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Abstract

Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship
among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network,
the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major
concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an
accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing
PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define
a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The
robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among
proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this
computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore,
we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal
threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks
and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to
benefit biological experiments, to better characterize network data sets, and to drive new discoveries.
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Introduction

Current development in high-throughput measurement tech-

niques such as tandem affinity purification, two-hybrid assays, and

mass spectrometry have resulted in vast amounts of pertinent

elements and the biological networks of their interactions [1–9].

The wealth of observed data has provided more opportunities and

challenges in the exploration of protein functions and regulations in

various organisms. However, the reliability of the observed PPIs is a

major source of concern as the data inherently has very high rates of

false measured interactions, sometimes up to 50% [10,11], and a

low coverage of the complete PPI network. Therefore, the

computational approaches have been receiving an increasing

attention towards assisting PPI network analysis [1,12–14]. The

general approach behind the computational methods combines the

extra information (evidences) to re-evaluate the quality of the

observed network. The assumption is that the observed PPI network

itself is a realization of an underlying probabilistic model [1,15]. If

the probability p(PPI or NPPI) (NPPI denotes protein-protein non-

interaction henceforth) is the probability of the observed PPIs and

NPPIs in the network, statistically, the computational approaches

seek for the evidences to maximize the posterior probability

p(PPI or NPPI| Combined evidences). Therefore, the strategy

to integrate the evidences of the observed PPI network plays a

critical role in the improvement of the fidelity of protein-protein

interaction. According to the different types of the methods for

combining the evidences, we can categorize the current efforts into

two aspects discussed below.

As measurements cover different aspects of a biological systems

with different characteristics of the PPI network [16], the first type

of approaches of combining evidences integrate the multiple data

sources, such as gene expression arrays, proteomics, and

chromatin immunoprecipitation on chip assays [17,18], to

evaluate the protein-protein interactions and its network, and

then to improve the accuracy, coverage and robustness of PPIs.

The integration methods typically include Bayesian approaches,

decision tress, support vector machines and neural networks

[12,19–21]. Those methods have proven to be particularly

effective and yielded a clearer biological view of the system than

single source based methods. However, the high rates of uncertain

PPIs pose a challenge to integrate different resources, and the

experimental measurements are sometimes extremely labor

intensive and expensive. The geometric features of the PPI

network have recently proven to provide new insights into PPI

network [1,22–30]. The second type of approaches of combining

evidences mines the geometric characteristics behind the PPI

network to evaluate the quality of PPIs. The common hypothesis

for these methods is that the existence of the geometric topology

structure for PPI networks which is crucial in determining the PPIs

in the network [22]. Those approaches are promising as they only

require the input from the PPI network topology. Although it is a
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good initial step, there are still open research questions to answer

in order to fully understand the PPI network based on its

geometric features. The methods use the direct connections to

evaluate the quality of an interaction pair [24,25,28,29]. Those

methods are basically similar to the method in [28]. If they have

many common neighbors, a pair of nodes is likely to be connected

in the network. The methods rely on the degrees of individual

proteins without considering the entire topology of the network.

This kind of methods are particularly effective however they are

sensitive to noise as only local individual neighbors are considered

in prediction and not sufficient to evaluate the global relation

among nodes [26,29]. The improved techniques in [24,29] firstly

cluster PPIs in the network in order to form sub-groups and then

analyze the direct connections in the local cliques. However the

methods are still strongly relying on the direct interactions. The

approaches, which are able to exploit the entire topology based on

using indirect neighbors in a network, are more promising

[22,26,27] in revealing the true relationship among nodes in

network. For example, a robust protein function prediction based

on the indirect neighbors has been presented in the [27]. The state

of the art approach uses a spectral decomposition, multidimen-

sional scaling (MDS), to exploit the indirect neighbors in the

network [1]. Their method firstly embedded the proteins in a high-

dimensional space by the eigen-decomposition of the distance

matrix, compute the Euclidean distance in the feature space, and

then assign a PPI when such distance is smaller than a given

threshold. A pair of proteins will be assigned an interaction (PPI) if

they are close to each other in an embedded space whereas the

NPPI corresponds to the pair of proteins that are distant from each

other [1]. The performance of this method would be limited by the

following drawbacks: the determination of the dimensionality used

for embedding and the expensive computation cost due to the

eigen-decomposition for large sized sparse or singular matrix. For

the first issue, in [1] authors claim that the dimensionality might be

related to the bio-chemical meaning but leave the strategy of

determining optimal dimensionality in their future work. For the

second issue, the current geometric methods unavoidably lead to a

problem of the eigen-decomposition for a huge PPI matrix, which

gives rise to computational difficulty in the real applications. In

addition, the existing distance metric used to capture the

geometric relationship is not robust to noise, for example, the

geodesic distance in [1] is sensitive to short-circuit noise (turning

the NPPI to false positive PPI). Therefore, the new defined metric,

based on the embedding of geodesic distance in a Euclidean space

by MDS, is unavoidably sensitive to short-circuit noise.

Similar to the method in [1], our method exploits the entire

topology of the network based on spectral analysis. We proposed a

novel computational framework based on a generalized diffusion

process [31–33]. However, there are two main differences between

those two methods. First, we do not compute the explicit

representation for each protein in the feature space but the global

implicit geometric affinity (GGA) by taking powers of a weight

matrix about protein-protein relationship. Second, the GGA is

revealed by the integration of local structure to a global geometric

structure in a consistent manner, thus it is able to integrate the

local limited sets of protein pairs to a global picture. Therefore, the

new defined metric, based on the embedding of geometric in a

Euclidean space, is more robust to short-circuit noise. Further-

more, our method addresses four challenging aspects: the

determination of the optimal dimensionality, the limitations due

to a low interaction coverage, the challenges of high rates of false

positives and negatives, and the computational difficulty of eigen-

decomposition for the large size of sparse and singular PPI

network graph.

In addition, we are aware of the relationship between the GGA-

method and Markov clustering (MCL) [28]. These two methods

have the common in using random walk as theoretical basis. The

differences lie in the following two aspects: 1) the application is

different. MCL is proposed to cluster the network into small sub-

networks. GGA is proposed to improve the fidelity of PPI network,

2) algorithmic difference in GGA and MCL. The MCL algorithm

uses both the expansion and inflation operators iteratively to find

out a steady state where the each value in a single column of the

resulting matrix remains the constant. This convergence has not

been proven yet. In other words, the MCL algorithm attempts to

find an equilibrium state using the expansion and inflation

operator on the transition matrix iteratively [28]. Our GGA

algorithm uses the expansion operator progressively but attempts

to realize the optimal scale of revealing the intrinsic relationship

among proteins. The optimal scale for geometric structure of PPI

network is determined by the probability based algorithm. The

revealed scale does not necessarily indicate the equilibrium state

but the state where the optimal intrinsic geometric structure is

revealed.

In Figure 1, we illustrate the general idea behind our method

for removing the spurious PPI and recovering the missing PPI. In

Figure 1(A), we find that there is only a single and isolated path

between P7 and P1 in the whole network, which is potentially the

spurious protein-protein interaction. Meanwhile, we find that

there are many paths bridging P2 with P4 in the network even

when there is no direct link between the two. This type of pair of

proteins is a potential PPI and missed by the observation in the

experiment. In Figure 1(B), we find that the spurious PPI is

removed from the network and missing PPI is recovered.

Methods

Global geometric distance and affinity (GGD and GGA)
The computation of a global geometric metric from the local

metric by geometric embedding operators has been recently

established in machine learning research field [31,33–38]. Two

different ways for calculating the global geometric metric are

diffusion based metric and geodesic distance based metric (i.e.

shortest path). The diffusion based metric, defined in a diffusion

propagation process, is usually more appropriate and robustly

captures the global geometry of the original manifold. Its strength

is derived from its ability to account for all ‘‘evidences’’ rather than

the shortest path (a single evidence) relating one point to another

one [31,39]. For example, the authors in [39] found that diffusion

metric based functional distances among protein domains closely

correlate with sequence alignment, structural proximity and

phylogenetic similarity. However, the geodesic metric based on

the shortest path shows no significant correlation with either

homology or phylogenetic similarity. Therefore, the diffusion

metric is adopted in our method to evaluate the relationships

among the proteins within a network. We will introduce a

diffusion-based global geometric distance (GGD) and then develop

our new global geometric affinity (GGA) in the following two

sections.

Global geometric distance based diffusion metric

(GGD). The diffusion metric revealed in a diffusion

propagation process reflects the intrinsic and geometric

relationship among data points in the embedded diffusion space.

In practice, the diffusion metric is in a form of geometric distance

(dissimilarity), called diffusion distance, which is represented by the

Euclidean distance in the embedded space [1,31,33]. In Figure 2,

the PPI network (Figure 2(A)) is mapped to an embedded space

(Figure 2(B)). In Figure 2(B), xi denotes the point i in the

Global Geometric Affinity for PPI Network
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original space, the mapping operator W denotes the function that

maps points in original space to embedded space, the W(xi)
denotes the high dimensional vector in the embedded feature

point. The diffusion distance GGD(xi,xj) is formalized by the

Equation 1 below:

GGD2(xi,xj)~EW(xi){W(xj)E2 ð1Þ

As the mapping function W is usually unknown, the computa-

tion of the diffusion distance is usually calculated through the

eigen-decomposition of the diffusion kernel [1,31,35,36]. The

distance is then approximated by the few leading eigenvectors

corresponding to the few larger eigenvalue. The GGD is then

formalized by the Equation 2 below:

GGD2
m(xi,xj)~

XN

n~1

l2m
n
:((nn)i{(nn)j)

2 ð2Þ

Where nn and ln are the nth eigenvector and eigenvalue of the

diffusion kernel respectively. The N is the number of eigenvectors

used for characterizing the embedding points (the dimensionality

of the embedded space). The 2 �m is the propagation steps. This

computational scheme explicitly finds the approximated coordi-

nates for the embedded points and computes the Euclidean

distance among them, which, for example, is implemented by

diffusion maps, ISOMAP and LLE [33,35,36]. However, as we

discussed above, this typical computational scheme for global

metric has drawbacks when applied to PPI network analysis such

Figure 1. The illustration of the diffusion process based inference. (A) displays a spurious PPI (in green color solid line) and a missing PPI (in
red color dash line). (B) shows that the spurious PPI (in green color dash link) is removed and the missing PPI (in red color solid line) is recovered in
the network.
doi:10.1371/journal.pone.0019349.g001

Figure 2. Geometric Representation of PPI network. (A) displays a PPI network. 1 denotes the PPI and 0 denotes NPPI. W(xi) denotes the high
dimensional feature vector of the point i and W(xj) denotes the high dimensional feature vector of the point j (a blue point and a red point). The
GGA(xi,xj) denotes the global geometric affinity between the point i and point j.
doi:10.1371/journal.pone.0019349.g002
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as the determination of optimal dimensionality and the compu-

tational difficulty due to the large size and singular matrix.

Global geometric affinity based on diffusion metric

(GGA). We introduce a new definition of geometric metric,

called global geometric affinity (GGA), to overcome the weakness

of current geometric based methods for PPI network. Different

from the GGD, the GGA is in form of affinity (similarity), which is

computed by the dot product of a pair of high-dimensional vectors

(correlation coefficient). The GGA(xi,xj) is formalized by the

Equation 3 below:

GGA(xi,xj)~SW(xi),W(xj)T ð3Þ

Where the W(xi) and W(xj) denote the high dimensional vector for

point i and point j in the feature space respectively. The definition

of GGA is the same as the definition of the kernel function by

defining the dot product of feature vectors in the embedded space.

In this paper, the GGA is defined based on a diffusion process by

which the local affinity (similarity in original space) is integrated to

a global affinity in a systematical manner. Under a generalized

definition, any kernel function can be defined as diffusion type

kernel only if it can map the local metric to a global picture. In

[39], there is a complete review for different types of diffusion

kernel definitions. In our paper, the GGA is defined by adapting

the diffusion kernel in [31,33] to PPI network. PPI network data is

given in a graph format where nodes in graph correspond to

proteins and two nodes are linked by an edge if the corresponding

proteins interact with each other. Suppose we denote the PPI

network as a graph G~(V ,E), where V is the set of notes

(proteins) and E is a set of edges (PPIs), the adjacency matrix A of

a graph is a N|N matrix in which the entry ai,j~1 if there is an

edge from node i to node j and is 0 if there is no edge from node i
and node j. In our work, we can consider the adjacency matrix A
of PPI network a locally defined weighted matrix where weight is 1
if two proteins interact and 0 otherwise. The algorithm for the

computation of GGA matrix (an N|N matrix whose entries are

the GGA values for all protein pairs) defined as follows:

1. Initialization of the weight matrix:

fWW : ~D{1W ð4Þ

And the symmetrized version of fWW matrix is:

fW1W1 : ~D{1=2WD{1=2 ð5Þ

Where W is the adjacency matrix A and fWW is the normalized

weight matrix (also called local transition probability matrix), D
is a diagonal matrix and is defined by D(i,j)~

P
j Wi,j and

D(i,j)~0 if i=j, and fW1W1 is the symmetrized version of fWW .

This normalization process described in [32,39], however, is

only optional in our application because PPI networks are often

not well connected and very sparse, which gives trouble in the

normalization process.

2. Propagation process:

GGA~fW1W1
2m ð6Þ

Following Coifman et al. [32], the propagation process is

implemented by taking powers of the matrix. Where 2m
denotes the propagation steps and Coifman and Lafon [32]

have suggested using even powers of fWW .

The GGA reflects the internal affinity (geometric similarity)

between node i to j after 2m steps propagation as it considers all of

possible paths between two nodes simultaneously via a diffusion

process.

Determination of optimal propagation step
The parameter, m in Equation 6, determines different level of

details of the internal relationship among proteins in network. To

assess the optimal geometric scale for the PPI network, we

propose a novel algorithm based the motif ‘‘thinking globally and

fit locally’’ in machine learning community [36,40]. By ‘‘thinking

globally’’, the structure of protein-protein network is globally

revealed by the GGA at different scales. We will answer how to

choose the optimal scale based on the ‘‘fitting locally’’, which

indicates that the globally discovered geometric structure should

be able to match with local prior knowledge about the PPI in the

network. We derive the fitting algorithm based on a standard

metric, AUC statistic, for quantifying the capability of identifying

members in different groups (PPI and NPPI in this work). The

AUC, defined as the area under the receiver operating

characteristic (ROC) curve, often interpreted as the probability

that a randomly chosen missing connected pair of nodes (true

positive) is given a higher score by GGA than a randomly chosen

unconnected pair of nodes (true negative). The higher the AUC,

the better the revealed global structure fits the original PPI

network. We will choose the scale at which the AUC is

maximized.

Sopt~ argmax
m

(Pro(m)) ð7Þ

where Sopt denotes the optimal propagation step, the m is the

parameter of propagation step and Pro(m) denotes the AUC at

the step of m. Note that the Equation 7 is not a close form

definition but the optimal value can be found at a small step

based on our experimental observations. As observed in

Figure 3, probability value (AUC) increases initially and

monotonically decreases after obtaining its maximum at step 4.

We then set the optimal propagation, m, for the PPI network at 4.

Figure 3. Determination of optimal propagation step. This figure
illustrates the process of determination of the optimal step. The
horizontal axis denotes the propagation step, and the vertical axis
denotes the AUC based probability value. Based on the observation,
probability value increases initially and monotonically decreases after
obtaining its maximum at step around 4.
doi:10.1371/journal.pone.0019349.g003
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Optimal Local Fitting algorithm (OLF) for PPI assignment
The assumption of the correctness of geometry based

approaches in analysis of PPI network is that a pair of proteins

will be assigned an interaction if they are close in an embedded

space whereas NPPIs correspond to points that are further away in

that space [1,22]. However, there is one question remaining to

answer: how to determine an optimal threshold in the embedded

space to judge whether two proteins are close enough in the space

to properly assign them an interaction. In this paper, we proposed

an approach based on optimally fitting the GGA matrix to local

original PPI network.

In the original PPI network, we denote V1 as the set of PPIs and

V2 as the set of NPPIs. Given a threshold t, we could build a

binary matrix in which the new interaction will be assigned if the

geometric affinity is larger than the threshold, vice versa. We

denote fV1V1(t) as the set of PPIs and fV2V2(t) as the set of NPPIs in the

newly determined PPI network. Based on these definitions, we

define the following functions for each threshold t:

True positive (TP) function

TP(t)~fV1V1(t)\V1 ð8Þ

False positive (FP) function

FP(t)~fV1V1(t){fV1V1(t)\V1 ð9Þ

True negative (TN) function

TN(t)~fV2V2(t)\V2 ð10Þ

False negative (FN) function

FN(t)~fV2V2(t){fV2V2(t)\V2 ð11Þ

Match function

Match(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP(t)

FN(t)zTP(t)

s
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN(t)

FP(t)zTN(t)

s
ð12Þ

Given a threshold, the TP function measures the intersection

between the new assigned PPIs set and the ground truth PPIs set,

FP denotes the assigned edges which are not in the set of ground

truth, TN denotes the intersection of new assigned NPPIs and

ground truth of PPNs, and FN denotes new assigned PPIs in the

ground truth of PPIs set. The match function evaluates how well

the new assigned PPI network match with original local PPI

network. From the mathematical point of view, we are about to

solve the following optimization problem to find the optimal

threshold value.

t~ � arg maxtMatch(t)

Subject to : min(GGA)ƒtƒmax(GGA)
ð13Þ

The algorithm for solving the optimization problem is outlined

below and Figure 4 illustrates the process of finding an optimal

threshold and assigning a new PPI network:

1. We vary the threshold from minimum to maximum found in

GGA matrix among all pairs of proteins.

2. For a given threshold t, we compute true positive (TP) function,

true negative (TN) function, false positive (FP) function and

false negative (FN) function.

3. Based on the values obtained from the previous step, we

compute match function.

4. The optimal threshold is the one with maximum match

function value (see Figure 4(B)). To assign the new PPI

network, we apply the optimal threshold to GGA matrix. The

new PPI will be assigned if the geometric affinity is larger than

the threshold, vice versa.

In Figure 4(B), we can see that the match function starts zero,

then increase until the peak value and then goes down to zero

while varying the threshold from minimum to maximum of GGA.

We can explain and understand the trend in the following way.

When the threshold is equal to minimum value of GGA, all of the

pairs of protein are assigned to the PPI, therefore the TN (min

(GGA)) = 0 and then the Match (min (GGA)) = 0. When the

threshold equal to maximum value of GGA, all of the pairs of

proteins are assigned to NPPIs, therefore the TP (max (GGA)) = 0

and then the Match (max (GGA)) = 0. Although we do not prove

the unique maxima value for match function in the current work,

we observe the phenomenon by performing the experiment (see

Figure 4(B)).

Results

Based on the experimental setting in [1,26], we provide the

experiments to evaluate the performance of our method (denoted

as GGA-method henceforth) on yeast PPI networks below. We use

the receiver operating characteristic (ROC) curve, a graphical plot

of the sensitivity versus (1 - specificity) and area under curve (AUC)

to evaluate the performance of GGA-method. We present three

experiments to assess the performance: 1) the evaluation by ROC

curve and precision recall (PR) curve, 2) the evaluation by AUC at

different noise levels, 3) the evaluation of PPI prediction by OLF

algorithm.

Data sources
We verify our approach on a publicly available and a high

confidence S. cerevisiae network [41]. It consists of 9,074
interactions amongst 1,622 proteins (we denote it as CS hereafter).

We use S. cerevisiae PPI network described by von Mering et al.

[11] which contains 7,785 interactions among 1682 proteins

(henceforth network is denoted by VM) and a network published

in [42], which consists of 31,861 interactions amongst 2292
proteins (we denote it as Y2 hereafter).

Experiment 1: Evaluations by ROC and PR Curve
The CS PPI network is used in this experiment. We compare

GGA-method to MDS-method in the experiment in terms of the

performance for differentiating the PPI and NPPI in the network.

As MDS-method only works on well-connected component of a

network, we take the largest connected component of CS network,

which has 8,323 interactions between 1,004 proteins. To validate

the performance of GGA-method for differentiating the PPI and

NPPI, we use the ROC curve and PR curve as the criteria. Both

curves reflect how well GGA-method can differentiate the PPI

Global Geometric Affinity for PPI Network
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from the NPPI based on the revealed relationship among proteins

in the network. To plot the ROC curve and PR curve, we first

define true positive (TP), false positive (FP), true negative (TN) and

false negative (FN). The TP measures the intersection between the

new assigned PPIs set and the ground truth PPIs set, FP denotes

the assigned edges which are not in the set of ground truth PPIs

set, TN denotes the intersection of new assigned NPPIs and

ground truth of NPPIs, and FN denotes new assigned NPPIs which

are not in the set of ground truth NPPIs. To compare with MDS-

method, we choose low confidence edges in CS as ground truth

PPI, which is the same ground truth used in [1]. The ROC and

PR curves are computed based on GGA matrix as follows.

1. We vary the threshold from minimum to maximum value in

the GGA matrix among all pairs of proteins.

2. For a given threshold, we compute TP, TN, FP and FN.

3. We compute the sensitivity rate (TP/(TP+FN)) and specificity

rate (TN/(TN+FP)), precise (TP/(TP+FP)) and recall (TP/

(TP+FN)). To plot the ROC curve, the horizontal axis

represents (1 - specificity), and the vertical axis represents

sensitivity. To plot the PR curve, the horizontal axis represents

recall, and the vertical axis represents precision.

The ROC curves are shown in the Figure 5. The illustrated

results are encouraging in terms of the classfication performance.

As we can see from the Figure 5, both GGA-method and MDS-

method perform well on the clean data. However, the ROC curve

of GGA-method is clearly above the curve for MDS-method. We

can find that both specificity and sensitivity of GGA-method are

over 0:95 in this test, indicating an appealing performance in

differentiating positive and negative PPI in network.

Following the experimental setting in [1], we further plot the PR

curve for accuracy analysis. The experimental result is shown in

Figure 6. Because the PPI network is really sparse, the fraction of

true PPI is orderly lower than the fraction of true NPPI. A random

predictor would give less than 1 correct TP in 1000 predictions,

while the precision of PPI prediction of GGA-method can be over

0:40 at a recall about 0:35 for the original PPI network. The

precision and recall analysis in [1] provides a precision about 0:15 at

a recall about 0:35. With their level of precision and recall, they are

able to reveal at least twice as many PPI available in BioGRID. Our

method is expected to give a much higher prediction of true PPI.

Experiment 2: Evaluations by AUC at different noise
levels

In this experiment, we demonstrate the performance of GGA-

method in prediction of missing PPI and identification of spurious

PPI in the noisy network. For an incomplete observed PPI

network, we determine GGA for each pair of proteins in the

network. We are interested in the pairs of proteins that have high

GGA but are not connected in the observed network, and the pairs

of proteins that have low GGA but are connected in the observed

network. The first type of pairs of proteins are most likely

candidates for missing PPIs, and the second type of pairs are most

likely candidates for spurious PPIs. Our method is compared to

MDS-methods in [1] in each test. For each network, we randomly

remove a subset of connections for the simulation of missing PPI,

and randomly insert a subset of connections for the simulation of

spurious PPI. We attempt to predict the missing PPI and identify

the spurious PPI. A well-established criteria for quantifying the

performance of prediction algorithms in machine learning area is

Figure 4. Determination of the threshold for PPI assignment by OLF. This figure illustrates the procedure of computing optimal threshold
for PPI assignment. Figure (A) displays the histogram of global geometric affinity (GGA). Figure (B) displays the value of match function at different
threshold. The optimal threshold for GGA corresponds the one with the maxima of match function.
doi:10.1371/journal.pone.0019349.g004

Figure 5. Comparison GGA-method and MDS-method by ROC
curve. This figure plots the ROC curve for the comparison between
GGA-method and MDS-method using the CS PPI network data. The
vertical axis denotes the sensitivity, and the horizontal axis denotes 1-
specificity.
doi:10.1371/journal.pone.0019349.g005

Global Geometric Affinity for PPI Network

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19349



the AUC, which can be calculated by the area under ROC curve.

The AUC is often interpreted as the probability that a randomly

chosen missing connected pair of nodes (true positive) is given a

higher score by GGA than a randomly chosen unconnected pair of

nodes (true negative) [26]. A random predictor will give AUC of

score 0:5, and the extent to which the AUC exceeds 0:5 reflects

how our prediction is better than chance.

We assess the performance of our method from two perspectives

according to the tests on three PPI networks (CS,Y2,VM). First,

we want to compare the performance in identification of spurious

PPI using our method with that of MDS-method. We evaluate the

comparison by gradually increase the insertions of the false PPI

and attempt to identify those links using the topology information

remaining in the network. Second, we want to compare the

performance in predictions of missing PPI using our method with

that of MDS-method. We evaluate the comparison by gradually

increase the deletions of the true PPI and attempt to predict them

using the topology information remaining in the network. The

comparison result is displayed in the Table 1 and Table 2. The

‘Ins Ratio’ represents the ratio between the number of the inserted

PPIs and the number of the true PPIs in the network. The ‘Del

Ratio’ represents the ratio between the number of the deleted PPIs

and the number of the true PPIs in the network. In Table 1, we

can see that the AUC gradually decreases with the increase in the

ratio of insertion from 1 to 6. The comparison shows that GGA-

method consistently outperforms MDS-method in identification of

the spurious PPIs indicated by the higher values of AUC. Note

that there is a certain ratio of deletion (0:1) of PPIs applied across

the tests. In Table 2, we can see that the AUC gradually decreases

with the increase in the ratio of deletion from 0:2 to 0:8. The

comparison of two methods shows that GGA-method is

consistently better than that of MDS-method in predicting missing

PPIs indicated by the higher values of AUC. Note that there is a

certain ratio of insertion (2:5) of PPIs applied across the tests. From

the table, we can observe that both methods are more resistant to

insertion noise (spurious PPI) than to deletion noise (missing PPI).

This is because the number of the NPPIs is orderly larger than the

number of the PPIs. A large fraction of deleted PPIs leads to

dramatic deterioration of intrinsic geometric structure of network.

We also notice that GGA-method is able to perform reasonably

even when 80% of true PPIs are deleted or 6 times of false PPIs are

inserted. However, at this level of noise, the performance of MDS-

method is close to a random predictor, indicated by the AUC

value (near 0:5). This test confirms that GGA-method is robust

against two types of noise.

We explain why MDS-method performs worse than GGA-

method against insertion and deletion noise. The metric revealed

by MDS is based on the shortest path traveled from one protein to

another protein in the network [1]. Before the deletion of the PPI,

the shortest path between the pair of proteins is 1 as they are

linked. However, the length of the shortest path increases if PPI no

longer exists between them. Before the insertion of the PPI, the

shortest path between the pair of proteins is larger than 1 as they

are not directly linked. The path-length might be a very large if

two nodes are really far away. However, the shortest path would

be changed to 1 if a link is introduced between them because of

noise. The short-circuit noise is a typical topological noise in

computational geometry area [43] which is usually overcame by

the global geometric metric, for example the graph Laplacian

based representation. While GGA-method evaluates the global

affinity of two nodes taking into account all existing connections,

therefore, they are more robust to both missing PPI and spurious

PPI according to the results in the table.

To demonstrate the computation efficiency of GGA-method,

we compare the computation time for both methods. The Table 3

contains the comparison result. We carried out 10 experiments

Figure 6. Comparison GGA-method and MDS-method by PR
curve. This Figure plots the PR curve for the comparison between GGA-
method and MDS-method using the CS PPI network data. The vertical
axis denotes the precision, and the horizontal axis denotes recall.
doi:10.1371/journal.pone.0019349.g006

Table 1. Comparison of AUC test of GGA and MDS methods
by insertion noise.

Ins Ratio 1 2 4 6

CS GGA-method 0.9538 0.9375 0.8964 0.8583

MDS-method 0.7106 0.7021 0.4793 0.4580

Y2 GGA-method 0.8470 0.8013 0.7743 0.7482

MDS-method 0.7100 0.6040 0.4276 0.4196

VM GGA-method 0.9480 0.8956 0.8636 0.8347

MDS-method 0.7099 0.6807 0.6913 0.6137

AUC values are computed for both methods under certain level of insertions of
false positive PPIs in the original network. ‘Ins Ratio’ indicates the ratio between
inserted false PPIs and the number of PPIs in the original network and
corresponding AUC values are filled in the table.
doi:10.1371/journal.pone.0019349.t001

Table 2. Comparison of AUC test of GGA and MDS methods
by deletion noise.

Del Ratio 0.2 0.4 0.6 0.8

CS GGA-method 0.9307 0.9114 0.8661 0.7131

MDS-method 0.7059 0.6975 0.6161 0.5226

Y2 GGA-method 0.7922 0.7676 0.7277 0.6608

MDS-method 0.5413 0.5807 0.5973 0.5666

VM GGA-method 0.8912 0.8673 0.7893 0.7143

MDS-method 0.6602 0.6023 0.5091 0.3635

AUC values are computed for both methods under certain level of deletions of
true positive PPIs in the original network. ‘Del Ratio’ indicates the ratio between
removed true PPIs and the number of PPIs in the original network and the
corresponding AUC values are filled in the table.
doi:10.1371/journal.pone.0019349.t002
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and recorded the computation time for both methods. It can be

found that GGA-method runs much faster than MDS-method

(nearly 40 times faster). The speed of the GGA-method over the

MDS-method arises from its the eigen-decomposition-free advan-

tage. This is even more obvious if the size of the PPI network is

huge and its adjacency matrix is singular in some cases.

Experiment 3: Evaluations of PPI prediction by OLF
algorithm

The Optimal Local Fitting algorithm (OLF) is used to

determine the threshold for the PPI assignment from the GGA

matrix. The test result is shown in the Table 4. We assess the

performance by the value of true positive accuracy (TPA). The

TPA is the percentage of the recovered PPIs out of the ground

truth PPI, which is defined as TP/(TP+FN). Two true positive

accuracy, TPA1 and TPA2, are evaluated for each method with

different ground truth PPI. TPA1 is the percentage of the

recovered PPIs out of the deleted PPI in the ground truth, and

TPA2 is the percentage of the recovered PPIs out of all of ground

truth PPI. When the number of the insertions is zero, the MDS-

method has computational difficulty because the network is not

well-connected especially after a certain amount of PPIs is deleted,

which does not satisfy the conditions of PPI network required by

the MDS-method. In addition, the original MDS-method

manually choose the threshold for the PPI assignment, for

example, 0:4 in the second experiment presented in [1]. The

strategy for the manual selection of the threshold is not well

explained in their work. Based on our test, the MDS-method

performs unstably when the threshold is manually set 0:4 as used

in [1]. Therefore, we use our OLF algorithm for the determination

of the threshold for MDS-method in this test, which greatly

improves the performance of MDS-method in both stability and

accuracy. We carry out the following two tests:

1. In the first test, we randomly insert the a certain amount of

PPIs (Ins Ratio is 0:5) to the network and delete various

amounts of PPIs (Del Ratios are 0:2, 0:4 and 0:6).

2. In the first test, we randomly insert the a certain amount of

PPIs (Ins Ratio is 1:0) to the network and delete various

amounts of PPIs (Del Ratios are 0:2, 0:4 and 0:6).

We analyze the results in Table 4 for two tests separately.

1. The result for the first test is presented in the first three rows

(labeled 1,2,3 in the first column). In the table, we can find that

both TPA1 and TPA2 are around 0:9 by GGA-method,

suggesting most of the deleted PPIs are correctly recovered.

The value of TPA is around 0.88 even with the 60% of true

PPI is deleted. In contrast, the values of TPA for MDS-method

are around 0:80 in the test. Some of the TPA values of MDS-

method, for example, the result in Y2 test, are nearly 0:50,

while GGA-method is able to remain around 0:80 in the same

test.

2. The result for the second test is presented in the second three

rows (labeled 4,5,6 in the first column). It indicates that GGA-

method is insensitive to the insertion noise because the

performance of recovering the missing PPIs is not affected by

introducing a higher number of insertions of PPIs (the insertion

ratio increases from 0:5 to 1:0). The comparison of the

performance between two methods is obvious according to the

TPA values in the table.

Discussion

The limitations of the current high-throughput measurements

techniques inherently give rise to a large amount of spurious and

missing PPIs. To clean the network, people often try to integrate

multiple data sources, such as gene expression arrays and

proteomics to improve the quality of PPIs in a network. Recently,

geometric based approaches, which are only based on the topology

of the PPI network, are very promising as those approaches are

independent from other prior knowledge except for topology of

the PPI network. However, the large amount of noisy PPIs poses a

Table 3. Comparison of GGA-method and MDS-method in computation time.

Method E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

GGA-method 6.21 6.36 7.01 6.37 7.51 6.73 6.53 6.7 6.28 6.65

MDS-method 260.18 258.75 263.85 260.76 264.96 247.4 252.71 255.29 271.57 273.56

Note that the unit used for measuring computation time is second, E denotes experiment, for example, E1, means the first experiment.
doi:10.1371/journal.pone.0019349.t003

Table 4. Comparison of GGA and MDS method in prediction performance by OLF algorithm.

CS Y2 VM

GGA-method MDS-method GGA-method MDS-method GGA-method MDS-method

TPA1 TPA2 TPA1 TPA2 TPA1 TPA2 TPA1 TPA2 TPA1 TPA2 TPA1 TPA2

1 0.9449 0.9517 0.7767 0.8216 0.8387 0.8906 0.6775 0.7173 0.8735 0.9119 0.7495 0.8311

2 0.9234 0.9339 0.7484 0.8124 0.8091 0.8542 0.6219 0.6526 0.8513 0.8798 0.7026 0.7920

3 0.8778 0.8906 37605 0.8057 0.7785 0.8062 0.5322 0.5542 0.8182 0.8450 0.6836 0.7571

4 0.9366 0.9508 0.7574 0.7953 0.8316 0.8611 0.6533 0.6912 0.8703 0.9048 0.7174 0.8054

5 0.9151 0.9315 0.7520 0.7978 0.8088 0.8359 0.5444 0.5790 0.8504 0.8741 0.7036 0.7753

6 0.8738 0.8819 0.7419 0.7897 0.7576 0.7789 0.5568 0.5926 0.8114 0.8310 0.6637 0.7430

doi:10.1371/journal.pone.0019349.t004
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great challenge to the geometric based computational approaches.

Robust geometric structural understanding methods are the

prerequisite for capturing the intrinsic geometric structure which

is hidden behind the noisy PPI network data.

A robust global geometric metric for noisy and
incomplete PPI network

Biological data, like the PPI data, are often observed in an

incomplete manner with high noise. Any method, if simply based

on the metric of a small number of local PPI network, is likely to

be overwhelmed by the noise and incompleteness. It is of great

importance to place the data in a statistical model and take into

account all the pieces of local information simultaneously, in order

to generate the knowledge behind the overall global structure of

the data. Globally consistent metric, like the global geometric

affinity proposed in this work, measure the relationship consider-

ing the optimal arrangement of all the data samples. Therefore,

even if the local incomplete and noisy pairs of PPIs are not able to

reveal the internal global structure, given sufficient samples of PPIs

and considering the entire set of pair-wise linkages simultaneously,

our GGA-method is able to reveal the intrinsic metric hidden in

the very noisy and incomplete PPI data. The excellent robustness

against noise is highlighted by its good performance at a large

number of insertions and deletions introduced.

Minimizing the use of prior knowledge
Biological experimental measurements are usually time con-

suming and costly. The computational approaches are proposed to

benefit biological experiments and to better characterize network

data sets by minimizing the use of the prior knowledge from

biological experiments. In recent years, the geometric features of

PPI network have been proven to provide new insights into the

function of individual proteins, protein complexes and cellular

machinery as a complex system. These approaches take advantage

of the geometric characteristics behind the PPI network, which

enables to evaluate the relationship among the protein-protein

interactions and analyze the network characteristics. These

approaches based only on the geometric topology formed by

connections among proteins and has been recently developed to

de-noise the observed PPIs network. The common hypothesis for

these methods is that the existence of the geometric structure for

PPI networks and the topology knowledge is crucial in determining

the PPIs in the network [22,23]. Under this assumption, a pair of

proteins will be assigned an interaction if they are close in an

embedded space whereas protein protein non-interactions corre-

spond to points that are further away in that space [1].

Algorithm efficiency
The efficiency of a computational approach for most biological

problems is vital in real applications due to the high-throughput

nature of the data. The existing geometry based methods for the

de-noising the PPI network, for example, MDS-method, are

computationally expensive and even intractable for large and

incomplete PPI networks. This is because these methods include

the eigen-decomposition to compute the explicit embedding

coordinates and then compute the global geometric distance. In

our method, we completely decouple the global metric from the

eigen-decomposition problem by proposing the GGA. The eigen-

decomposition-free method give our method a distinct advantage

that we can totally get rid of the issues caused by the

eigendecomposition. Therefore, our proposed method is able to

apply on the sparse and huge size PPI network and finish the de-

noising in an efficient way. These virtues account for the

superiority of our proposed in the real applications for de-noising

PPI networks.

Limitations and future directions
This paper presents our first implementation, with very

promising results in the completed tests. However, the noise

properties in raw PPI data can be different from the simulated

random deletions and insertions used in existing tests. The

performance of our method and its general applicability in de-

noising a PPI network generally confirm the robustness of our

methods but still need further work to improve by testing more

real challenging PPI data. The parameter of propagation step

plays a critical role in looking through the geometric structure

from multiple scales. Although we provide a probability based

algorithm to determine the optimal parameter, we have not given

a rigorous proof. In our future work, we will come up a good

strategy based on this parameter to investigate the raw PPI

network at different level of details. The OLF algorithm is

proposed to numerically determine the optimal threshold without

a closed form solution or proof to that optimization problem.

Furthermore, GGA-method is a general method and applicable to

a wide range of problem domains, for example, the reconstruction

of the air transportation network.
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