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Spindle poisons, such as paclitaxel and vinblastine, exert their potent anti-neoplastic effects  
through activation of the spindle assembly checkpoint (SAC), thereby arresting cells in mitosis. 
Unfortunately, only certain cancers are susceptible to these drugs, and many patients fail to re-

spond to treatment. We review the pathways that are triggered by spindle poisons and highlight recent 
studies that describe the great variability of tumor cells in responding to these drugs. We also describe 
the recent identification of an apoptotic pathway that is activated by mitotic arrest in response to spindle 
poisons. Emerging from these studies is not only a greater understanding of how these classic antimitotic 
agents bring about cell death, but also a wealth of potential new targets of anticancer therapeutics.

Spindle Poisons  
and Cell Fate:

A Tale of Two Pathways
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Introduction

Spindle poisons are some of the oldest and most successful che-
motherapeutics (1). These drugs bind tubulin, a protein that forms 
the central constituent of the microtubule cytoskeleton and has 
many cellular functions. The formation of the mitotic spindle is 
one of the most fundamental of cellular functions that is provided 
by tubulin, allowing for the equal division of chromosomes during 
mitosis. By interfering with the normal dynamic activity of micro-
tubules, spindle poisons bring about a prolonged mitotic arrest. It 
is widely believed that this prolonged arrest is central to spindle 
poison–induced cell death, but the mechanistic details by which 
these drugs kill cells remain unclear.

Microtubules are polymers of tubulin and constitute a major 
component of cytoskeletal networks. Cells constantly change the 
lengths of their microtubules and this process is tightly controlled 
by properties that are intrinsic to tubulin as well as by additional 
proteins that regulate tubulin polymerization. The dynamic regu-
lation of microtubule length is central to microtubule function. 
Paclitaxel and the vinca alkaloid vinblastine are two prototypi-
cal spindle poisons used in the treatment of ovarian, breast, and 
several lymphoid-derived cancers, as well as cancers of the head, 
neck, and lung (2, 3). Although both drugs are thought to kill cells 
by a mode of prolonged mitotic arrest, their effects on microtu-
bules are distinct. Paclitaxel binds to tubulin within existing micro-
tubules and stabilizes the polymer, whereas vinblastine targets 
tubulin monomers and prevents their addition to the microtubule 
terminus, ultimately resulting in the absence of polymerized micro-
tubules. By interfering with microtubule dynamics, both classes 
of drugs preclude the normal function of the mitotic spindle and 
arrest cells in mitosis. Many derivatives of paclitaxel and vinblas-
tine have been synthesized, generating numerous spindle toxins, 
and better analogs and improved formulations of these drugs have 
recently been brought to market (4, 5). We will concentrate on the 
pathways that are stimulated in cells exposed to spindle poisons; 
for discussions of individual compounds and their clinical effica-
cies, the reader may consult published reviews (2, 6). 

Unfortunately, the development of resistance to these drugs 
prior to complete tumor eradication is common, resulting in sig-
nificant clinical challenges. Drug resistance is often ascribed to 
drug efflux pumps or mutations in tubulin that abrogate drug 
binding, although these clearly do not account for all cases (7–9). 
Investigations into other mechanisms by which cells evade death by 
spindle poisons may thus be crucial for efforts to improve the effi-
cacy of existing drugs and expand our search for novel therapies.

Mitosis and the Spindle Assembly 
Checkpoint (SAC)

During mitosis, cells replicate their genetic material and divide 
it equally into two daughter cells. Interfering with this tightly 

orchestrated distribution of genetic material can generate cells with 
irregular chromosome content (a condition known as aneuploidy), 
as well as genomic instability, cell death, and possibly cancer (10–
13). Not surprisingly, cells have evolved numerous mechanisms to 
ensure that mitosis is accomplished with great fidelity. 

Early investigators found that when cells were incubated 
with spindle poisons the number of cells in mitosis dramatically 
increased over time as cells entered mitosis but failed to exit. 
Elegant research over the last twenty years identified the spindle 
assembly checkpoint (SAC) as the signaling pathway responsible 
for this mitotic arrest. This checkpoint evolved to ensure accurate 
segregation of chromosomes. The signal emerges from kineto-
chores, which form the protein link between microtubules and 
DNA on each chromatid (14–16). A single unattached kinetochore 

Bub3

Bub3

BubR1

Bub1

BubR1

Bub1

BubR1

Active

Inactive

Inactive

Inactive

B

A

Inactive

Active

Bub1
Cyclin

B

Cyclin
B

Cyclin
B

Mad2

Mad2

Mad2

Mad1

Mad1
Mad2

APC/C

Cdc20

APC/C

Cdc20

U U U U

Proteasome

Figure 1. The spindle assembly checkpoint (SAC) controls the meta-
phase to anaphase transition. By inhibiting the degradation of cyclin B by 
the anaphase promoting complex/cyclosome (APC/C), the SAC arrests the 
cell in metaphase until all kinetochores are attached to spindle microtubules. 
A. In the absence of microtubule attachments, unattached kinetochores 
recruit checkpoint proteins and activate them, allowing Mad2, Bub3, and 
BubR1 to inhibit Cdc20 activation of APC/C, resulting in high amounts cyclin 
B  and metaphase arrest. B. When all kinetochores have proper microtubule 
attachments, checkpoint proteins are no longer recruited to kinetochores and 
Cdc20 activates APC/C, which drives cyclin B degradation. Depletion of cyclin 
B causes anaphase onset.
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can generate enough signal to block cell cycle progression, ensur-
ing that every chromosome is correctly attached to the spindle 
apparatus prior to anaphase (17–20). 

The activation of cyclin-dependent kinase 1 (CDK1) by 
cyclin B drives a cell into mitosis, at which point a complex called 
cohesin holds the sister chromatids together in a mitotic chromo-
some. When the mitotic cell progresses to metaphase, the SAC 
becomes responsible for controlling exit from mitosis (Figure 1). 
In a normal mitosis, the SAC is active only briefly (a period of 
minutes) as unattached chromosomes attach to spindle microtu-
bules and correct improper attachments. During this time, SAC 
activity maintains high cyclin B levels through inhibition of an 
E3 ubiquitin ligase that normally targets cyclin B for degradation 
(Figure 1A). This ubiquitin ligase is known as the anaphase pro-
moting complex or cyclosome (APC/C). By inhibiting the APC/C, 
the SAC keeps cyclin B levels high and ultimately protects CDK1 
and cohesin activity. When all chromosomes are properly attached, 
the SAC is turned off and the APC/C degrades cyclin B. This drop 
in cyclin B levels results in exit from mitosis, and both CDK1 and 
a protein called securin (which protects cohesin) are targeted (also 
by the APC/C) for degradation (Figure 1B) (21).

In contrast, when cells enter mitosis in the presence of spin-
dle poisons, kinetochores are never able to form proper attach-
ments to spindle microtubules. This results in the permanent acti-
vation of the SAC and a mitotic arrest that lasts for hours. These 
cells will eventually either apoptose or exit mitosis by an alternate 
mechanism that does not occur during a normal mitosis and 
which we will discuss below. Thus, the SAC is briefly active dur-
ing a typical mitosis until all kinetochores are attached to spindle 
microtubules. The SAC also frequently responds to attachment 
defects that occur under normal conditions by arresting cells in 
mitosis until errors are resolved. However, spindle poisons greatly 
extend the duration of this arrest and prevent cells from exiting 
mitosis correctly.

The SAC inhibits the APC/C by preventing its activation.The 
ubiquitin ligase activity of the APC/C requires activation by Cdc20 
(22). When the checkpoint is active, two SAC proteins called 
Mad2 and BubR1 (assisted by Bub1) prevent APC/C activation 
by binding the Cdc20-APC/C complex. When all kinetochores 
have proper attachments and the SAC is inactive, Cdc20 is free to 
activate the APC/C, quickly leading to cyclin B degradation and 
anaphase onset (Figure 1B). Importantly, even during a robust SAC 
response, cyclin B degradation still takes place slowly owing to 
incomplete inhibition of the APC/C. This phenomenon, known as 
“slippage”, means that cells treated with spindle poisons can even-
tually exit mitosis despite an active SAC (23). 

The propagation of the SAC signal from a single unattached 
kinetochore to Cdc20-APC/C complexes located throughout the 
cell is accomplished via two groups of checkpoint proteins origi-
nally identified in independent genetic screens. Mitotic arrest 
deficient (Mad1, Mad2, and Mad3/BubR1) and budding uninhib-
ited by benzimidazoles (Bub1) genes were found to be required 

for Schizosaccharomyces pombe to arrest normally in response to 
spindle poisons (24, 25). Further study revealed that these highly 
conserved proteins (later to include Bub3 in the pathway) are 
recruited to improperly attached kinetochores, at which time 
they are activated and released to bind and inhibit Cdc20-APC/C 
complexes. Although Mad1 and Mad2 seem to be activated inde-
pendently of Bub1, Bub3, and BubR1, the two groups ultimately 
cooperate to inhibit APC/C activation.

The mechanism of spindle checkpoint signaling is still an area 
of active research and it is likely that additional proteins, and thus 
additional new targets, will be identified. While the Mad and Bub 
proteins remain the major bona fide checkpoint proteins within 
the SAC, they have been joined by a number of secondary players 
that also function in this pathway (26–29). It is still unclear how 
kinetochores generate the signal, but recently over 60 new kine-
tochore proteins have been identified which should facilitate the 
identification of this important activity (30, 31).

Variations in the Cellular Response to 
Checkpoint Activation

Given the long clinical history of drugs like paclitaxel and vinblas-
tine and the immense degree of study that has been put forth to 
understand the mechanisms of action of these and similar drugs, it 
is surprising how little is understood about how these compounds 
promote cell death (32). As these compounds lead to permanent 
activation of the SAC, it is widely assumed that they kill cancer 
cells through a mechanism of mitotic arrest, but this idea has been 
challenged repeatedly (33, 34). It is clear that many compounds 
that result in mitotic arrest are neither useful therapeutics nor 
even effective at killing cells. While this may arise from bioavail-
ability or dosage issues, it suggests that artificially prolonging the 
time cells spend in mitosis is not in itself sufficient to kill cells. 
Moreover, some cancers are incredibly sensitive to treatment with 
paclitaxel, whereas others are virtually non-responsive (35). This 
variation presents a serious clinical problem that has defied the 
development of predictive markers and genetic screens (36). 

In an effort to better understand the cellular response to 
spindle poisons, investigators typically have turned to studying 
responses in vitro. For instance, assaying the percentage of apoptot-
ic cells following drug treatment allows for comparison between cell 
lines to determine which is more sensitive to the drug. Although 
these studies are simple to perform, they fail to capture the variety 
of responses that may occur within a population of cells. For some 
time, we have assumed that all cells that die within a culture that is 
exposed to paclitaxel, for example, represent a homogeneous fate. 
Likewise, cells that survive have also been assumed to reflect a sin-
gle mode of response to drug treatment.  Recent studies, however, 
have utilized high-throughput single-cell imaging to demonstrate 
that remarkable variation exists among like cells responding to anti-
mitotic agents (37, 38). Automated microscopy systems that image 
cells over prolonged periods allow researchers to follow the fate of 
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single cells treated with a drug. Cells expressing a fluorescent chro-
matin marker (such as red fluorescent protein–tagged histone H2B) 
are readily monitored over time. Videos of the cells allow investiga-
tors to analyze and score cell fates into categories: (e.g., mitotic exit, 
cell division, death in mitosis, death in interphase, no mitotic entry, 
etc.). The behavior and fates of hundreds of individual cells can, in 
this way, be studied.

Upon treatment with the microtubule-depolymerizing drug 
nocodazole, for example, the majority (63%) of HeLa cells survive, 
either in interphase following mitosis (8%) or after exiting mitosis 
and duplicating their genome repeatedly without subsequent cell 
divisions, a process known as endocycling (55%) (Figure 2) (37). 
The cells that die can be divided into five categories, and only 6% 
of the total exhibit the cell fate most commonly associated with 
spindle poisons, namely, death in mitosis after a prolonged arrest. 
Significantly, had the response of these cells been examined by 
simply counting the number of apoptotic cells at the conclusion 
of the experiment, the investigators could have only concluded 
that 37% of the cells had died.  The reality is that these 37% of 
nocodazole treated cells display five unique fates following treat-
ment and only a minority dies by the presumed mode ascribed to 
spindle poisons (Figure 2).

Strikingly, the same HeLa cells treated with a different spindle 
poison, paclitaxel, exhibited a widely different set of fates, despite 
the fact that paclitaxel similarly arrests cells in mitosis. The major-
ity of paclitaxel treated cells (73%) exited mitosis after a mitotic 
arrest and then died in the subsequent interphase. Differing 
degrees of this within-group variance were seen across fifteen dif-
ferent cell lines. This within-group variance does not arise from 
genetic differences within individual cell lines, as clonally expand-
ed cells exhibit the same set of fates as the parental line (37). This 
result is particularly perplexing. How is it that genetically identical 
cells (expanded from a single clone) can respond to mitotic arrest 
in fundamentally different ways?

In an effort to address this question, the authors inhibited 
caspase activation during mitotic arrest and observed that it com-
pletely prevented cell death (37). By inhibiting the induction of 
apoptosis, cells that would have died instead exited into inter-
phase. This suggested that apoptosis and mitotic exit are two pos-
sible fates following mitotic arrest. Although the spindle assembly 
checkpoint pathway is responsible for controlling mitotic exit, it 
does not play any direct role in the induction of apoptosis. This 
led to the hypothesis of a separate pathway that controlled the 
induction of apoptosis during mitotic arrest. 

A Pro-Apoptotic Pathway in Mitosis

Apoptosis, or programmed cell death, occurs in response to a 
number of intracellular and extracellular stimuli (39) and can be 
triggered by several pathways that monitor DNA damage, nuclear 
instability, and oxidative stress. These distinct pathways converge 
on the activation of caspases and other terminal events, includ-
ing membrane blebbing and fragmentation of genomic DNA. 
Mutations that suppress apoptotic pathways can also be found 
in oncogenes, suggesting that apoptosis is tied into a broader 
network that monitors the cellular state for cancerous traits (40). 
Interestingly, previous studies also linked the apoptotic network to 
mitotic duration and suggested that maximizing the time that cells 
spend in mitosis could be a goal of future therapies (41). However, 
until recently a mechanism through which the cell would actually 
monitor the duration of mitosis and link this to the activation of 
cell death pathways has not been reported. New studies have iden-
tified a pathway involving the protein Mcl1 that couples the timing 
of mitosis to the induction of apoptosis (42). The results implicate 
Mcl1 in a newly-discovered apoptotic pathway that is active in 
mitosis (Figure 3).

Mcl1 is a unique member of the Bcl2 family of pro-survival 
proteins (43, 44). Similar to other Bcl2 family members, Mcl1 binds 
to Bak and Bax and inhibits their association with the mitochon-
drial membrane. In this way, Mcl1 prevents Bak and Bax from 
forming pores in the mitochondrial membrane and initiating apop-
tosis. Unlike Bcl2, whose expression remains fairly constant and 
only decreases when cells approach terminal differentiation, Mcl1 
expression appears to be temporarily increased at critical periods, 
including mitotic arrest during treatment with spindle poisons (45). 
This enables the cell to better inhibit the apoptotic pathway in the 
face of powerful insults which would otherwise cause the immedi-
ate induction of cell death. Perhaps the purpose of this is to buy 
the cell time as it struggles to correct errors or perform important 
cell fate decisions. However, because the Mcl1 elevation is tran-
sient, apoptosis is eventually initiated if the cell does not correct 
the offending problem during this period of high Mcl1 (42).

When Mcl1 expression is induced following mitotic arrest, 
its degradation is carefully regulated by several important fac-
tors (Figure 3) (42). FBW7, the substrate-binding component of 
a ubiquitin ligase complex, targets Mcl1 for degradation by the 
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Figure 2. Cells display a surprising amount of within-group variation in 
response to treatment with the spindle poison nocodazole. Population 
level analyses reveal the percentage of HeLa cells that survive (blue) or apop-
tose (white) following treatment with nocodazole. Analysis of individual cells 
reveals the large amount of variation in how the cells die (smaller pie). Only a 
small minority of HeLa cells treated with nocodazole die during the first mitotic 
arrest, which is the presumed mode by which spindle toxins bring about cell 
death. Cells that survive represent both survival in interphase after mitosis 
(8%) and survival after replicating their genomes but failing to complete mito-
sis, i.e. endocycling (55%).
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26S proteasome, whereas the deubiquitinase USP9X counteracts 
the polyubiquitinating activity of the FBW7 complex (46). During 
mitotic arrest, the activities of Jun N-terminal kinase (JNK), the 
mitogen-activated protein kinase (MAPK) family member p38, and 
casein kinase II (CKII) are increased, leading to phosphorylation of 
Mcl1, interaction with FBW7, and the subsequent polyubiquitina-
tion of Mcl1. Polyubiquitylation of Mcl1 leads to degradation via 
the proteasome and continually decreasing concentrations of Mcl1 
during mitotic arrest. If the arrest is alleviated, then JNK, p38, 
and CKII activity quickly falls and PP2A rapidly dephosphorylates 
Mcl1, abrogating its interaction with FBW7 and keeping Mcl1 
amounts in the cell high.

The peak levels of Mcl1 occur immediately following the 
addition of spindle poisons (at the onset of mitotic arrest), provid-
ing time for the cell to resolve errors in kinetochore-microtubule 
attachment (Figure 4). During this period, the amount of Mcl1 
slowly decreases. Concurrently, although the SAC is active cyclin B 
amounts still slowly decline because of slippage mediated degrada-
tion by the APC/C. If the SAC can be silenced during this period 
via the attachment of kinetochores to spindle microtubules, Mcl1 
levels will be stabilized and cyclin B will be degraded, leading to 
mitotic exit. However, if (in the case of prolonged treatment with 
spindle poisons) kinetochores never correctly attach to spindle 
microtubules and the SAC remains active, the rate at which Mcl1 
and cyclin B are degraded ultimately determines the fate of the 

cell. If cyclin B levels first fall below the threshold for mitotic 
exit, then the cell will enter anaphase before cell death is initiated 
(Figure 4B). However, if Mcl1 is degraded past the levels necessary 
to inhibit Bak and Bax, the apoptotic pathway will be triggered 
before the cell can exit mitosis (Figure 4C). 

Supporting these findings, studies of cancer cell lines and 
patient-derived tumor samples reveal the presence of elevated 
Mcl1 expression (47–49). Closer examination has also revealed a 
correlation between Mcl1 amounts and progression to malignancy 
within individual cancers (48). It is not yet completely clear what 
leads to the increased amount of Mcl1, although increased activity 
of the Mcl1 deubuitinase USP9X has been correlated with poor 
prognosis in patients with multiple myeloma.

Slippage as a Target of Anti-Mitotic Drugs

Given our understanding of the control of apoptosis during mitotic 
arrest, two approaches to increasing the efficacy of spindle poisons 
are: 1) prolonging the duration of mitotic arrest and 2) enhancing 
the degradation of the apoptotic timer. Stated differently, in order 
to favor apoptosis over mitotic exit, the rate of cyclin B degrada-
tion must be slowed or the rate of Mcl1 degradation must be 
increased. The end goal of either approach is to ensure that Mcl1 
levels breach the apoptotic threshold before cyclin B levels fall 
below that required for mitotic exit. In fact, it might be ideal to 
identify drugs that work on both pathways, as one would expect 
their activities to be synergistic.

Many drugs, in addition to the spindle poisons, have been 
developed that stabilize cyclin B concentrations. The same path-
way of SAC activation and APC/C inhibition that paclitaxel and 
vinblastine activate has been fairly well-elucidated. The challenge 
in this case is that even in the complete absence of microtubules, 
when the SAC should be maximally activated, slippage or weak 
degradation of cyclin B still occurs (23) despite the fact that cyclin 
B is degraded only by the activity of the APC/C. It seems unlikely 
that attempting to augment the activity of the SAC upstream of 
the APC/C will prevent the degradation of cyclin B characterized 
by slippage. With slippage as the target, inhibition of either the 
APC/C or the 26S proteasome represent two possible options.

Knock-down of the APC/C by RNA interference leads to 
mitotic arrest, and small-molecules have been identified and 
characterized that inhibit APC/C activity, suggesting that this E3 
ubiquitin ligase is a worthy target for future research and, possibly, 
therapy (50, 51). As well, APC/C inhibition, as part of a combina-
tion drug regimen, may sensitize cells to existing chemotherapeu-
tics; however, the design of drugs that target the APC/C is ham-
pered by the fact that ubiquitin ligases are traditionally difficult 
targets for small molecules.

The 26S proteasome is a considerably better-studied tar-
get. This proteasome is responsible for degrading cyclin B fol-
lowing its polyubiquitination by the APC/C. However, because 
this complex is also important for the degradation of Mcl1, the 
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Figure 3. Mcl concentrations control apoptotic timing during mitotic 
arrest. During prolonged mitosis, Mcl1 prevents the induction of apoptosis 
by inhibiting the binding of Bak and Bax to the mitochondrial membrane. 
However, Mcl1 levels fall over time. The protein kinases p38, Jun N-terminal 
kinase (JNK), and casein kinase II (CKII) phosphorylate Mcl1, driving its 
interaction with FBW7, the substrate binding component of a ubiquitin ligase 
complex. Ubiquitinated Mcl1 is then degraded by the proteasome. The deu-
biquitinase USP9X and protein phosphatase PP2A can promote Mcl1 stability 
by removing ubiquitin side-chains and dephosphorylating Mcl1, respectively. 
When Mcl1 concentrations fall low enough, Bak and Bax form pores in the 
mitochondrial membrane, resulting in the release of cytochrome c and termi-
nal caspase activation and in apoptosis.
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pharmacological manipulation of the proteasome might be com-
plicated. Nonetheless, subunits of the proteasome were identified 
in at least one large RNA interference screen designed to identify 
genes that sensitize non-small-cell lung cancer cells to paclitaxel 
(52). MG132 is one small-molecule inhibitor of the proteasome 
whose effects have been studied extensively (53–55). Treating cells 
with MG132 stabilizes cyclin B levels and arrests cells in mitosis 
for prolonged periods. The inhibitor also increases the apoptotic 
effects of paclitaxel in a number of cancer cell lines, although it is 
not clear whether these effects arise from a decreased rate of cyclin 
B degradation over that observed with paclitaxel treatment alone 
(56, 57). Although MG132 was originally designed primarily to 
aid laboratory study of the proteasome, a related small molecule 

(PS431, Bortezomib) was subsequently developed for cancer ther-
apy (58, 59). Despite the fact that the proteasome participates in a 
number of diverse cellular processes, the side effects of Bortezomib 
treatment were surprisingly mild and the drug has received FDA 
approval. It is currently a second-line therapy for multiple myeloma 
and relapsed mantle cell lymphoma. Intriguingly, co-treatment of 
Bortezomib with docetaxel (a paclitaxel analog) greatly enhances 
apoptosis in several gastric cancer cell lines over apoptosis observed 
with treatment by either drug alone; these results were mirrored 
in another study examining head and neck cancer lines (60). 
Combination studies of Bortezomib with paclitaxel or docetaxel are 
ongoing and have yet to enter Phase III studies, although reported 
side effects are similar to treatment with Bortezomib alone (61).

Enhancing MCL1 
Degradation  
to Promote 
Apoptosis

The three protein serine-
threonine kinases that directly 
phosphorylate Mcl1 and favor 
its interaction with FBW7 
are JNK, p38, and CKII (46, 
62, 63). To promote Mcl1 
degradation, one might try 
to maximize the activity of 
these enzymes, but it isn’t 
clear whether a small molecule 
could be rationally designed 
to do this. Nevertheless, JNK 
and p38 have been studied 
extensively (64–67), and 
small-molecule inhibitors of 
JNK are in clinical trials that 
target diseases such as cancer, 
whereas inhibitors of p38 have 
undergone clinical trials for 
the treatment of cancer and 
rheumatoid arthritis (68, 69). 
Both of these protein kinases 
regulate stress responses and 
inflammation but have also 
been linked to apoptosis. 
Indeed, both pro-apoptotic 
and anti-apoptotic roles have 
been ascribed to these proteins 
(70), and their functions in 
apoptosis may vary by cell 
line and be dependent on cell 
cycle stage and other cellular 
conditions. Although inhibi-
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Figure 4. The spindle assembly checkpoint (SAC) and the Mcl1 “apoptotic timer” compete for the fate of cells 
during a mitotic arrest. A. SAC activation leads to mitotic arrest and triggers the onset of Mcl1 degradation. Mcl1 is 
acted on by a set of pro-apoptotic proteins that drive its degradation and a set of pro-survival proteins that enhance its 
stability. During prolonged mitotic arrest, the pro-apoptotic pathway is favored. Simultaneously, incomplete inhibition of 
the APC/C results in slow cyclin B degradation, a phenomenon known as slippage. B. Cells treated with spindle poisons 
can exit mitosis if cyclin B concentrations fall below the threshold (dotted line) before the concentration of Mcl1 does. C. If 
Mcl1 levels fall below threshold (dotted line) before cyclin B, the apoptotic pathway is triggered while the cell is in mitosis.
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tion of JNK and p38 sensitizes certain cell lines to treatment with 
chemotherapeutics, it isn’t clear whether this effect is mediated 
via degradation of Mcl1 or through alternate pathways. Similarly, 
CKII participates in a complex number of cellular functions and 
has anti-apoptotic effects (71). Inhibition of CKII can also trigger 
apoptosis and sensitive cells to antimitotics (72). 

These somewhat paradoxical results are difficult to analyze. 
Historically, the functions of JNK, p38, and CKII have often been 
linked to cell survival. Their myriad roles in proliferation, dif-
ferentiation, and (especially) the stress response, would seem to 
confound studies seeking to identify any direct role in apoptosis. It 
is conceivable that treatment with spindle poisons would activate 
the stress response pathways mediated by these kinases. Their 
increased activity would then also lead to Mcl1 phosphorylation, 
driving Mcl1 degradation. It would make sense to test whether 
further stressing cells to activate the stress response pathway could 
increase the percentage of cells that die in mitosis. This hypothesis 
is supported by the results of unbiased screens that knocked-down 
the expression of all human protein kinases to identify proteins 
whose absence increases the sensitivity of cells to paclitaxel. In 
this study, the gene COL4A3BP, which encodes a protein serine-
threonine kinase, caused the most striking sensitivity (73). Loss 
of this protein, which is involved in ceramide metabolism, can 
activate the ER unfolding stress response pathway, which might 
activate stress kinases (e.g., JNK and p38). It will be important 
to determine whether the spindle poisons whose use leads to cell 
death also activate the stress response more than those drugs that 
simply inhibit mitotic exit. 

A more rational target is the protein phosphatase PP2A, 
which is believed to dephosphorylate Mcl1 and thereby abrogate 
Mcl1’s interaction with FBW7. PP2A is an attractive target because 
inhibiting the effects of this phosphatase should be equivalent 
to increasing the activities of JNK, p38, and CKII (Figure 3). 
Moreover, the association of PP2A with Mcl1 is already decreased 
during prolonged mitotic arrest, likely contributing to the ability of 
JNK, p38, and CKII to phosphorylate Mcl1. There also are already 
well-established PP2A inhibitors, such as okadaic acid (74). 
Treating cells with okadaic acid leads to results that are similar 
to those seen after paclitaxel treatment, such as defective spindle 
formation and mitotic arrest. Moreover, treating cells with okadaic 
acid during mitosis leads to increased phosphorylation of Bcl2, 
which also promotes apoptosis (75). Thus, inhibiting the function 
of PP2A may favor the induction of apoptosis by acting indirectly 
through multiple targets. Inhibition of PP2A could be complicated, 
however, as it is used in many cellular processes and has also been 
implicated in APC/C activation.

The ubiquitination of Mcl1 may represent another possible 
target for molecular intervention to promote apotosis. Inhibition of 
the deubiquitinase USP9X, which counteracts FBW7 by removing 
ubiquitin side chains from Mcl1, would promote increased degra-
dation of Mcl1 by the proteasome. Knock-down of USP9X results 
in decreased levels of Mcl1 protein and sensitizes cells to treatment 

with paclitaxel (46). Importantly, the catalytic site of USP9X has 
been identified. USP9X has also been implicated in tumor growth 
factor β signaling, tight-junction assembly, and other processes 
outside of mitosis, but the off-target effects of any putative USP9X 
inhibitor aren’t clear, as no known inhibitor exists (76, 77). Still, 
USP9X may represent the best target within the Mcl1 pathway.

Conclusions

Decades of work on the SAC have complemented recent studies 
to paint a fascinating portrait of how this cellular process pro-
motes cell death. Improving the efficacy of drugs like paclitaxel 
and vinblastine can be rationally approached from two angles. 
Helping spindle poisons to better stabilize cyclin B by reducing the 
effects of slippage would allow the checkpoint sufficient time for 
Mcl1 concentrations to fall below the apoptotic threshold. On the 
other hand, increasing the rate of Mcl1 degradation will allow the 
induction of apoptosis to occur earlier. Targeting these pathways 
together will ideally yield an approach that both arrests cells in a 
prolonged mitosis and steers them toward an apoptotic fate.

Alongside any drug development, a great deal of work remains 
to be done to further elucidate the connections between the SAC, 
Mcl1, and cell fate. For example, slippage is APC/C dependent, 
but it isn’t clear why this complex is incompletely inhibited by the 
SAC. The existence of alternate pathways that act on the APC/C 
to modulate its activity should be explored as possible sources of 
the slippage mechanism. The numerous phosphorylation sites on 
APC/C could represent a starting point for future studies (78).

Another issue is why different spindle poison drugs, which 
are all believed to act via a common mechanism of prolonged SAC 
activation, nonetheless result in highly dissimilar cellular fates. 
Is this because drugs such as paclitaxel and vinblastine activate 
the SAC in dissimilar ways or is it possibly because of dissimilar 
activities of these drugs on stress pathways? Similarly, it is unclear 
why taxanes and vinca alkaloids are effective chemotherapeutics 
whereas microtubule depolymerizing drugs like nocodazole are not 
effective. Because all of these drugs activate the spindle checkpoint, 
the important difference between them may reside in other path-
ways that are activated during treatment. Notably, the most potent 
spindle poisons bind non-reversibly whereas nocodazole can be 
easily washed out of cells. Non-reversible binding may be required 
in order to maintain effective doses in patients long enough for 
these drugs to work. Cells are only in mitosis for a short period of 
the cell division cycle, thus only a small percentage of cells may 
traverse mitosis during the period that a reversible drug is present 
at adequate intracellular concentrations. This issue of reversible 
and non-reversible binding will be an important consideration in 
the design of new anti-mitotic drugs with adequate bioavailability.

Stress kinases such as JNK, p38, and CKII may participate in 
promoting apoptosis by phosphorylating Mcl1. It’s possible that 
indiscriminate activation of the stress response pathway may  
sensitize cells to killing by spindle poisons and perhaps by other 
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chemotherapeutics as well. This idea could explain why some 
drugs seem to have additive effects when administered together, 
despite the fact that they don’t act on common pathways. In fact, 
one drug may simply be activating the stress response pathway 
and making the cell more generally susceptible to treatment  
with another.

Finally, innovative studies need to explore the diverse fac-
tors that sensitize or protect cells from the effects of paclitaxel 
and related drugs. For example, two RNA interference screens 
performed in human cells identified genes responsible for mitotic 
regulation as being important for the cellular response to pacli-
taxel (52, 73). However, these studies also identified dozens of 
other genes as being critical to the paclitaxel response and their 
functions are as diverse as actin polymerization and ceramide 
metabolism. Determining how these diverse processes feed into 
the cellular response to spindle poisons is a promising area for 
future research.

The number of additional genes that may be ultimately 
responsible for the paclitaxel response remains unknown, but the 
recent results we have highlighted should serve as encouragement 
to those who believe that additional drug targets must exist within 
this established therapeutic pathway. These recent developments 
continue to highlight the importance of the SAC and apoptosis in 
both basic biology and disease treatment.   
doi:10.1124/mi.11.2.12
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