumption of a rigid stationary solid would have been most
reasonable. Alternatively, one could also use the governing equations presented in this study
to describe the interstitial growth of collagen matrix (synthesized by fibroblasts or
chondrocytes), under the simplifying assumption that solid matrix deformation is negligible
and that all the amino-acids needed for producing collagen may be lumped into a single
solute α = u.

In general, the mass balance equations are not sufficient to completely model growth
problems, since momentum balance equations are also needed to describe mass transport,
Eq.(3.29). In the canonical problems solved above, simplifying assumptions were adopted to
provide trivial solutions to these equations, and help maintain the focus on the importance of
mass balance equations in growth analyses. When momentum balance equations are
included, additional modeling complexities arise with regard to the formulation of various
constitutive relations that become relevant in growth problems, such as the evolution of
transport properties with loss or gain of solid mass, as suggested by the constraints of Eqs.
(3.32)-(3.33). Entire studies may have to be devoted to these subjects in the future, therefore
no specific examples were illustrated here.

In summary, growth problems require the solution of mass balance equations that include
supply terms and account for mass exchanges among constituents of a mixture. The
statement of the axiom of mass balance may be formulated over a control volume, producing
the equations for interstitial growth, or over a singular interface, producing the equations for
appositional growth. Though growth may often be accompanied by a variety of concomitant
phenomena that increase modeling complexity, such as solid matrix deformation, evolving
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traction-free configurations, cell division, active cell contraction, etc., it is important to
distinguish these accompanying phenomena from the fundamental growth process that
consists of deposition or removal of mass from the solid matrix.
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Figure 2.1.
A singular interface Γ (t) separates a region V (t) into subregions V+ and V–. vΓ is the
velocity of Γ and n is the unit outward normal to the ’+’ side.
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Figure 3.1.
In a dissolution problem,  represents the dissolving body,  represents the bath in which
the body dissolves, and Γ is the evolving interface between  and .
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Figure 3.2.
Volume dissolution ( ) may be viewed as a macroscopic manifestation of surface
dissolution at the microscopic level. In this illustration, struts of a solid scaffold in a
representative elemental volume dV are shown to become progressively thinner (left to
right) as they dissolve. In the absence of deformation (constant dV), the loss of solid mass
dms produces a decrease in apparent solid density ρs.
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