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Abstract
Purpose—This study was performed to discover prognostic genomic markers associated with
post-operative outcome of stage I-III non-small cell lung cancer (NSCLC) that are reproducible
between geographically distant and demographically distinct patient populations.

Experimental design—American patients (n=27) were stratified on the basis of recurrence and
microarray profiling of their tumors was performed to derive a training set of 44 genes. A larger
Korean patient validation cohort (n=138) was also stratified by recurrence and screened for these
genes. Four reproducible genes were identified and used to construct genomic and clinicogenomic
Cox models for both cohorts.

Results—Four genomic markers, DBN1 (drebrin 1), CACNB3 (calcium channel beta 3), FLAD1
(PP591; flavin adenine dinucleotide synthetase), and CCND2 (cyclin D2), exhibited highly
significant differential expression in recurrent tumors in the training set (P<0.001). In the
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validation set, DBN1, FLAD1 (PP591) and CACNB3 were significant by Cox univariate analysis
(P≤0.035), whereas only DBN1 was significant by multivariate analysis. Genomic and
clinicogenomic models for recurrence free survival (RFS) were equally effective for risk
stratification of stage I-II or I-III patients (all models P<0.0001). For stage I-II or I-III patients, 5-y
RFS of the low- and high-risk patients was ∼ 70 vs. 30% for both models. The genomic model for
overall survival (OS) of stage I-III patients was improved by addition of pT and pN stage
(P<0.0013 vs. 0.010).

Conclusion—A 4-gene prognostic model incorporating the multivariate marker DBN1 exhibits
potential clinical utility for risk stratification of stage I-III NSCLC patients.
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Introduction
The discovery of genomic markers that are prognostic of NSCLC recurrence could change
clinical practice by identifying patients who would do well regardless of adjuvant
chemotherapy, thus sparing those patients considerable treatment-related toxicities.
Recently, patients identified as low-risk for death from lung cancer on the basis of
stratification by a 15-gene signature exhibited worse outcomes when treated with adjuvant
cisplatin/vinorelbine (1). Many microarray studies of NSCLC gene expression have been
performed with the purpose of finding gene markers predictive of overall survival (OS)
(2,3,4,5,6), but few individual genes are reproducible.

Although earlier microarray studies successfully identified gene markers associated with
OS, in some cases independent of stage, some studies didn't distinguish between death from
NSCLC and other causes. Lung cancer markers linked to survival alone exhibit limited
clinical utility, because there are significant competing causes of mortality including
postoperative mortality (7,8), the occurrence of second primary cancers including second
primary lung cancer, cardiovascular disease and chronic obstructive pulmonary disease
(COPD). Among stage I NSCLC patients, 5-y disease-specific survival is 77% for
pT1N0M0 patients and 62% for pT2N0M0 patients (9), while 5-y OS is 67 and 57% for
these groups (10). This comparison indicates that even for stage I patients there is a
significant death rate from competing causes of death. Recently, there has been an emphasis
on disease-specific survival, which has been more helpful (1). Another approach is to study
RFS, which has led to significant progress in identification of genomic markers that are
associated with lung cancer-specific outcomes (11,12). Although these studies have led to
identification of multivariate gene groups, to the best of our knowledge, they have not led to
the discovery of single gene multivariate markers for RFS, whereas pT (9) and pN1 stage
(13) are multivariate.

An as yet unrealized goal is to develop stage-independent genomic models for NSCLC that
are prognostic for RFS and reproducible between differing patient populations. This goal, if
accomplished, would make it possible to predict the likelihood of recurrence within 5-y of
surgery based solely on genomic markers, thus giving the patient and oncologist information
to make adjuvant therapy decisions that are related to patient's individual tumor biology
rather than stage (I-III). This type of model would be very useful clinically, because patients
seen in the NSCLC clinic exhibit a wide range of stages, but may exhibit personalized risk
that may differ from that predicted by stage alone. To achieve this goal, reproducible
multivariate genomic markers for RFS are needed. Most studies are internally validated by
dividing a relatively homogeneous patient cohort, such as one consisting of North American
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patients, the majority of whom are current or former smokers, into smaller test and larger
validation sets. These studies suffer from demographic and geographic similarity of the two
populations. Recent studies have successfully identified genomic markers associated with
RFS; nonetheless, the lead genomic markers derived within an exclusively North American
or Asian patient cohorts are not generally reproducible between demographically distinct
and geographically distant populations (11,12). Differences between genomic markers for
RFS may be related to chance or reflect differing mechanisms of cancer recurrence.
Differences in recurrence patterns between distinct populations could relate to genetics or
interaction of genetics with diet, exercise, and second hand smoke exposure. Although much
can be learned about cancer outcome disparities by studying genomic markers within
specific racial or ethnic groups, much can also be learned about what is similar between
differing groups. Genomic markers that remain the same between differing patient groups
are therefore more likely to be broadly useful and independent of confounding factors. Our
hypothesis is that improved reproducibility of genomic markers can be achieved by
identifying markers that are reproducible between demographically distinct and
geographically distant populations.

A novel approach is to identify genomic markers that are of univariate significance in a
small training set and then re-test them for univariate or multivariate significance in a larger
validation group that is demographically distinct. We therefore took a group of 44 lead
genomic markers for RFS from a small American training group (stages I-III) and found
four genes that also exhibited either univariate or multivariate significance in a larger
Korean validation group (11). These 4 genomic markers were strongly associated with
recurrence in both groups and resulted in a genomic model that was prognostic for
recurrence independent of clinical variables, including stage and histology.

Materials and Methods
Training set patients

This study was approved by the Indiana University Purdue University at Indianapolis
(IUPUI)/Clarian IRB (#0201-58), and the banking of tissue was performed under a separate
protocol approved by the same IRB (#9401-17) (IU-Lilly Tissue Bank). A longitudinal
database of consented patients undergoing NSCLC resection with curative intent from
12-07-1999 to 02-01-2002 was searched for banked NSCLC tumor tissue with sufficient
tumor content. The tumor resections in the single institution training set were performed at
Indiana University by two thoracic surgeons who used consistent procedures for lobectomy
or pneumonectomy during the period of the study (8,14). The lobectomy/pneumonectomy
procedure involved ligation of the vein leading to the tumor-containing lobe or lung before
arterial ligation. All patients had complete peribronchial and mediastinal lymph node
dissections. Patients treated on this study were subsequently followed by the
multidisciplinary Thoracic Oncology Program at Indiana University.

All patients (n=27) with stage Ia-IIIb NSCLC, who were evaluable for recurrence at 2 years
of follow-up after surgery were included in the study. The median follow-up time for the
recurrence-free patients was 57 months. NSCLC recurrence, if suspected, was histologically
confirmed. All patient-related data were de-identified by the tissue bank staff so that the
investigators could access only coded frozen tissue specimens, coded paraffin slides and
relevant variables for multivariate analysis that were associated with the code number for the
patient.

While none of the patients in the training set received adjuvant chemotherapy, one recurrent
patient and two non-recurrent patients received carboplatin-based chemotherapy as
neoadjuvant treatment. One recurrent patient (#11) received chemotherapy 8 months before
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resection, having participated in a phase II study of paclitaxel/carboplatin and cetuximab.
The same patient was continued on cetuximab at the time of recurrence, which was 8
months following resection. One non-recurrent patient (#13) received paclitaxel/carboplatin
two months before resection. Another non-recurrent patient (#21) received paclitaxel/
carboplatin for two cycles before resection, which was performed 7 weeks after initiation of
chemotherapy.

Pathology
NSCLC tumor histology was confirmed by hematoxylin/eosin (H+E) staining of associated
tissue blocks. The frozen samples included in the study ranged from 90 to 40% tumor tissue
with a mean of 59% ± 11% SD. Of the 30 specimens that were available for study, 3 were
rejected because they either contained mainly stroma or necrosis, or exhibited less than 40%
tumor epithelium. The percentage of malignant cells in the frozen tumor specimen could not
be determined definitively from the single 5 micron frozen section, in part, because of the
difficulty of completely counting the admixture of interspersed normal stromal, endothelial
cells and immunocytes, which were much smaller than the tumor cells.

RNA isolation and purification
Tumors were collected by a tissue procurement service in the operating room and stored in
liquid nitrogen immediately following resection and remained frozen until RNA isolation
was performed. Specimens were removed from liquid nitrogen, transported on dry ice to the
laboratory and homogenized using a Polytron homogenizer (Brinkmann Instruments,
Westbury, NY) in ice-cold Trizol reagent (Gibco BRL, Gaithersburg, MD). RNA was
extracted with chloroform and precipitated using isopropanol with glycogen as carrier. The
RNA pellet was washed in 75% ethanol and resuspended in DEPC-treated MilliQ water.
The RNA was diluted in a guanidinium thiocyanate-containing RLT buffer (Qiagen
Sciences, Inc., Germantown, MD) and further purified using a silica-gel-based membrane in
RNeasy MinElute™ spin columns. The RNA quality was confirmed by electrophoresis on a
1% non-denaturing agarose gel or by Agilent Bioanalyser, which revealed intact 18 and 28S
rRNA in all samples. UV spectroscopy (A210 –A350) was performed to confirm RNA purity;
the A260: A280 ratio was 1.99 to 2.00 for all samples.

RNA hybridization
cDNA was prepared from total RNA (10 μg) using the Superscript Choice™ system (Gibco-
BRL, Gaithersburg, MD). A T7-(dT) oligonucleotide primer was used for first strand
synthesis. Double-stranded cDNA was purified by phenol/chloroform extraction and the
Phase Lock Gel® method (Eppendorf-5 Prime, Boulder, CO). Biotin-labeled cRNA was
synthesized using a BioArray™ RNA Amplification and Labeling Kit (ENZO, New York,
NY), cleaned and fragmented (15). The cRNA was biotin labeled and hybridized on U133A
GeneChip® arrays for 17 h (45°C) in an Affymetrix GeneChip® 640 Hybridization Oven
(Affymetrix, Santa Clara, CA). Washing and staining of the chips were performed using the
Affymetrix GeneChip® Fluidics Station 400. Arrays were scanned in an HP GeneArray
Scanner (Hewlett Packard, Palo Alto, CA), and data were analyzed with Affymetrix
Microarray Suite v5.0 software (MAS5).

Microarray analysis of discriminatory genes
Probes that were not detected as “present” in at least half of the samples using the standard
MAS5 parameters were removed from analysis (16,17). The remaining probes were
analyzed using Welch's t-test, assuming unequal variance, on the log2 transformed MAS5
signals. The Affymetrix chip for one patient, sample #26, was damaged; consequently, this
patient was deleted from the gene analyses.
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Quantitative RT-PCR
First strand cDNA synthesis was performed using SuperScript™ III reverse transcriptase
(RT) (Invitrogen Corp., Carlsbad, CA) with total RNA (5 μg) and oligo dT12-18 primer. The
reaction mix was diluted (1:12.5) and used for q-PCR analysis. The primers and probes used
for the PCR were purchased from Applied Biosystems (Foster city, CA). The probes used
for DBN1 (Hs00365623_m1, exon boundary 9-10), PP591 (Hs00611011_m1, exon
boundary 5-6), CCND2 (Hs00277041_m1, exon boundary1-2) and CACNB3
(Hs00167873_m1, exon boundary 9-10) were all FAM labeled. FAM labeled GAPDH
probes (433376F) was used in separate experiments to normalize the Ct value between the
samples. The Applied Biosystems master mix was used for the q-PCR reaction and the
manufacturer's instructions were followed. The q-PCR reactions were performed in a I-
Cycler (BioRad laboratories, Hercules, CA) at 50°C (2 minutes), 95°C (10 minutes)
followed by 40 cycles of consisting of 95°C (15 seconds) and 60°C (1 minute) steps. The
reactions were performed in triplicate and the GAPDH Ct values were subtracted from the
raw sample Ct values to get the corrected Ct, which was converted into the relative RNA
amount using the formula (2-(corrected Ct)). All the 27 patient samples were used for q-PCR
analysis.

Hierarchical clustering analysis of genes associated with recurrence
For hierarchical clustering, 51 probe sets that differed between the groups (P value < 0.001)
were selected. The log2 transformed MAS5 signals were normalized [(signal-mean)/std dev]
and then arrays were clustered using the hierarchical clustering function of Partek ®
Genomics Suite, version 6.3 © 2007 (Partek, Inc., St. Louis, MO), with Euclidean distance
and average linkage. Pearson's dissimilarity and average linkage were used to cluster the
probe sets. Normalization was performed on each probe set to ensure that no individual
probe set would have undue influence on the clustering.

Validation set patients
The validation set consisted of 138 patients (n=138) from Samsung Medical Center, Korea.
Of 138 patients, 69 exhibited no recurrence following surgery (group NR) and 69 patients
exhibited recurrence after surgery (group R). The details of the patients of this validation set
are described in Lee et al., 2008 (11). The patients were a mix of different NSCLC stages,
established by pathologic staging after surgery: 64, 17 and 19% were stages I, II and III,
respectively. The TNM staging of the patients was widely distributed: 17% patients were
pT1 stage, 68% pT2, 7% pT3 and 7% pT4. Most of the patients had no nodal involvement
(pN0, 71%), while 20% were pN1 and 9% were pN2. Of the total, 63 patients had
adenocarcinoma and 75 patients had squamous cell carcinoma. The microarray data
obtained was processed using gene chip robust multi-array average (GCRMA)
normalization (18) with perfect match (PM) and perfect match/mismatch (PM/MM)
modeling.

Among the 69 non-recurrent patients, three received adjuvant combination chemotherapy.
Specifically, one patient received a combination of fluorouracil, leucovorin, ifosfamide and
dexamethasone, another patient received combination of etoposide and dexamethasone, and
a third patient received a combination of cisplatin and paclitaxel. Nine of the recurrent
patients received different adjuvant chemotherapy or biologically targeted regimens
including: gefitinib, etoposide/dexamethasone, cisplatin/paclitaxel, cisplatin/etoposide/
dexamethasone, and docetaxel/cisplatin/dexamethasone/gemcitabine.
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Clinical, genomic and clinicogenomic models of RFS in the training set
The objective was to derive three models for RFS, models based solely on patient
characteristics (i.e. clinical model), solely on gene expression levels (i.e. genomic model),
and on both (i.e. clinicogenomic model). To model RFS outcomes in the training set,
multivariate analyses were performed using a stepwise Cox proportional hazards model on
the 27 patients (stage I-III). For the clinical model, patient characteristics including age, sex,
race, and smoking history were considered. Smoking history was categorized as: current
smoker (C, defined as smoking <1 year before surgery), former smoker (F, defined as quit
>1 year before surgery), and never smoker (N). For each of the models, a subsequent Cox
score was calculated and dichotomized at its median value into low- and high-risk groups.
The recurrence-free survival curves were estimated by using the Kaplan-Meier method and
compared by log-rank test. The variables used for the clinical model of the training set were:
histology, pathologic stage (pStage), sex, race, and smoking. For the genomic and
clinicogenomic models the natural logarithm of gene expression levels determined by qPCR
was included, using the genes DBN1, FLAD1 (PP591; flavin adenine dinucleotide
synthetase), CACNB3 and CCND2, which were identified as being differentially expressed
in both the training and validation sets. Median value of the Cox score was determined as
previously described (11) and was used to dichotomize the patients into low- and high-risk
groups for Kaplan-Meier plots. The equations used for the modeling are given in the Fig. 2
legend. The SAS program codes used to derive the models are provided in the
Supplementary Material (SAS Codes).

Genomic and clinicogenomic RFS models of the validation set
Genomic and clinicogenomic models for the stage I-III patients of the validation set were
developed similar to a prior study of the same cohort, for which the clinical model has
already been published (11). The genomic markers used for the validation set model were:
DBN1, FLAD1 (PP591; flavin adenine dinucleotide synthetase), CACNB3 and CCND2. For
the validation set, there were several Affymetrix probes for each gene: 2 for DBN1, 2
CACNB3, 5 for CCND2 and 2 for FLAD1 (Table S2). To optimize the model, all the probe
combinations were considered (2 × 2 × 5 × 2 = 40). Single Affymetrix probes were selected
for each gene using a stepwise parameter method (11) that allowed selection of an optimized
model of 4 unique probes, (Table S2). To develop the clinicogenomic model for the
validation set, the same stepwise parameter selection was also used for filtering of clinical
variables. Pathologic T stage (p-value=0.0003) and pathologic N stage (p-value=0.0038)
were identified as being of utility among the considered variables, whereas age, gender, cell
type, tumor size, smoking status and tumor differentiation were not.

Median value of the Cox score was determined as previously described (11)and was used to
dichotomize the patients into low- and high-risk groups for Kaplan-Meier plots. The
equations used for the modeling are given in the Fig. 2 legend. The SAS program codes used
to derive the models are provided in the Supplementary Material (SAS Codes).

Genomic and clinicogenomic RFS modeling of Stage I and II patients in the validation set
Stage I-II patients of the validation set were selected for Cox analysis. The genomic markers
used for the genomic modeling were those described above (DBN1, FLAD1, CACNB3 and
CCND2). The clinicogenomic model incorporated the genomic information with additional
pT and pN stage data. The Cox equations used for the modeling are given in the Fig. 2
legend. The SAS program codes used to derive the models are provided in the
Supplementary Material (SAS Codes). Due to the relatively small number of patients, this
type of analysis was not performed on the training set.
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Genomic and clinicogenomic OS modeling of validation set
Stage I-III patients of the validation set were included in this Cox analysis. All the deaths
included in this analysis are death due to lung cancer, including complications associated
with lung cancer (disease-specific OS). To optimize the OS model, a Cox proportional
hazards regression model with stepwise parameter selection method was developed. The
Cox equations used for the modeling are given in the Fig. 3 legend. The SAS program codes
used to derive the models are provided in the Supplementary Material (SAS Codes). Due to
the relatively small number of patients, this analysis was not performed on the training set.

Results
American patient training set

The training set of patients accrued at the Indiana University Thoracic Oncology Program
consisted of 27 patients with stage Ia-IIIb NSCLC who were evaluable for recurrence at two
years of follow-up. All histologies of NSCLC were included. This patient cohort was
reflective of a broad patient population seen in an American academic medical center
without selection for histology or stage. This approach could be useful because genomic
markers derived from this type of study could potentially be applied to clinical decision-
making in a general thoracic oncology practice. There were 11 patients who experienced
recurrence within two years of resection (group R) and 16 patients who did not (group NR).
Patient characteristics, including stage of disease, recurrence status, histology, age at
surgery, smoking history, survival after surgery, time to recurrence, gender, and adjuvant
therapy are described in Table 1. The majority of the NSCLC patients exhibited
adenocarcinoma histology (n=19). Mean age of the patients at operation was 61.8 (SD=12.8)
years (range 34-81 years).

The median time to recurrence (TTR) of group R was 12 months and the median overall
survival (OS) was 20 months. This study had a 57-month median follow-up and the 2-year
cut-off captured 81% of the recurring patients. Among the NR group, 19% of the patients
recurred after 2 years, the recurrences being at 32, 50 and 53 months and these patients were
still alive at the time of data collection closure. Age at operation, race, gender and smoking
status were analyzed in conjunction with gene expression data in subsequent Cox
multivariate analysis (see below).

Genomic markers associated with NSCLC recurrence in the training set
To identify genes that were differentially expressed in recurring patients, genomic
microarray analysis of tumor gene expression was performed by Affymetrix U133A chip
hybridization. Candidate genomic recurrence markers (Table 2) were identified from 12,956
evaluable probes in the microarray by statistical analysis of log2-transformed signals
(Welch's T-test; P≤0.001). This analysis resulted in 51 probes corresponding to 44 genes
that were differentially expressed between the R and NR groups (Table 2) (raw data
available at Geo database; GSE9971) (Table S1).

Hierarchical clustering analysis of training set genes associated with NSCLC recurrence
Hierarchical clustering using the 51 probes associated with recurrence separated the training
set patients exhibiting recurrence. Based on recurrence or not at 2 y of follow-up, this
clustering identified three subgroups of genes exhibiting up-regulation and one exhibiting
down-regulation in recurrence (Fig.1). The most statistically significant markers up-
regulated in recurrence were, in order of significance by Welch's T test, FLJ20343,
DKFZp566O084, CACNB3, CYP3A5, and DBN1 (Table 2). The first three markers were
associated with one cluster of genes up-regulated in patients exhibiting recurrence (Group
1), while CYP3A5 was associated with a second cluster (Group 2) and DBN1 with a third
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(Group 3). Genes in groups 1-3 were associated with a broad range of T test values (ranging
from 0.001 to 0.00001). The most statistically significant markers that were down-regulated
in recurring patients were, in order of significance, C14orf118, STAT2, ATF7IP, HIPK3 and
HLA-DOA (Table 2) and this group clustered together (Group 4). Group 4 exhibited a
smaller distribution of T test values (ranging from 0.0009 to 0.00008), consistent with the
larger size of this group.

Screening of a Korean patient validation set for concordance of candidate genomic
markers

We hypothesized that screening of a geographically distant and demographically distinct
patient population for recurrence-associated genomic markers would lead to the
identification of more reproducible genes for the study of NSCLC prognosis. To find a
distinct and larger validation set, the GEO database was screened for NSCLC studies with
similar stage grouping and no selection based on histology, performed on a similar genomics
platform. A Korean study of NSCLC recurrence-associated genomic markers, GSE8894,
met the criteria for comparison with the American training set and was probed for genomic
markers associated with recurrence common to both sets (11). The K-M curve for the
Korean patients exhibited a median disease-specific survival time of 69.4 months and a 5-y
survival percentage of 56.2%, comparable to but perhaps slightly shorter than North
American patients with resected NSCLC (9) (Fig. S1).

Each of the 44 genes identified in the American training set was tested in the Korean data set
for significance by univariate and multivariate Cox analysis. The four genes that were most
significant by univariate Cox analysis were, in order of significance, DBN1, FLAD1
(PP591), CACNB3 and CCND2 (Table 3). The first three genes exhibited P values <0.05
and the fourth, exhibiting a P value of 0.08, was retained for model building. By multivariate
analysis, only DBN1 exhibited significance (P=0.0095) (Table 3). Nonetheless, two of the
genes approached multivariate significance, FLAD1 (P=0.0720) and CCND2 (P=0.0713),
while CACNB3 did not (P=0.1813) (Table 3). These results indicate that DBN1 is potentially
of value as a multivariate marker and the combination of the 4 genes was effective in model
building (see below).

Confirmation of DBN1, CACNB3, FLAD1 (PP591) and CCND2 expression in the training set
by q-PCR

The utility of prognosis-associated genes identified by microarray analysis is increased if
they are also assayable by q-PCR (11). Increased expression of the DBN1, CACNB3 and
FLAD1 (PP591) genes in the recurrent NSCLC tumors was confirmed in the training set by
q-PCR (Table 4). Decreased expression of CCND2 in the recurring patients of the training
set approached, but did not reach, statistical significance (Table 4). These expression values
were used to perform subsequent Cox regression analysis of the training set.

Clinical, genomic, and clinicogenomic modeling of the training and validation sets
A clinical model of the training set was performed, based on histology, pStage, sex, race,
and smoking history (Fig.2A). The clinical model was effective at separating the low- and
high-risk patients in the training set (P=0.0032). The median RFS for the training set was
17.2 months, while the 5-y % RFS was 83.4 and 28.6% for the low- and high-risk groups,
respectively (Fig. 2A; Table 5). Nonetheless, application of a similar clinical model to the
larger validation cohort was less successful (P=0.0518) (11). A genomic model developed
from the training set was more effective than the clinical model at risk stratification of the
training (P<0.0001) (Fig.2A) and validation sets (P<0.0001) (Fig.2B). Using the genomic
model, the 5-y RFS for the low- and high-risk groups was 92.3 vs. 15.4% and 67.5 vs.
32.8% in the training and validation sets, respectively (Table 5). Using the clinicogenomic
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model, patients were effectively risk-stratified in the training (P<0.0001) and validation sets
(P<0.0001) (Fig.2A and B). Using the clinicogenomic model, the 5-y RFS for the low- and
high-risk groups was 92.3 vs. 15.4% and 67.0 vs. 33.3% for the training and validation sets,
respectively (Table 5). In summary, the genomic and clinicogenomic models exhibit clinical
utility because the difference in 5-y RFS is more than 2-fold indicating a substantial clinical
effect.

Clinical, genomic, and clinicogenomic modeling of stage I and II patients in the validation
set

Because the decision to offer chemotherapy or not is crucial for early stage patients, we
reanalyzed the stage I-II patients in the validation set using the 4 genomic markers to
develop genomic and clinicogenomic models for this risk group. The genomic model risk-
stratified the stage I-II patients (P value < 0.0001; Fig.2C), exhibiting 5-y RFS of 73.2 vs.
33.8 % for the low- and high-risk groups, respectively (Fig. 2C and Table 5). The
clinicogenomic model also risk-stratified stage I-II patients (P value < 0.0001; Fig.2C),
exhibiting 5-y RFS of 69.6 vs. 30.3% for the low- and high-risk groups, respectively (Fig.
2C and Table 5). These results support the utility of the 4 genes for risk model development
for stage I-II patients.

Genomic and clinicogenomic modeling of the validation set based on disease-specific OS
Risk stratification on the basis of disease-specific OS is another important test of the utility
of the 4 genomic markers. Therefore, genomic and clinicogenomic models were developed.
Both models were equally effective risk-stratifying the patients into low- and high-risk
groups (P<0.0001) (Fig. 3). Using the genomic and clinicogenomic models, the 5-y disease-
specific survival for the low- and high-risk groups was 63.3 vs. 37.0% and 67.3 vs. 44.2%,
respectively (Table 5). These differences in disease-specific OS were at least 1.5-fold,
indicating clinical utility.

Analysis of multivariate marker DBN1
The genomic marker DBN1 was identified as a significant in the genomic and
clinicogenomic models of RFS stage I-III, RFS stages I-II and disease-specific OS (Stage I-
III RFS genomic HR=1.463 CI 1.088-1.967; Stage I-III RFS clinicogenomic HR=1.758 CI
1.248-2.476; Stage I-II RFS genomic HR=1.455 CI 1.038-2.04; Stage I-II RFS
clinicogenomic HR=1.72 CI 1.165-2.541; OS genomic HR=1.484 CI 1.057-2.082; OS
clinicogenomic HR=1.627 CI 1.115-2.367; Table S3). The addition of pT and pN stage
information improved the significance of DBN1 for all models (RFS stage I-III, P= 0.0119
to 0.0013; RFS stage I-II, P= 0.0297 to 0.0064; OS, P= 0.0226 to 0.0117). This finding
indicates that DBN1 serves as a component of the genomic model that can be improved by
the addition of clinical stage.

Discussion
We hypothesized that comparison of two geographically distant and demographically
distinct patient cohorts, namely American and Korean, could facilitate the identification and
validation of NSCLC genomic markers associated with RFS. Four genes were associated
with recurrence in the American training set and validated in the larger Korean patient
cohort. Genomic and clinicogenomic modeling for RFS risk-stratified both cohorts with
high statistical significance, and genomic modeling alone was sufficient to risk-stratify the
groups. Genomic and clinicogenomic models also risk-stratified stage I-II patients of the
validation set. For stage I-II or I-III patients, the 5-y RFS of the low- and high-risk patients
differed by ≥ 2-fold. The genomic and clinicogenomic models also predicted 5-y disease-
specific OS, exhibiting a 1.5-1.7-fold difference between low- and high-risk groups.
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The comparison of American and Korean cohorts resulted in discovery of DBN1 as a
multivariate biomarker, which by itself exhibits significant prognostic utility for RFS that is
improved by the addition of the clinical markers of pT and pN stage. Because addition of
clinical stage information increased the HR of the DBN1 marker in all patient groups and for
all outcomes, DBN1 may be a platform on which to build future models consisting of other
multivariate markers. Additional multivariate markers may be discovered by similar
comparisons of demographically distinct NSCLC patient populations. For example, the
validation set from this study could be used as the training set for an even larger
demographically distinct patient cohort, such as a larger American patient group. This
iterative process would confirm that some or all of the genomic markers derived here can
contribute to further model building, thus allowing model refinement.

It is notable that the genomic markers that correlate between the training and validation
groups were not necessarily the ones exhibiting the lowest univariate P values for
differential expression or the greatest fold-differences in expression. This indicates that if
modeling were to be performed solely on the basis of P value or fold-differences, genes that
could contribute to more robust modeling would be missed. Although clustering of gene
expression patterns identified four clusters, only genes belonging to three of the clusters
contributed to the model. Of note, one of these clusters contained two of the four genes,
including DBN1, which is the only gene significant by multivariate analysis. The approach
taken here suggests that successful genomic modeling can be performed even with a
relatively small number of significant genomic markers identified by comparison of very
different training and validation sets. Furthermore, the approach taken may be effective at
identifying more reproducible and broadly applicable genomic markers, which are essential
for efficient clinical trial development of a risk model. Thus, adopting this approach, a
single, committed gene set can be derived that is statistically significant across a number of
patient populations, independent of demographic factors, with informative Cox models as
the product.

Of importance, the four genomic markers identified are all amenable to q-PCR assay, which
is an important factor in determining clinical development of the 4-gene set. The utilization
of q-PCR data for Cox model development confirms their robust amplification and indicates
that the differences in their expression between recurrent and non-recurrent patients is
sufficient to overcome background noise (11). These findings also provide a robust assay to
allow rapid confirmation of the results in other NSCLC patient cohorts.

In summary, the genomic model developed in the present study identifies recurrence-
associated genes that are internationally validated and are strong candidates for broader
analysis in larger patient cohorts. The validated genomic model exhibits utility, because of
the magnitude of the absolute differences between 5-y RFS and OS of the low- and high-risk
patients. The utility of the 4-gene set is independent of stage, and is applicable to RFS of
stage I-II, I-III patients as well as OS of stage I-III patients. Together these results support
the further development of the 4-gene set or its multivariate DBN1 component for future
NSCLC risk model development. Of particular importance, risk-stratification has recently
demonstrated that low-risk NSCLC patients may exhibit decreased disease-specific survival
when treated with adjuvant cisplatin/vinorelbine chemotherapy (1). With confirmation, our 4
genomic markers could be prospectively tested in a future clinical trial to determine the
effectiveness of risk stratification of patients independent of stage and could also potentially
be used to test the effectiveness of novel adjuvant chemotherapy regimens in low- and high-
risk patients.
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Figure 1. Gene expression profile and hierarchical clustering separating the recurrent and non-
recurrent groups on the basis of discriminatory genes
Twenty six evaluable tumors were clustered hierarchically on the basis of 51 probes
corresponding to 44 genes, using Partek ® Genomics Suite v6.3. The dendrograms of
individual patient samples and overall patterns of gene expression data are exhibited. The
recurrent group is labeled R and non-recurrent NR. Individual tumor specimen numbers are
indicated at the bottom of the figure and the tumor specimen dendrogram is given along the
top. Gene symbols are indicated on the right side of the figure and relatedness of gene
expression is indicated by the dendrogram on the left side of the figure. The clustering is of
log2 transformed Affymetrix MAS5 signals. Red color indicates increased expression and
blue color lower, relative to the mean level of gene expression, indicated in grey. The color
scale indicates the mean log2 expression level above (red) and below (blue) the mean of all
genes (grey), over a range of 2.9 log2 units above and below the mean.
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Figure 2.
A. Clinical, genomic and clinicogenomic RFS models of training cohort (stage I-III
patients). The clinical model is: Cox score = Histology (-16.12716 × Squamous - 1.03510 ×
other) + 0.95865 × pStage + 0.22791 × Gender + Race (-0.57444 × African American -
0.95745 × Undetermined); the genomic model is: Cox score = -713.79613 × DBN1 -1090 ×
CCND2 + 668.28496 × CACNB3 + 383.51066 × PP591; and the clinicogenomic model is:
Cox score = -1218 × DBN1 - 2072 × CCND2 + 1710 × CACNB3 + 507.39229 × PP591 +
Histology (-14.22074 × Squamous - 2.78616 × other) + 0.60136 × pStage + 1.40561 ×
gender + Race (-3.16002 × Black - 3.44106 × Undetermined). The cutoffs (i.e. median Cox
scores) for the clinical, genomic and clinicogenomic models were 1.18655, -30.8891 and
-45.2830, respectively. Time to recurrence is expressed in months; number of patients: 27.
B. Genomic and clinicogenomic RFS models of validation cohort (stage I-III patients).
The genomic model is: Cox score = 0.38040 × DBN1 + 0.30160 × CACNB3 - 0.93964 ×
CCND2 + 0.28898 × FLAD1; the clinicogenomic model is: Cox score = pT stage (0.58862
× T2+2.19489 × T3+0.31153 × T4) + pN stage (0.75430 × N1+1.24674 × N2) + 0.56392 ×
DBN1 + 0.43517 × CACNB3 - 0.61023 × CCND2 + 0.39543 × FLAD1. The median Cox
scores for the genomic and clinicogenomic models were 3.66 and 7.43, respectively. Time to
recurrence is expressed in months; number of patients: 138. The clinical model for this set of
patients has been previously published (11).
C. Genomic and clinicogenomic RFS models of validation cohort (stage I-II patients).
The genomic model is: Cox score = 0.37488 × DBN1 + 0.47831 × CACNB3 - 0.98259 ×
CCND2 + 0.33511 × FLAD1; the clinicogenomic model is: Cox score = pT stage (0.82325
× T2 + 2.78736 × T3) + 1.02786 × pN stage + 0.54254 × DBN1 + 0.46196 × CACNB3 -
0.99139 × CCND2 + 0.36875 × FLAD1. Time to recurrence is expressed in months; number
of patients: 112.
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Figure 3. Genomic and clinicogenomic disease-specific OS models of validation cohort (stage I-
III patients)
The genomic model is: Cox score = 0.39443 × DBN1 + 0.13635 × CACNB3 - 0.77471 ×
CCND2 + 0.28103 × FLAD1; the clinicogenomic model is: Cox score = pT stage (1.03717
× pT2+2.34391 × pT3+0.69257 × pT4) + pN stage (0.54998 × pN1+1.22555 × pN2) +
0.48697 × DBN1 + 0.25821 × CACNB3 - 0.69815 × CCND2 + 0.32732 × FLAD1.
Overall survival is expressed in months; number of patients: 138.
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Table 1
Description of training set patients

Training set (n=27)

Age at operation (years) Mean 61.8 (SD=12.8)

Range 34-81

Gender Male 15 55.5%

Female 12 44.5%

Smoking History Never smoker 5 18.5%

Former smoker 14 51.9%

Current Smoker 8 29.6%

Histology Adenocarcinoma (ADC) 18 66.7%

Squamous carcinoma (SQC) 3 11.1%

Other 6 22.2%

Histological differentiation Well differentiated 25 92.6%

Poorly differentiated 2 7.4%

Stage IA 5 18.5%

IB 10 37.0%

IIA 1 3.7%

IIB 3 11.1%

IIIA 5 18.5%

IIIB 2 7.4%

Not known 1 3.7%

T 1 7 25.9%

2 15 55.6%

3 1 3.7%

4 1 3.7%

Not known 3 11.1%

N 0 16 59.3%

1 3 11.1%

2 4 14.8%

3 1 3.7%

Not known 3 11.1%

M 0 9 33.3%

X 13 48.1%

Not known 5 18.5%

Time to recurrence
(number of patients)

0-12 months 6 22.2%

13-24 months 5 18.5%

25-36 months 1 3.7%

37-48 months 0 0%

49-60 months 2 7.4%

Not recurred (up to max follow up of 67 months) 13 48.1%

Overall survival 0-12 months 2 7.4%
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Training set (n=27)

13-24 months 4 14.8%

25-36 months 2 7.4%

37-67 months (max follow up) 19 70.4%

Adjuvant therapy Neo adjuvant 3 11.1%

Adjuvant 0 0%
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Table 3
Validation of genes using Cox-analysis

A- Univariate Cox analysis

Gene Symbol Probe Hazard Ratio 95% C.I. for Hazard Ratio Cox analysis p-value

DBN1 202806_at 1.743 1.238, 2.453 0.0014

FLAD1 (PP591) 212541_at 1.567 1.064, 2.307 0.0229

CACNB3 34726_at 1.421 1.025, 1.968 0.0347

CCND2 200952_at,
200951_s_at 0.296 0.075, 1.163 0.0813

B-Multivariate Cox analysis

Gene Symbol Probe Hazard Ratio 95% C.I. for Hazard Ratio Cox analysis p-value

DBN1 202806_at 1.565 1.116, 2.195 0.0095

FLAD1 (PP591) 212541_at 1.422 0.969, 2.088 0.072

CACNB3 34726_at 1.267 0.896, 1.792 0.1813

CCND2 200952_at,
200951_s_at 0.303 0.083, 1.109 0.0713
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Table 4
q-PCR analysis of DBN1, CACNB3, FLAD1 (PP591) and CCND2

Relative % of Expression

Gene name Recurrent Non-recurrent Fold change P-value

DBN1 50.7 24.2 2.094 0.012

CACNB3 82.1 28.1 2.921 0.033

FLAD1 (PP591) 72 20.75 3.471 0.001

CCND2 189.9 405.79 0.468 0.058
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