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Abstract

Introduction: GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to
crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling
pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral
glucose load.

Methods: Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an
intravenous GH bolus 2) after an intravenous GH bolus plus an oral glucose load (OGTT), and 3) after intravenous saline plus
OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH,
insulin, glucose, and free fatty acids (FFA).

Results: GH increased AUCglucose after an OGTT (p,0.05) without significant changes in serum insulin levels. GH induced
phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin
signaling proteins Akt (ser473 and thr308), and AS160.The combination of OGTT and GH suppressed Akt activation, whereas
the downstream expression of AS160 was amplified by GH.

We Concluded the Following: 1) A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle
irrespective of ambient glucose and insulin levels 2) Insulin resistance induced by GH occurs without a distinct suppression
of insulin signaling proteins 3) The accentuation of the glucose-stimulated activation of AS 160 by GH does however
indicate a potential crosstalk between insulin and GH.
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Introduction

Growth hormone (GH) promotes longitudinal growth and

somatic maturation in children and adolescents and is also an

important regulator of substrate metabolism and insulin sensitivity

[1]. In the post-absorptive phase, where endogenous GH secretion

is stimulated, GH promotes lipolysis and oxidation of fatty acids at

the expense of glucose [2,3]. This insulin-antagonistic effect is

accentuated during more prolonged fasting and may constitute a

favorable protein-saving mechanism due to impeded demand for

gluconeogenesis from amino acids [4–6]. On the other hand,

sustained GH elevations in non-fasting conditions, as seen in

acromegaly, may result in glucose intolerance, and manifest

diabetes mellitus [7,8].

The molecular mechanisms by which GH causes insulin

resistance are unclear. Insulin-stimulated glucose transport into

skeletal muscle depends on the activation of a signaling cascade

involving insulin receptor substrate 1 (IRS-1), the phosphatidylino-

sitol 3-kinase, Akt, and Akt substrate of 160 kDa (AS160) [9]. The

entirety of the signaling cascade is not yet known and may include

additional proteins. However, it is well known that insulin signaling

ultimately promotes translocation of the glucose transporter

GLUT4 to the cell surface. Any step in this cascade is a potential

target for GH, and could involve direct crosstalk between signaling

proteins, or indirect effects via free fatty acids (FFA), a known

inhibitor of insulin receptor signaling in human skeletal muscle [10].

The predominant GH signaling cascade comprises activation of

the GHR dimer, phosphorylation of JAK2 and subsequently of

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19392

st



STAT5 [11], but there is also animal and in vitro evidence to

suggest that insulin and GH share post-receptor signaling

pathways [12]. However, a cross-talk between GH and insulin

signaling pathways has not been confirmed in human models in

vivo [13,14]. This may, however, relate to the design of these

studies. First, signaling was assessed in either the basal state, where

insulin activity is minimal [14], or during a euglycemic hyper-

insulinemic glucose clamp [13], which is an unphysiological

condition. Second, only single biopsies were obtained in both

studies, which may be insufficient because of the rapid and

fluctuating nature of the post receptor signaling cascades. Third,

measurement of signaling proteins downstream of Akt has so far

not been performed. It should also be noted that human in vivo

data on the time course of stimulated insulin signaling pathways

after an oral glucose tolerance load have not previously been

reported.

We therefore conducted a study where temporal changes in the

activation of signaling proteins downstream of the receptors for

GH and insulin were assessed in serial muscle biopsies in healthy

human subjects following a physiological GH bolus with and

without a concomitant oral glucose load (OGTT).

Methods

Study protocol and informed consent
The study protocol was approved by The Regional Scientific

Ethics Committee of Denmark (M-20070052) and all participants

gave oral and written informed consent to participate. The study

was conducted in accordance to the Helsinki Declaration.

Subjects
We studied 8 healthy men aged 24.661.8 year (mean 6 SE)

with a mean body mass index of 24.261.2 kgxm22 in a

randomized, crossover design. Routine blood chemistry including

fasting blood glucose and HbA1c levels were normal in all

participants, none of whom received any medication.

Study design
Each participant was studied on 3 separate occasions in a

randomized fashion (Figure 1): 1) after an intravenous GH bolus

(0.5 mg Genotropin, Miniquick, Pfizer, Inc.)(GH); 2) after a

blinded intravenous GH bolus (0.5 mg) plus an oral glucose load

(75 g) (GH + OGTT); and 3) after a blinded intravenous saline

bolus plus an oral glucose load (OGTT). At least two weeks

elapsed between each study, which was performed after an

overnight fast for 12 hours and with the participants resting in the

supine position.

A catheter was inserted in an antecubital vein in each arm, one

for administration of GH/saline, and one for blood sampling. At

09.00 h (t = 0 min) the participants received GH/saline 6OGTT.

Muscle biopsies were obtained at t = 0 min (just before the

intervention), t = 30 min, t = 60 min, t = 120 min. The biopsies

were taken from the vastus lateralis muscle with a Bergström

biopsy needle under local anesthesia (1% lidocain); a small incision

was made through the skin and muscle sheath 15–20 cm above the

knee. The biopsies were taken in random order two by two,

meaning that the first (t = 0 min) and the second (t = 30 min) were

taken from the same thigh, and the third (t = 60 min) and the

fourth (t = 120 min) from the contra lateral thigh. A total amount

of <150 mg of muscle was obtained per biopsy. The tissue was

cleansed from blood (within 10 sec) and snap-frozen in liquid

nitrogen. Muscle biopsies were stored at 280uC until analyzed.

Blood was collected just before the first biopsy (t = 0), five min after

(t = 5), and every 10 min within the first hour (t = 10, 20, 30, 40,

50, 60). After the first hour blood was collected every 30 min until

one hour after the last biopsy (t = 90, 120, 150, 180). Plasma

glucose and serum GH were measured at every time point. FFA

was measured every 20 min within the first hour (t = 0, 20, 40, 60)

and every 30 min afterwards (t = 90,120,150,180). Serum insulin

was measured at 0, 20, 30, 40, 60, 120, 180 min. Body

composition and aerobic exercise capacity (VO2-max) were

assessed after completion of the study by Dual-emission X-ray

absorptiometry and a bicycle ergometer, respectively.

Hormones and metabolites
Plasma glucose was measured immediately in duplicates on two

Beckman Glucoanalyzers (Beckman Instruments, Palo Alto, CA).

Serum insulin and GH were measured using time-resolved

fluoroimmunoassays (TF-IFMA; AutoDELFIA, PerkinElmer,

Turku, Finland), FFA was analyzed by a colorimetric method

using a commercial kit (Wako Chemicals, Neuss, Germany).

Intracellular signal transduction
Muscle biopsies were homogenized as previously described [15].

Western blot: Aliquots of protein were resolved by SDS-PAGE,

and proteins were transferred onto nitrocellulose membranes.

Immunoblotting was performed using primary antibodies as

follows: phosho-STAT5, STAT5, phosho Akt, Akt2, phospho-

Figure 1. Study design. Please refer to the paragraph study design for further details.
doi:10.1371/journal.pone.0019392.g001
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P38, P38, phosho-Akt substrate (PAS), and Akt substrate 160

(AS160), all obtained from Cell Signaling (Beverly, MA).

Membranes were incubated with horseradish peroxidase–coupled

secondary antibodies, visualized by BioWest enhanced chemilu-

minescence (UVP LabWorks, Upland, CA) and quantified by the

UVP BioImaging System.

Membranes probed with the phospho-specific antibodies were

stripped in a buffer containing 100 mmolxl21 2-mercaptoethanol,

0.02 gxml21 SDS and 62.5 mmolxl21 Tris–HCl (pH 6.7), and re-

probed with corresponding total antibody. The signal from the

phospho-specific antibodies was related to total protein expression

in the sample. STAT5 protein bands were identified using human

muscle stimulated with GH as positive controls [14].The

remaining bands were identified using insulin stimulated rat

muscle [16]. Phosphorylation of AS160 was identified as insulin

responsive band at approximately 160 kDa using the phospho-Akt

substrate (PAS) antibody (Cell Signaling). This antibody has been

shown to primarily identify AS160 in human skeletal muscle

[17,18] but a potential cross-reaction with the AS160 paralogue

TBC1D1 (,155 kDa) cannot be completely excluded.

Isolation of RNA
Skeletal muscle (20 mg) was homogenized in TriZol reagent

(Gibco BRL, Life Technologies, Roskilde, Denmark). RNA was

quantitated by measuring absorbency at 260 nm and 280 nm and

the Integrity of the RNA was checked by visual inspection of the

two ribosomal RNAs on an ethidium bromide stained agarose gel.

Real-time RT-PCR for mRNA analysis
Reverse transcription was performed using random hexamer

primers as described by the manufacturer (GeneAmp RNA PCR

Kit from Perkin Elmer Cetus, Norwalk, CT). Then, PCR-

mastermix containing the specific primers and Taq DNA

polymerase (HotStar Taq, Quiagen Inc. USA) were added. The

following primers were designed using the primer analysis software

Oligo version 6.64:

IGF1: 59GACAGGGGCTTTTATTTCAAC 39and 59 CTCC-

AGCCTCCTTAGATCAC 39, 117 bp, SOCS1: 59ACACGCA-

CTTCCGCACATTC 39and 59 CGAGGCCATCTTCACGCT-

AAG 39, 209 bp; SOCS2: 59GGTCGAGGCGATCAGTG 39and

59 TCCTTGAAGTCAGTGCGAATC 39, 209 bp; SOCS3: 59C-

GGCCACTTGGACTCTGA 39and 59 GCCCTTTGCGCCCT-

TT 39, 106 bp; b-actin 59 ACGGGGTCACCCACACTGTGC

39 and 59 CTAGAAGCATTTGCGGTGGACGATG 39, 658 bp.

Real time quantization of target gene to ß-actin mRNA was

performed with a SYBR-Green real-time PCR assay using an

ICycler from BioRad. The threshold cycle (Ct) was calculated, and

the relative gene-expression was calculated essentially as described

in the User Bulletin #2, 1997 from Perkin Elmer (Perkin Elmer

Cetus, Norwalk, CT).

Statistics
Data are presented as means 6 SE when normally distributed,

and median (ranges) (25%; 75%) when not. Statistical evaluation

of differences between normally distributed data was performed

with a paired t-test and with Wilcoxon rank sum test when data

were not normally distributed. Time series of serum measurements

and results from Western blots were analyzed by ANOVA for

repeated measurements or by using area under curve (AUC).

Correlation analyses were performed using Person’s correlation

coefficient. A p value,0.05 was considered statistical significant.

Statistical analysis was performed using SPSS version 17.0 for

windows (SPSS, Chicago, IL).

Results

Glucose
A significant difference between the plasma glucose curves

obtained from OGTT+GH vs. OGTT alone was recorded

(ANOVA, p = 0.04) (Figure 2a). There also was a statistical

significant difference in AUCglucose ((mmolxl21xmin21) [1200641

(OGTT+GH) vs. 1105635 (OGTT) (p = 0.04) (Figure 2b)]. More-

over, GH together with an OGTT tended to increase peak levels

of plasma glucose (Cmax) (p = 0.06) compared to OGTT alone

(Figure 2a).

Insulin, GH, and FFA
Baseline and glucose-stimulated insulin levels (pmolxl21) were

not significantly influenced by concomitant GH exposure [Cmax:

281657 (OGTT) vs. 243633 (OGTT+GH) (p = 0.39); Tmax

(min): 49611 (OGTT) vs. 61614 (OGTT+GH) (p = 0.57)

(Figure 3a)]. No significant difference in insulin patterns as a

Figure 2. Glucose measurements. (A) Plasma levels of glucose.
OGTT, oral glucose tolerance test (75 g glucose). GH, growth hormone
bolus (0.5 mg). Black circles = OGTT + GH, white circles = OGTT, black
triangles = GH. Data are presented as mean 6 SE. Using ANOVA
repeated measurements showed a significant difference between OGTT
and OGTT+GH (p = 4) (B) AUC-glucose, area under glucose curve.
P-value is based on paired t-test between area under curve for OGTT
and area under curve for OGTT+GH. Data are presented as mean 6 SE.
There was a significant difference in AUC-glucose between OGTT and
OGTT+GH (p = 0.04).
doi:10.1371/journal.pone.0019392.g002
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function of time and treatment between OGTT and GH+OGTT

could be recorded (ANOVA, p = 0.51). Likewise, we did not

observe a difference in AUCinsulin ((pmolxl21xmin21) between

OGTT and OGTT+GH [2490864769 (OGTT) vs. 2552364633

(OGTT+GH) (p = 0.843)]. This suggests that the muscles were

stimulated by equal amounts of insulin in the two situations.

The GH bolus yielded serum GH peak values after 10 min

without any impact of a concomitant OGTT (p = 0.81) (Figure 3b).

Likewise, a comparable log-linear decline in serum GH levels was

recorded when comparing GH and GH+OGTT.

GH induced a <60% increase in serum FFA levels after

150 min, which was followed by a gradual decline towards

baseline levels after 3 hours (Figure 3c). This lipolytic effect of GH

was suppressed by the concomitant OGTT as characterized by a

<85% suppression after 120 min and a subsequent increase

towards baseline levels after 3 hours. As expected, OGTT alone

induced a pronounced <90% decrease in serum FFA levels after

120 min followed by a minor increase after 3 hours to a level still

<50% lower than baseline. The degree of FFA suppression was

identical throughout the first 120 min between OGTT and

GH+OGTT assessed by AUCFFA (p = 0.083), however the

presence of GH after 120 min caused a reversal of the insulin

suppression of lipolysis which made AUCFFA differ significantly

(p = 0.026).

STAT5
GH induced a significant 17.5-fold increase in pSTAT5 (AU)

after 30 min compared to baseline. At 60 min the increase was 16-

fold and at 120 min 3- fold, still significantly increased compared

to baseline [87616 (baseline) vs. 15136415 (30 min) (p = 0.014);

vs. 14126254 (60 min) (p = 0.002); vs. 275665 (120 min.)

(p = 0.027)]. The same pattern was recorded when GH was

combined with OGTT (Figure 4a and 4b). ANOVA for repeated

measurements showed no significant difference in pSTAT5

between GH and GH+OGTT (p = 0.64). The OGTT alone did

not impact pSTAT5 (Figure 4a). We did not detect any differences

in total STAT5 expression as a function of either time or

treatment. To summarize, GH induced phosphorylation of

STAT5 independently of the OGTT.

Akt
The OGTT induced a significant increase in phosphorylation of

Akt at ser473 and thr308 (AU), which was detectable at 30 min.,

60 min and 120 min compared to baseline (Figure 4a, 4c, and 4d).

A similar pattern was recorded when OGTT was combined with

GH exposure, although the most pronounced increase in

phosphorylation of Akt at ser473 occurred after 60 min rather

than 30 min and phosphorylation of Akt at thr308 was significantly

lower at t = 30 min (p = 0.049) and at t = 60 min (p = 0.03). By

contrast GH alone did not induce significant changes in

phosphorylation of Akt at either site. Using ANOVA for repeated

measurements we found no statistical significant difference

between the two curves (OGTT and OGTT+GH) for either

Aktser473 (p = 0.56) or Aktthr308 (p = 0.15). Phosphorylation of Akt

at both ser473 and thr308 was positively correlated to insulin levels

(p,0.001).We did not detect any changes in total Akt protein

expression as a function of either time or treatment.

AS160 (TBC1D4) and P38
Baseline PAS phosphorylation of AS160 using the phospho-Akt

substrate antibody was comparable on all study days. OGTT

alone induced a significant increase in AS160 PAS phosphoryla-

tion (AU) after 30 min [117613 (baseline) vs. 180622 (30 min),

p = 0.013], which was followed by non significant elevated levels at

Figure 3. Hormones and metabolites. (A) Serum levels of insulin,
no significant difference between OGTT and GH+OGTT could be
recorded using ANOVA repeated measurements (p = 0.51) or AUCinsulin

(p = 0.84). (B) Growth Hormone, (C) FFA, the degree of FFA suppression
was identical throughout the first 120 min between OGTT and GH +
OGTT but the assessed the presence of GH after 120 min caused a
reversal of the insulin suppression of lipolysis which made AUCFFA differ
significantly. Black circles = OGTT + GH, white circles = OGTT, black
triangles = GH. Data are presented as mean 6 SE.
doi:10.1371/journal.pone.0019392.g003
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60 and 120 min compared to baseline (Figure 4a, 4e).

OGTT+GH induced a more pronounced increase in PAS

phosphorylation of AS160 (AU) which was significant at 30 min,

60 min, and 120 min compared to baseline (OGTT+GH: 94614

(baseline) vs. 191629 (AU) (t = 30 min) (p = 0.014) vs. 230636

(t = 60 min) (p = 0.011) vs. 240640 (t = 120 min) (p = 0.007).

Figure 4. Western blot data. (A) Western blots illustrating comparable levels of phosphorylated insulin signaling proteins (PAS, Aktser473,
Aktthr308, P38, pSTAT5, total STAT5 and total Akt). Arrows indicate exposure. Effects of a GH bolus (0.5 mg) and/or an OGTT (75 g) on
phosphorylation of (B) STAT5. GH induced phosphorylation of STAT5 independently of the OGTT (C) Aktser473, (D) Aktthr308, (E) AS160, and (F) P38.
Black circles = OGTT + GH, white circles = OGTT, black triangles = GH. Data are presented as mean 6 SE.
doi:10.1371/journal.pone.0019392.g004

Insulin and GH Signaling in Skeletal Muscle
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ANOVA showed no significant difference between OGTT and

GH+OGTT (p = 0.39). GH exposure alone induced a decrease in

PAS phosphorylation of AS160 after 60 min. [88613 (baseline) vs.

66611 (60 min), p = 0.049], followed by a return to baseline levels

(Figure 4d). There was a positive correlation between AS160 PAS

phosphorylation and insulin (r = 0.86, p,0.000). As regards P38

no significant changes were recorded with time in either

experiment (Figure 4f).

IGF-I and SOCS1–3 mRNA expression
Muscle biopsies taken at 0 min and 120 min were used for the

analysis of IGF-I and SOCS1–3 mRNA expression. No significant

increase in the expression of IGF-I mRNA was observed in any of

the experiments (Table 1). By contrast, GH alone significantly

increased the expression of SOCS-2 mRNA (AU) (p = 0.008), and

SOCS-3 mRNA (AU) (p = 0.005] compared to baseline. GH +
OGTT significantly increased the expression of SOCS-1 mRNA

(AU) (p = 0.03), SOCS-2 mRNA (AU) (p = 0.015), and SOCS-3

mRNA (AU) (p = 0.038) compared to baseline. There was no

significant expression of SOCS1–3 mRNA when oral glucose was

given alone.

Correlations
To assess the impact of body composition and physical fitness

on GH signaling the percentage of total body fat (%) and lean

body mass (%) were correlated to peak levels of pSTAT5 and

SOCS mRNA expression during the GH-only study. Significant

positive correlations were found between TBF and pSTAT5

(r = 0.79, p = 0.037), SOCS-2 (r = 0.79, p = 0.020) and SOCS-

3(r = 0.80, p = 0.016). Significant negative correlations were found

between LBM and pSTAT5 (r = 20.79, p = 0.033), SOCS-2

(r = 20.79, p = 0.019) and SOCS-3(r = 20.80, p = 0.016), and

between VO2- max/kg and pSTAT5 (r = 20.76, p = 0.05) and

SOCS-3 m RNA (r = 20.73, p = 0.04), respectively.

Discussion

It is well documented that GH acutely induces insulin resistance

in human skeletal muscle in vivo [2,19–22], but the underlying

molecular mechanisms remain unknown. In particular - and in

contrast to animal data [12] - studies in human models have not

been able to document an inhibitory effect of GH on insulin

signaling pathways in either muscle or fat [1,13,14,23,24].The

human studies, however, have been conducted either in the basal

state or during a hyperinsulinemic glucose clamp, neither of which

reflects the physiological condition of a meal-induced stimulation

of endogenous insulin secretion and action. In the present study we

therefore exposed healthy subjects to an oral glucose load in the

absence and presence of acute concomitant GH exposure. This

was accompanied by serial muscle biopsies to measure time course

changes in pertinent GH and insulin signaling proteins.

We observed that exposure to a single GH bolus translated into

transient activation of STAT5 signaling in skeletal muscle, which was

uninfluenced by a concomitant oral glucose load. Conversely, the oral

glucose load stimulated insulin signaling in skeletal muscle, which was

modified but not abrogated by concomitant GH exposure.

The present study confirms that phosphorylation of STAT5 in

skeletal muscle is a very robust and reproducible effect of systemic

GH exposure in human subjects [13,14,23,25], and it demonstrates

for the first time that activation of STAT5 peaks 60 min after a GH

bolus followed by a decline towards baseline levels after 120 min. In

support of a physiological role of this response, it is noteworthy that

endogenous GH stimulated by either ghrelin [24] or exercise [26]

also induces pSTAT5 in human skeletal muscle in vivo. It is likely

that the signaling response to an exogenous GH bolus is influenced

by the participant’s pre-study exposure to GH. Recognized

determinants of GH secretion and action in human subjects

include age, gender, body composition and physical fitness [27,28].

We observed a positive correlation between the participants TBF

and GH signaling, whereas both LBM and VO2- max/body weight

correlated negatively with GH signaling. Fat mass is known to be

inversely related to GH secretion (also in normal weight subjects),

whereas the opposite is true for LBM and VO2- max [27,28]. To

reconcile these observations we speculate that pre-study GH levels

may suppress GH signaling induced by an exogenous GH bolus.

This hypothesis obviously needs to be experimentally addressed in

future studies which also should account for other determinants of

GH secretion such as gender and age.

The GH-induced activation of STAT5 was unaffected by a

concomitant oral glucose load, which is in accord with

observations made during a hyperinsulinemic glucose clamp

[13]. It has previously been reported that prolonged (8–24 h)

but not short-term (4 h) insulin pretreatment inhibits GH signaling

via the GHR/JAK2/STAT5B pathway in rat hepatoma cells

[29,30]. Conversely, rapid tyrosine phosphorylation of STAT5 by

insulin has been recorded in a perfused rat liver model [31].

Whether these discrepancies reflect tissue-specific or species-

specific differences remain uncertain, but at present there is no

evidence to support that insulin interacts with GH signaling in

human muscle or fat in vivo.

Table 1. IGF-1 and SOCS 1–3 mRNA.

mRNA Units Event Time/min Median (25%;75%) Test

IGF-I AU OGTT 0 2.41 (0.99;11.5)

AU OGTT 120 1.34 (0.16;9.88) P = 0.11

AU GH 0 7.50 (2.05;15.5)

AU GH 120 6.26 (2.38;13.3) P = 0.38

AU OGTT+GH 0 10.5 (2.30;25.1)

AU OGTT+GH 120 12.4 (3.02;28.3) P = 0.11

SOCS-1 AU OGTT 0 0.55 (0.37;1.66)

AU OGTT 120 1.40 (0.30;1.52) P = 1.00

AU GH 0 0.32 (0.12;1.21)

AU GH 120 1.79 (0.55;14.9) P = 0.13

AU OGTT+GH 0 0.43 (0.24;0.86)

AU OGTT+GH 120 2.71 (1.16;3.34) P = 0.03*

SOCS-2 AU OGTT 0 0.55 (0.50;1.50)

AU OGTT 120 0.83 (0.31;1.98) P = 0.56

AU GH 0 1.21 (0.43;1.73)

AU GH 120 3.07 (1.75;3.97) P = 0.01*

AU OGTT+GH 0 1.31 (0.39;2.20)

AU OGTT+GH 120 5.26 (2.29;15.2) P = 0.02*

SOCS-3 AU OGTT 0 0.67 (0.65;0.99)

AU OGTT 120 2.76 (0.51;3.10) P = 0.22

AU GH 0 0.89 (0.52;1.25)

AU GH 120 4.41 (2.02;5.89) P = 0.01*

AU OGTT+GH 0 2.06 (0.59;3.87)

AU OGTT+GH 120 4.67 (2.91;15.3) P = 0.04*

P-value after Wilcoxon rank sum test.
GH, growth hormone; OGTT,oral glucose tolerance test; AU, arbitrary unit.
doi:10.1371/journal.pone.0019392.t001
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We observed that insulin signaling proteins in human skeletal

muscle in vivo are activated in a distinct temporal pattern within

30 min after an OGTT. The serial measurements of insulin

signaling activity during the OGTT allow examination of

temporal physiological changes that may not be detected during

a glucose clamp. Muscle glucose uptake is difficult to quantify

directly during an OGTT. However it has previously been

demonstrated that glucose from an OGTT for the most part is

disposed into skeletal muscle [32]. We therefore consider an

OGTT an acceptable model for studying the impact of GH on

stimulated insulin signaling and glucose uptake in skeletal muscle.

Previous studies in human in vivo models have failed to detect

effects of GH, given as either an infusion [23] or a bolus [13,14],

on insulin signaling via IRS-1 associated PI3-kinase [14,23],

serine/threonine kinase Akt [13,14,23], and Erk1 [13]. This,

together with the present data, deviates from animal as well as in

vitro studies showing that inhibition of the IRS1-Akt pathway is a

mechanism whereby GH induces insulin resistance in skeletal

muscle [12] and fat [33]. Our present data, however, show that

phosphorylation of the intermediary signaling proteins Aktser473

and Aktthr308 tended to be delayed (Aktser473) and suppressed

(Aktthr308) when GH was given in combination with OGTT,

whereas further downstream phosphorylation of AS160 was more

pronounced when GH was combined with OGTT. Most agree

that phosphorylation of Aktthr308 occurs prior to phosphorylation

of Aktser473 and that this is a two-step process; based on our data

it is likely that GH may interact with this process. The

physiological significance, however, is unclear when considering

that the activation of AS160, which is downstream of Aktser473,

was activated rather than suppressed by GH. It remains to be

studied whether the latter may reflect an inhibitory effect of GH

on insulin signaling downstream of AS160.

It is well known that GH via STAT5 stimulates SOCS

expression [34] and that SOCS-3 is the major negative regulator

of GH signaling [35–38]. Animal studies suggest that SOCS-1

inhibits insulin-stimulated activation of the Erk1/2 and Akt in vivo,

and phosphorylation of IRS-1 by the IR in vitro [39]. We found

that after 2 hours, GH induced a significant increase in the

expression of both SOCS2 and SOCS3 mRNA expression, and

that GH in combination with OGTT also induced a significant

increase in SOCS1 mRNA. However, none of these changes was

associated with the phosphorylation of Akt. It is also well described

that elevated FFA levels are causally linked to insulin resistance

although the underlying mechanisms are unclear [10,40,41]. In

accordance with this, we have previously observed that experi-

mental suppression of lipolysis in conjunction with GH adminis-

tration in GH-deficient adults significantly abrogates the antago-

nistic effects of GH on insulin-stimulated muscle glucose uptake

[22], and that insulin resistance induced by short-term high dose

GH administration in healthy adults is accompanied by accumu-

lation of fat in muscle cells [42]. But in contrast to data obtained

with intralipid infusion in human subjects, we have not been able

to detect suppression of either PI 3-kinase or Akt/PKB following

GH-induced insulin resistance during a glucose clamp despite a

marked elevation in circulating FFA levels [23]. In the present

study the lipolytic effect of GH was blunted by the concomitant

OGTT, although the degree of suppression was significantly less as

compared to OGTT alone (Figure 3c). Measurement of

intramyocellular lipid content would have strengthened the study

but would have required a separate preparation and thus much

larger biopsies.

Conclusions
We conclude that a physiological GH bolus activates STAT5

signaling pathways acutely in skeletal muscle irrespective of

ambient circulating glucose and insulin levels. The acute

antagonistic effects of GH on glucose-stimulated insulin action

were accompanied by a moderate suppression of Akt activation,

whereas the expression of the more downstream signaling protein

AS160 was amplified rather than suppressed by GH. Our model

provides a viable tool to study GH and insulin action in human

target tissues in vivo.

Acknowledgments

K.N. Rasmussen, H.F. Petersen and E. S. Hornemann are acknowledged

for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: TK-H MM MHV NM JSC NJ

JOLJ. Performed the experiments: TK-H MHV. Analyzed the data: TK-H

MM MHV SBP NM NJ JOLJ. Contributed reagents/materials/analysis

tools: SBP NJ JSC. Wrote the paper: TK-H MM MHV SBP JSC NM NJ

JOLJ.

References

1. Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and

protein metabolism in human subjects. Endocr Rev 30: 152–177. er.2008-0027

[pii];10.1210/er.2008-0027 [doi].

2. Moller N (1989) Effects of growth hormone on insulin sensitivity and forearm

metabolism in normal man. Diabetologia. pp 105–110.

3. Moller N, Jorgensen JO, Schmitz O, Moller J, Christiansen J, et al. (1990) Effects

of a growth hormone pulse on total and forearm substrate fluxes in humans.

Am J Physiol 258: E86–E91.

4. Norrelund H, Moller N, Nair KS, Christiansen JS, Jorgensen JO (2001)

Continuation of growth hormone (GH) substitution during fasting in GH-

deficient patients decreases urea excretion and conserves protein synthesis. J Clin

Endocrinol Metab 86: 3120–3129.

5. Norrelund H, Nair KS, Jorgensen JO, Christiansen JS, Moller N (2001) The

protein-retaining effects of growth hormone during fasting involve inhibition of

muscle-protein breakdown. Diabetes 50: 96–104.

6. Norrelund H, Djurhuus C, Jorgensen JO, Nielsen S, Nair KS, et al. (2003)

Effects of GH on urea, glucose and lipid metabolism, and insulin sensitivity

during fasting in GH-deficient patients. Am J Physiol Endocrinol Metab 285:

E737–E743. 10.1152/ajpendo.00092.2003 [doi];00092.2003 [pii].

7. Moller N, Schmitz O, Joorgensen JO, Astrup J, Bak JF, et al. (1992) Basal- and

insulin-stimulated substrate metabolism in patients with active acromegaly

before and after adenomectomy. J Clin Endocrinol Metab 74: 1012–1019.

8. Sonksen PH, Greenwood FC, Ellis JP, Lowy C, Rutherford A, et al. (1967)

Changes of carbohydrate tolerance in acromegaly with progress of the disease

and in response to treatment. J Clin Endocrinol Metab 27: 1418–1430.

9. Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and

TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab

295: E29–E37. 90331.2008 [pii];10.1152/ajpendo.90331.2008 [doi].

10. Shulman GI (2004) Unraveling the cellular mechanism of insulin resistance in

humans: new insights from magnetic resonance spectroscopy. Physiology

(Bethesda) 19: 183–190.

11. Lanning N, Carter-Su C (2006) Recent advances in growth hormone signaling.

Rev Endocr Metab Disord.

12. Dominici FP, Argentino DP, Munoz MC, Miquet JG, Sotelo AI, et al. (2005)

Influence of the crosstalk between growth hormone and insulin signalling on the

modulation of insulin sensitivity. Growth Horm IGF Res 15: 324–336.

13. Nielsen C, Gormsen LC, Jessen N, Pedersen SB, Moller N, et al. (2008) Growth

hormone signaling in vivo in human muscle and adipose tissue: impact of insulin,

substrate background, and growth hormone receptor blockade. J Clin

Endocrinol Metab 93: 2842–2850.

14. Jorgensen JO, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, et al. (2006)

GH receptor signaling in skeletal muscle and adipose tissue in human subjects

following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab

291: E899–E905.

15. Wojtaszewski JF, Hansen BF, Urso B, Richter EA (1996) Wortmannin inhibits

both insulin- and contraction-stimulated glucose uptake and transport in rat

skeletal muscle. J Appl Physiol 81: 1501–1509.

16. Jessen N, Selmer BE, Pold R, Schmitz O, Lund S (2008) A novel insulin

sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal

muscles. Horm Metab Res 40: 269–275. 10.1055/s-2007-1022546 [doi].

Insulin and GH Signaling in Skeletal Muscle

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e19392



17. Treebak JT, Birk JB, Rose AJ, Kiens B, Richter EA, et al. (2007) AS160

phosphorylation is associated with activation of alpha2beta2gamma1- but not
alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise

in humans. Am J Physiol Endocrinol Metab 292: E715–E722. 00380.2006

[pii];10.1152/ajpendo.00380.2006 [doi].
18. Hojlund K, Glintborg D, Andersen NR, Birk JB, Treebak JT, et al. (2008)

Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal
muscle of women with polycystic ovary syndrome is reversed by pioglitazone

treatment. Diabetes 57: 357–366. db07-0706 [pii];10.2337/db07-0706 [doi].

19. Zierler KL, Rabinowitz D (1963) Roles of insulin and growth hormone, based
on studies of forearm metabolism in man. Medicine (Baltimore) 42: 385–402.

20. Bak JF, Moller N, Schmitz O (1991) Effects of growth hormone on fuel
utilization and muscle glycogen synthase activity in normal humans. Am J Physiol

260: E736–E742.
21. Jorgensen JO, Moller J, Alberti KG, Schmitz O, Christiansen JS, et al. (1993)

Marked effects of sustained low growth hormone (GH) levels on day-to-day fuel

metabolism: studies in GH-deficient patients and healthy untreated subjects.
J Clin Endocrinol Metab 77: 1589–1596.

22. Nielsen S, Moller N, Christiansen JS, Jorgensen JO (2001) Pharmacological
antilipolysis restores insulin sensitivity during growth hormone exposure.

Diabetes 50: 2301–2308.

23. Jessen N, Djurhuus CB, Jorgensen JO, Jensen LS, Moller N, et al. (2005)
Evidence against a role for insulin-signaling proteins PI 3-kinase and Akt in

insulin resistance in human skeletal muscle induced by short-term GH infusion.
Am J Physiol Endocrinol Metab 288: E194–E199.

24. Vestergaard ET, Gormsen LC, Jessen N, Lund S, Hansen TK, et al. (2008)
Ghrelin infusion in humans induces acute insulin resistance and lipolysis

independent of growth hormone signaling. Diabetes 57: 3205–3210. db08-0025

[pii];10.2337/db08-0025 [doi].
25. Moller L, Dalman L, Norrelund H, Billestrup N, Frystyk J, et al. (2009) Impact

of fasting on growth hormone signaling and action in muscle and fat. J Clin
Endocrinol Metab 94: 965–972. jc.2008-1385 [pii];10.1210/jc.2008-1385 [doi].

26. Consitt LA, Wideman L, Hickey MS, Morrison RF (2008) Phosphorylation of

the JAK2-STAT5 pathway in response to acute aerobic exercise. Medicine and
Science in Sports and Exercise 40: 1031–1038.

27. Vahl N, Jorgensen JO, Skjaerbaek C, Veldhuis JD, Orskov H, et al. (1997)
Abdominal adiposity rather than age and sex predicts mass and regularity of GH

secretion in healthy adults. Am J Physiol 272: E1108–E1116.
28. Vahl N, Moller N, Lauritzen T, Christiansen JS, Jorgensen JO (1997) Metabolic

effects and pharmacokinetics of a growth hormone pulse in healthy adults:

relation to age, sex, and body composition. J Clin Endocrinol Metab 82:
3612–3618.

29. Xu J, Keeton AB, Franklin JL, Li X, Venable DY, et al. (2006) Insulin enhances
growth hormone induction of the MEK/ERK signaling pathway. J Biol Chem

281: 982–992. M505484200 [pii];10.1074/jbc.M505484200 [doi].

30. Xu J, Messina JL (2009) Crosstalk between growth hormone and insulin

signaling. Vitam Horm 80: 125–153. S0083-6729(08)00606-7 [pii];10.1016/
S0083-6729(08)00606-7 [doi].

31. Chen J, Sadowski HB, Kohanski RA, Wang LH (1997) Stat5 is a physiological

substrate of the insulin receptor. Proc Natl Acad Sci U S A 94: 2295–2300.
32. Katz LD, Glickman MG, Rapoport S, Ferrannini E, Defronzo RA (1983)

Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32:
675–679.

33. del Rincon JP, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, et al. (2007)

Growth hormone regulation of p85alpha expression and phosphoinositide 3-
kinase activity in adipose tissue: mechanism for growth hormone-mediated

insulin resistance. Diabetes 56: 1638–1646. db06-0299 [pii];10.2337/db06-0299
[doi].

34. Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-
stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:

35553–35561.

35. Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E (2006) Negative
regulation of growth hormone receptor signaling. Mol Endocrinol 20: 241–253.

me.2005-0170 [pii];10.1210/me.2005-0170 [doi].
36. Davey HW, McLachlan MJ, Wilkins RJ, Hilton DJ, Adams TE (1999) STAT5b

mediates the GH-induced expression of SOCS-2 and SOCS-3 mRNA in the

liver. Mol Cell Endocrinol 158: 111–116. S0303-7207(99)00175-6 [pii].
37. Ridderstrale M, Amstrup J, Hilton DJ, Billestrup N, Tornqvist H (2003) SOCS-

3 is involved in the downregulation of the acute insulin-like effects of growth
hormone in rat adipocytes by inhibition of Jak2/IRS-1 signaling. Horm Metab

Res 35: 169–177. 10.1055/s-2003-39077 [doi].
38. Rieusset J, Bouzakri K, Chevillotte E, Ricard N, Jacquet D, et al. (2004)

Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal

muscle of obese and type 2 diabetic patients. Diabetes 53: 2232–2241. 53/9/
2232 [pii].

39. Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, et al. (2001)
Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin

receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol

Chem 276: 25889–25893.
40. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-

acid cycle. Its role in insulin sensitivity and the metabolic disturbances of
diabetes mellitus. Lancet 1: 785–789.

41. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old
hat. Am J Physiol Endocrinol Metab 297: E578–E591. 00093.2009

[pii];10.1152/ajpendo.00093.2009 [doi].

42. Krag MB, Gormsen LC, Guo Z, Christiansen JS, Jensen MD, et al. (2007)
Growth hormone-induced insulin resistance is associated with increased

intramyocellular triglyceride content but unaltered VLDL-triglyceride kinetics.
Am J Physiol Endocrinol Metab 292: E920–E927. 00374.2006 [pii];10.1152/

ajpendo.00374.2006 [doi].

Insulin and GH Signaling in Skeletal Muscle

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19392


