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Abstract
Risk for the development of major depressive disorder (MDD) is likely influenced by an
interacting set of genes and environments. Many elderly are exposed to a variety of potential
MDD precipitants. Medical co-morbidities, high inflammatory states, care-giver stress, and
cerebrovascular changes are often observed proximal to the development of an episode.
Additionally, some adults have histories of exposure to environmental stressors such as early life
traumas that may result in a life-long predisposition to MDD. Despite these exposures, many
people do not develop MDD; and genetic influences are hypothesized to be one influence on
vulnerability and resilience. Over the last seven years, several studies have examined a variety of
genes for this gene × environment (G×E) interaction. Most have examined a length polymorphism
in the promoter region for the serotonin transporter gene, but some have examined brain derived
neurotrophic factor, various genes encoding for key players in the hypothalamic-pituitary-adrenal
axis, as well as other genes involved in the monoaminergic, neuroendocrine, and inflammatory
systems. There is marked variation in the design of these studies, as well as in the measures of
environment, MDD, and genotyping. Interpreting the sometimes inconsistent findings among
studies is complicated by this heterogeneity. However, some tentative trends have emerged. An
overview is provided of both the methodologies and results of these studies, noting consistent
trends as well as confounds. The progress made to date will hopefully inform the next generation
of studies.

Keywords
polymorphism; stress; elderly; geriatric; depression

Major Depressive Disorder (MDD) can be complicated to study -- it has a heterogeneous
manifestation and course. Even with respect to environmental precipitants, the onset of
depressive episodes have been variously associated with the post-partum period,1 the post-
menopausal period,2 thyroid disease,3 circadian changes,4 sleep impairment,5 stimulant
withdrawal,6 cerebro-vascular disease, 7-9 chronic illness, 10 inflammatory cytokines,11 as
well as psychosocial stresses12 including interpersonal losses,13, 14 threats to safety, physical
impairments,15 pain,16 etc. Because old age can be associated with deteriorating health,
vascular disease, changing sleep patterns, bereavement, etc., many of these potential
precipitants accumulate later in life.17 However, only a minority of people exposed to a
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combination of these events actually develops depression. Stress does appear to have a
causal influence on development of MDD in some people, some times;18 but simple
exposure to accumulating environmental stress is not enough to fully explain MDD.

Genetic influences on vulnerability and resilience to these precipitants likely play a role. But
the heritability for MDD is estimated to only be about 37%.19 Consistent with this, meta-
analyses of case-control association studies suggest potential roles for polymorphisms in
several genes,20 with effect sizes that are typically very small. No single gene, acting alone,
appears to play a major role. However, case-control genetic association studies generally
face the limitation of not accounting for differences in exposure to the multitude of potential
environmental influences. Thus, there remains the intriguing possibility that particular genes
interact with particular environments to influence MDD. In examining this possibility, there
are significant challenges to successfully completing gene × environment interaction (G×E)
studies, although there recently has been encouraging progress. The field is nascent, but
there are now multiple G×E studies examining the serotonin transporter (SERT), brain-
derived neurotropic factor (BDNF), the hypothalamic-pituitary-adrenal (HPA) axis,
inflammatory cytokines, and other monoaminergic genes.

Methodological considerations
Before reviewing these recent results, important methodological concerns should be noted.

I. How environment (E) is categorized likely matters
E can be (i) an acute precipitating trigger for the onset of an MDD episode, (ii) an element
of predispositional vulnerability to MDD, (iii) a perpetuating factor once an MDD episode
has occurred and preventing its remission, (iv) or simply a secondary epiphenomenon
statistically correlated with already having MDD. The question of whether MDD co-
morbidities (one type of E) are predispositions, precipitants, perpetuating factors, and/or
epiphenomena can be a very complex question without a simple answer.21 An example of a
precipitating event that triggers the onset of an MDD episode could be a myocardial
infarction.22 A predisposition for MDD vulnerability could be lower childhood social class
resulting in decreased glucocorticoid and increased proinflammatory signaling later in life.23

Perpetuating factors after MDD has developed could be social isolation and resultant
inability to cope with stress.24, 25 Finally, having MDD may increase the likelihood of
smoking, with secondary effects on pulmonary health.26 It is conceivable that one set of
genes interacts with environmentally-influenced predisposition, another set interacts with
environmental precipitants, and a third with perpetuating environments. Therefore, in
determining the interaction of vulnerability genes with E, a longitudinal perspective is often
necessary. Also, because environmental variables can obviously fluctuate over time, using a
single period of time to assess E can sometimes be a misleading proxy for E.27 Choosing
what E to include in G×E studies should be guided by known science,28 carefully defining
the nature, extent, and timing of E.

II. Genetic correlations with E likely matters
Because each individual can shape the interpersonal interactions and environment around
them, one's own genetic make-up appears to indirectly influence exposure to psychosocial
stressors, social supports, and vascular disease. Statistically, this means that there are often
G-E correlations, situations in which G appears to ‘affect’ E. Simply put, people can select
and modify their own environments; and genetically similar people end up in similar
environments. Examples of this abound. To illustrate, a Taq1A polymorphism in the
dopamine receptor 2 gene has been associated with multiple illnesses that involve impulse
dyscontrol, and children with the A1 allele are more likely to discontinue school. But this
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genetic risk can be mitigated by having a mentor, indicating an interaction between genetic
vulnerability and mentorship.29 However, children with A1 were also less likely to have a
mentor in the first place, indicating the gene also adversely influenced access to this
beneficial environment.29 Thus, there is also a G-E correlation in addition to a G×E
interaction.

In a similar fashion, genetic variability may be associated with almost two-thirds of the
likelihood of experiencing personal stressful life events (i.e., not all is simply bad luck).30

Likewise, heritability may explain as much as 75% of differences in social support among
people,31 something that remains true later in life.32 In fact, studies of older adult twins
indicate that many environment stressors (e.g., divorce, spouse in nursing home, change in
residence, etc.) are under genetic influence, with as much as 43% heritability.33 Thus in
interpreting the results of G×E studies, one should recognize that the exposure to ‘E’ itself
can be partially ‘influenced’ by G.

III. How ‘MDD,’ ‘E,’ and ‘G’ are each measured likely matters34

Diagnoses of MDD by structured interview or by cut-off criteria on a self-report scale can be
partially correlated -- but these methods can also differ.35 As just one example, brain injury,
stroke, or Parkinson's disease can affect the relationship between a self-reported score-based
diagnosis and a diagnosis based on a structured interview.36-38 Even in healthy old-old
adults, self-reports may have limited correlation with interview based diagnoses.39 Taking a
lesson from mice, different chromosomal areas are associated with different anxiety
measures, depending on what behavioral test is used.40 The differences could be associated
with potentially different evolutionary constructs.41 In humans, there are similarly unique
heritabilities for specific depression symptoms,42, 43 and it is conceivable for some genes to
better associate with MDD diagnosed using one methodology as compared to another.

Moreover, there may be etiologically different categories of MDD later in life,44 depending
on the concurrent development of cerebrovascular disease, recurrent life time history of
episodes, new onset following the occurrence of a psychosocial stressor, prodromal
symptoms of Alzheimer's disease, etc. In confirming or replicating results across studies, the
potential for non-replication because of measurement ‘artifact’ could be mitigated by studies
using a variety of methods and instruments for assessing E and MDD.

In addition, both depression and environmental measures can also obviously be confounded
by recall bias,45 with this problem likely worsening with age.46, 47 It is possible that
depressed mood as well as genes that affect memory could influence recall.48 Thus, studies
that rely on retrospective recall of either E and/or MDD diagnosis face this limitation. For
psychosocial ‘stressors’, how E is perceived may be important. That is, the emotional
valence or the controllability of major life events may both conceivably affect the
relationship with depression. For examine, a divorce could be a negative or a positive
occasion, depending on the circumstances. Similarly, the extent to which one has control
over the impact of the divorce may influence its impact on depression. Simply adding major
life events together has the potential to be misleading. And there is vast heterogeneity
among studies with respect to how life events are quantified, measured, and defined.

Finally, the information provided by genotyping can be affected by population stratification
(particularly when cases and controls in association studies arise from different
subpopulations); differing linkage between measured single nucleotide polymorphisms
(SNPs) and potentially causal polymorphisms in populations of differing ancestry; effects on
statistical power when testing multiple polymorphisms (particularly whole genome-wide
studies); and laboratory reliability of different genotyping methods.49, 50
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IV. Study design likely matters
A basic design is to examine two environments (e.g., “stressed” and “not stressed”) and to
examine whether genotype interacts with E in predicting the presence of depression. A
related design is to include quantitative gradations in level of E – and to assess for G×E
interaction. A third design is to assume that E is probably influential, select only those
subjects exposed to E, and test for a direct main effect of G. This latter design does not
examine interaction per se, but is a powerful method for detecting G in the setting of known
environmental ‘stressors’. Each of these designs can be employed in prospective, cross-
sectional, or retrospective fashion – with varying degrees of attention to measurement,
feasibility, assumptions, and statistical power.

V. Finally the age of the population examined likely matters
The extent of potential predisposing factors (e.g., prior history of MDD episodes, poor sleep,
chronic inflammation, frailty, pain, cognitive impairment, lack of social supports, etc.) and
potential precipitating factors (e.g., major illness, sudden disability, loss of loved one,
increased care-giver requirements, etc.) differ in the elderly. This could conceivably either
mitigate or vitiate the effect size of G×E interactions.

These five general elements tremendously vary across the studies that have been done to
date. Thus comparing results across studies is very difficult. Nonetheless, despite the inter-
study variability, some tentative conclusions are possible.

Polymorphisms in the serotonin (5-HT) transporter (SERT)
It has now been seven years since the first report of an interaction between stress and an
insertion/deletion polymorphism in the promoter region of the SERT gene (5-HTTLPR; with
short (S) and long (L) alleles) in the development of depression in young adults.51 This
initial prospective study longitudinally assessed E as the cumulative number of stressful life
events, including childhood maltreatment over a five year period.51 Those with the S/S
genotype were more sensitive to the adverse effects of stress on depression risk. This finding
was soon ‘replicated’ by another prospective study that assessed E as various threat levels
within one month prior to depression assessment. In this second study, the difference
between 5-HTTLPR genotypes was greatest at moderate threat levels,52 suggesting a left-
shift in the “stress-depression” curve and greater sensitivity in the short term to moderate
threats among those with the S/S genotype. This finding predicts minimal difference
between genotypes when no stress exists or at very high levels of precipitating stress. There
have now been almost sixty additional studies examining 5-HTTLPR for a potential G×E
interaction, with mixed results.53-55 A complete review of all these studies is not our intent,
but rather we will attempt to highlight both inconsistencies and consistent findings.

Like the prospective studies above, several G×E studies are longitudinal. Most of these have
replicated an interaction. In female twins, stressful life events in the three months prior to a
diagnostic interview was more depressogenic in those with the S/S genotype,56 an effect
also seen in twins who reported childhood adversity,57 and also 125 orphans with prior
institutional deprivation.58 A recent study specifically assessed bullying in 2017 children,
and again reported evidence for the S/S subjects subsequently developing more
depression.59 Complicating this trend, some longitudinal studies have only replicated a G×E
interaction for maltreatment and adolescent depression for females, but not males;60 or the
replication of G×E was evident later in life only when cumulative life events were tallied
over five years and not just one year.61 Conversely, another prospective study reported that
S/S genotype increased risk for adult MDD in those with only one traumatic event,
essentially shifting the stress-depression curve leftward.62 In all of these studies, the S/S
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genotype was more prone to MDD than the L/L genotype; but whether there is an additive,
recessive, or dominant effect for the S allele was not consistent between these studies.

Critically, there are some important longitudinal studies that did not find a G×E interaction.
A very large study of over four-thousand seven year olds found no evidence for G×E,
strongly arguing against a role for 5-HTTLPR as a risk factor for MDD in children at this
very young age.63 In another large study of subjects of various ages including older adults
twins (total n=3243), no role for 5-HTTLPR was again found.64 In this study, depression
symptoms in a telephone survey were assessed 1-10 years after a prior survey queried about
stressful events that initial year.

Also, one prospective study has found that the risk allele is actually the L allele.65 Because
of several negative and contradictory results, a recent meta-analysis examined a subset of
these studies, along with several other cross-sectional studies, and concluded that there may
be no G×E interaction for 5-HTTLPR.55 Regardless, the clear conclusion is that the G×E
interaction is definitely not universal. But, what accounts for the differences between studies
other than chance?66

One question is: does 5-HTTLPR interact with predispositional stress (e.g., trauma in
childhood influencing MDD risk in adulthood) or with adverse life events that are
precipitants of depression (i.e. stress immediately preceding an MDD episode)? Studies that
assess childhood maltreatment or early trauma of some type and then MDD years later are
often studies where stress may result in some enduring change in predispositional
vulnerability. Of these “predispositional” studies, most replicate the original finding of
Caspi et al.60, 67-69 Some other studies depend on how E was defined. For example, an
interaction for 5-HTTLPR was found in adults only when stressful traumatic events were
assessed across three levels of diversity, but not when they were dichotimezed.70 In another,
the G×E interaction was found only with childhood sexual trauma but not maltreatment
more generally.71 The few exceptions include a predispositional study where no G×E was
found in older adults when E was measured as father's education (a potential surrogate for
childhood adversity).72 Also, only a non-significant trend for greater depression symptoms
in S/S carriers was noted in a study where child adversity was measured as a continuous
measure (with explicit items regarding sexual and physical abuse purposefully not asked).57

Thus, most evidence implicates a role for the S/S genotype in augmenting the predisposition
for MDD that results from severe childhood trauma, in particular sexual abuse. But the
severity of the traumatic childhood experiences and how it is assessed and measured may be
an important variable, and possibly account for the limited number of negative findings.

G×E studies examining cumulative stress as a potential precipitating event in the months or
year preceding a depressive episode have been variable. Here, it is possible that the nature
(e.g. level of threat) and timing (e.g., a few months preceding MDD) are crucial variables in
determining whether G×E occurs. In a similar manner, 5-HTTLPR may affect the potency
but not the efficacy of a selective serotonin reuptake inhibitor.73 That is, 5-HTTLPR may
shift the concentration-response curve – and thus at high or at very low concentrations there
is no difference in antidepressant response. In the pharmacology case, E is readily quantified
as a medication concentration in the blood. If G similarly shifts the “stress-response curve”
(i.e. it takes less stress to trigger an MDD episode in an S/S carrier), then a 5-HTTLPR
influence on depression would only be evident at moderate levels of stress. Thus, assessing
the magnitude, the duration, and the timing of stress becomes important for ‘precipitation
studies’, albeit more difficult than simply measuring a blood level. Whether this possibility
may account for ‘negative’ studies' (e.g.,64) is purely speculative at this point.
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In older adults, medical illness is one specific type of precipitating environmental “stressor.”
Here, the results are fairly consistent. In 521 elderly subjects prospectively studied over 2
years, the S/S genotype increased the risk for MDD in those with four or more chronic
medical disorders, supporting a G×E interaction.74 Interestingly, another study also reported
that the S allele was associated with a left shift in the disease-burden and depression
relationship; however in this case, those with two or three chronic medical illness were more
at risk for depression symptoms if they had the S allele.75 Examining more specific medical
conditions, the S/S genotype has been associated with increased risk for depression in those
with Parkinsons,76 those with severe coronary disease,22 following a myocardial
infarction,77, 78 following a hip fracture,15 and following a stroke.79, 80 The only two
published exceptions to this trend that we found to date include a large study of patients with
existing cardiac illness where no role of 5-HTTLPR was found,81 and a prospective
examination of patients undergoing bypass graft surgery.82 Interestingly this latter study
found potential evidence for a complicating G-E correlation such that the L allele was
associated with additional cardiac events following surgery. Thus studies examining
cardiovascular disease may be confounded by the possibility that L allele increases the
likelihood of being exposed to a cardiac event (potentially reversing its beneficial effect).
This is consistent with studies that find that the L allele is associated with increased platelet
reactivity in depressed elderly.83 Notable, the relationship between MDD and vascular
disease is likely bidirectional.84 Also, many of the potential genetic influences on depression
may also influence coronary artery disease.85 Thus with the potential exception of cardiac
illness where studies may be confounded by potential G-E correlation, there is fairly well-
replicated support for the S/S genotype augmenting the detrimental effect of ‘medical illness
burden’ on depression risk

There have also recently been a few prospective studies of patients who are treated with
interferon-alpha, an inflammatory cytokine that can trigger MDD in about one-quarter of
patients. Here, two studies have found that evidence for the S/S genotype increasing
incidence for MDD during interferon-alpha therapy,86, 87 although there are two others (one
in a Chinese population; and one measuring depression symptoms using a questionnaire)
that did not.88, 89 This raises the possibility that in older adults, the S/S genotype may
sometimes be interacting with increased exposure to inflammatory cytokines (something
associated with increasing medical burden). Elevated inflammatory cytokines may be
important biomarkers for the development of geriatric depression during medical illnesses.90

Interestingly, cytokines can affect expression of the serotonin transporter,91 and this affect
may be influenced by the 5-HTTLPR polymorphism.92 As only a subset of patients with
elevated cytokines develop MDD, this is an area of genetic vulnerability and resilience still
awaiting further work.

Nonetheless, similar to findings in children and young adults, the interaction of 5-HTTLPR
with psychosocial precipitating stressors later in life is less clear. In one study of adults aged
41 to 80, there was no G×E interaction with either total number of adverse life experiences
recalled or with adverse events and long term difficulties in the previous five years.93

However, a study of Korean elders found a G×E interaction,94 and the S/S genotype was
also associated with increased risk in caregivers under this type stress.72 Another study of
older adults found a G×E interaction only when the life event history was severe and
traumatic, but not otherwise.95 Again, differences in the severity stress among these studies
may continue to play an important role.

In brief summary, there are some tentative conclusions that can be made. (i) A universal
interaction between “stress” and 5-HTTLPR is not likely, as evidenced by negative findings
in several large studies. (ii) Older adults with S/S genotypes have enhanced depression risk
secondary to medical illness as a “precipitating” factor, and this appears to be mostly
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replicated. (iii) Also, in younger adults with S/S genotypes, enhanced “predispositional” risk
from severe childhood trauma appears to be mostly replicated. The implication of this for
the elderly is that the relative risk for late-life MDD episodes is 90-fold for people with a
prior history of past MDD episodes.17 Thus, the 5-HTTLPR × early trauma interaction may
affect recurrent MDD and extend into late-life. (iv) Whether S/S also increases risk for the
effect of cumulative precipitating stressors in late life may depend on the severity of the
stress. Findings among studies in this area are very variable - with notable heterogeneity in
design, as well as variability in E, G, and MDD assessment. Thus at this point, this
possibility is less conclusive.

The pathophysiology of how the S/S genotype could be influencing risk for MDD remains
to be clarified but plausible possibilities include effects on cerebral white matter
disease,96, 97 effects on hippocampus volume,98, 99 effects on amygdala function,100 effects
on amygdala and frontal cortical connectivity,101, 102 effects on sleep quality,86, 103 effects
on the cortisol stress axis,104, 105 etc.

Polymorphisms in the hypothalamic pituitary adrenal (HPA) axis
Abnormal axis (HPA) feedback and hyper-reactivity are often present in people with
MDD.106, 107108 This includes disrupted glucocorticoid receptor (GR) expression,
translocation, and concomitant resistance to cortisol.107 Chronic psychosocial stress may
also impair appropriate regulation of the HPA axis.109 One plausible hypothesis is that an
imbalance between mineralocorticoid and glucocorticoid responses occur in MDD.110 Thus,
polymorphisms in genes for GR, in corticotrophin releasing hormone (CRH), in both CRH
receptors (CRHR1 and CRHR2), and in a GR chaperone (FKBP5) may all play roles in
response to stress.111 Over the past several years, a few G×E studies examining HPA genes
have occurred. For example, in a longitudinal study of 906 aging subjects, child adversity
affected both depression risk and cortisol levels; and polymorphisms in the GR gene
increased the risk for depression.112 The polymorphisms of interest for GR appear to
influence acute corticosteroid response as well as HPA axis reactivity.110

CRHR1 gene polymorphisms also interact with childhood abuse to predict sensitivity to a
dexamethasone/CRH challenge.113 Consistent with this, several polymorphisms and a
haplotype spanning intron 1 interact with childhood abuse to predict MDD in adulthood.114

This haplotype finding was replicated in one longitudinal cohort but not in another (although
the other cohort measured abuse differently).115 Also, there appears to be a G×G×E
interaction in which 5-HTTLPR and CRHR1 may interact with child abuse history to predict
adult MDD.70 Of note, these studies have specifically examined childhood trauma, and not
stressors more proximal to MDD episodes later in life. But they are consistent with findings
that serotonin transporter function can be influenced by glucocorticoids, and that this
influence is moderated by 5-HTTLPR in creating a long-lasting predisposition to MDD.116

An immunophilin that is involved in translocation of GR from the cytosol to the nucleus,
FKBP5, may likewise play an important role.117, 118 Alleles associated with enhanced
expression of FKBP5 lead to an increased GR resistance and decreased efficiency of the
negative feedback of the HPA axis. Polymorphisms for the FKBP5 gene have been
primarily been examined with respect to post-traumatic stress disorder, where they may be
associated with prolonged HPA response to trauma, potentially resulting in long-lasting
changes.119 One hypothesis is that these HPA-related polymorphisms are primarily
interactive with early-life trauma, leading to a life-long predisposition or vulnerability to the
effects of other types of stresses later in life.119 Whether this is true for geriatric depression
remains to be examined. Finally, it is biologically plausible that other polymorphisms in
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genes encoding for HPA-related proteins such as CRHR2 and CRH may also interact with
stress.120, 121

Although it is plausible that HPA genes may both affect vascular disease and MDD risk
(including a plausible G-E correlation), any potentially interacting role for CRH1, CRH2, or
FKBP5 in late-life MDD remains awaits future study. Moreover, whether HA axis genes
may interact with more proximal “precipitating” factors or medical-illness-related
inflammatory changes is currently unknown.

Brain-Derived Neurotrophic Factor (BDNF)
Impairment in growth factors such as BDNF may lead to MDD, and BDNF Met/Val variants
have been associated with MDD.122 Interestingly, major traumas early in life can directly
affect methylation and expression of BDNF.123 Also, serotonin transporter function can be
modulated by BDNF.124 BDNF genetic variants may also influence GR sensitivity125 and
interact with stress to influence vulnerability.68 Consequently, both the BDNF gene
Val66Met polymorphism and polymorphisms in its receptor have been associated with late-
life MDD,126 along with increased suicidal ideation.127

Consistent with this, the BDNF Met/Val functional polymorphism has been found to interact
with stress in a couple studies.69, 128 It is possible that the effect of early life stress on brain
arousal pathways is influenced by this polymorphism, resulting in a predisposition to
depression later in life.129 The BDNF Val/Met polymorphism may also interact with both 5-
HTTLPR and caregiving stress (as measured in parents of psychotic patients) to influence
depression.130 This is consistent with two BDNF × SERT × stress interactions found in
younger patients.57, 68 There are a limited number of studies examining G×E for BDNF, and
future work is clearly indicated. Nonetheless, the potential for G×G×E is enticing.

Other monoaminergic genes
A very limited number of studies have started to explore the potential for other
monoaminergic genes and their interaction with E. There have not been enough published
reports yet to make any inferences regarding trends or consistencies among studies.
However, there are some suggestive findings. A potentially functional polymorphism in
catecholamine-O-methyl transferase (COMT) may interact with 5-HTTLPR and stress to
influence depression risk.131 Interestingly, the COMT polymorphism was also associated
with depressive symptoms post-partum, both alone and in G×G interaction with MAOA.132

A polymorphism in the 5-HT1A gene interacted with recent stressful events in females aged
either 20-24 or 60-64, associating with depression in select post-hoc analyses, though no
G×E interaction was noted in general for this gene.133 Polymorphisms in 5-HT1A have been
linked to depression, and 5-HT1A binding is reduced in depressed people.134 A
polymorphism in 5-HT1A has also been found to predict depressive symptoms in patient
receiving interferon-alpha.88 Using urban/rural residency to define ‘E’, the 5-HT2A gene
may interact with residency to influence depression symptoms;135 and a polymorphism in
the 5-HT3A receptor gene may interact with early-life stress, resulting in differences in
hippocampus and frontal grey matter.136 Again using rural residency as a surrogate marker
for stress in a recent study of Chinese citizens, a norepinephrine transporter polymorphism
interacted to influence MDD risk.137 Notably, these are all single studies, with a variety of
approaches, designs, and ways of defining E. Thus there are enticing leads, but further
replication work is needed.

Two other monoaminergic genes of potential importance include tryptophan hydroxylases 1
and 2 (TPH1 and TPH2). In the peripheral systemic circulation, the relative action of TPH1
and indolamine deoxygenase can influence whether tryptophan is metabolized to serotonin
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or to kynurenine and other glutamatergic compounds.138 The kynurenine/tryptophan ratio is
elevated in melancholic adolescents139 and depressed subjects receiving interferon-alpha.140

Elevated tryptophan may mitigate the effect of the S/S genotype on mood,141 and 5-
HTTLPR interacts with tryptophan depletion in acute studies of mood.142, 143 In adults,
TPH1 polymorphisms may moderate the effect of social support on depression.144 There is
also some evident that TPH1 polymorphisms interact with stressful childhood experiences in
influence harm avoidance, which may increase risk for MDD.145 Whether TPH1
polymorphisms interact with 5-HTTLPR in a G×G×E fashion remains to be determined.
TPH2 also may interact with family structure to influence childhood depression
symptoms.146 Also, although indolamine deoxygenase gene has glucocorticoid response
elements,147 whether polymorphisms in this gene interact with stress in increasing MDD
risk is not know to our knowledge. Regardless, further work is required with respect to G×E
studies.

Other genes
There is preliminary evidence for other candidate genes. Although few of these studies have
been replicated, there is the possibility that specific genes may interact with specific
“precipitants.” That is, there may be unique “subtypes” of depression in which different
genes interact with different environmental precipitants; for examples, risk genes for
menopausal, for inflammatory cytokines, for circadian shift, etc.. As noted in the
introduction to this review, there are many seemingly different and varied plausible
‘environmental’ precipitants for MDD that have been described, and each may have its own
unique genetic interactions.

As examples, a gene influencing metabolism of estrogen, coding for the enzyme CYP1A1,
may double depression risk in peri-menopausal women.148 Polymorphisms affecting
interleukin-6 may influence depression risk in the setting of increased inflammation,
potentially in interaction with 5-HTTLPR.87, 149 In late life, MDD has been associated with
both vascular disease as well as a prodromal condition to Alzheimer's disease. Here, APOE4
may increase risk non-vascular late-life MDD, but not MDD associated with
cerebrovascular disease.150 A polymorphism in NPY may protect against depression in the
setting of stress;151 and two studies have reported an interaction between the cannibinoid
receptor gene polymorphism and stressful events in the risk for depression81, 152 Thus
ultimately, there may be the potential for several cumulative G×E interactions in late-life –
depending on which combination of environmental precipitants are present. For the elderly,
it is likely that future studies will need to increasingly attend multiple measures of “E” (in
addition to childhood adversity or recent psychosocial stress).

Possible epigenetic mechanisms
Early life traumas appear to be the most studied and replicated risk for MDD in most of the
G×E studies to date. So how does this affect risk later in life? Early life trauma can manifest
many years later as increased proinflammatory signaling,23 and genomic studies of MDD
have identified roles for genes such as TBX21 and PSMB4, which are influential in
inflammation.153 Thus, changes in inflammatory and endocrine processes are implicated in
the etiology of MDD. However, early life stress has many additional potential long lasting
effects. Of particular note, epigenetic phenomena are increasingly being understood as
mediating many of the life-long effects of early environmental events.154

That is, it is possible that environment can induce changes in the genome itself, either
through modification of nucleotides or through packaging of the DNA in histones. In fact,
chromatin remodeling may be one way in which early environmental conditions can have
prolonged influences on vulnerability to MDD.155 Alternatively, maternal effects on pups
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can influence HPA reactivity later in life via effects on DNA methylation of the GR gene.156

This is also possible in humans whereby early adversity may have prolonged influences on
brain GR.157 Thus, events in childhood could lead to enhanced sensitivity to ‘stress’ later in
life, as well as enhanced sensitivity of the inflammatory pathways.23 Also, just as BDNF
variants may interact with stress to influence MDD vulnerability, increased methylation of
BDNF has also been found in the brains of suicidal subjects.158 And there appears to be a
role for early traumas in increasing the level of BDNF methylation.123

Interestingly, in non-abused patients with MDD, no GR methylation differences from
controls were found. 159 However in this study, production of NGFI-A, a transcription factor
for GR, was decreased in the hippocampus of depressed subjects.159 This is interesting
because NGFI-A can mediate the effects of serotonergic signaling and BDNF. Thus, there
may be alternative routes to MDD that converge on pathways such as this. That is, either GR
methylation because of early-life trauma can occur or transcription factors changes in late-
life can occur, and either of these paths could lead to decreased expression of GR.

To complicate the picture more, polymorphisms may affect epigenetic processes. For
instance, 5-HT transporter levels are influenced by methylation of the SERT gene,160 and
this could interact with 5-HTTLPR in expression of the transporter.161 One possibility is that
both the 5-HTTLPR and increased methylation could additively be necessary for decreased
SERT expression.162 However, research in this area is preliminary.

Clearly there are many candidate pathways and interactions that require explication.
Epigenetic effects are just one. Future studies will need to (i) better delineate genetic
influences on vulnerability to early life trauma; (ii) define which epigenetic effects of trauma
are important for subsequent predisposition to depression; (iii) assess how predisposition
interacts with subsequent environmental precipitants; and (iv) determine which genes
interact with which precipitants – in the presence of absence of these other sources of
vulnerability.

Summary
After seven years and almost 60 heterogeneous studies later, we can probably safely
conclude that a 5-HTTLPR by ‘stress’ interaction is not universal. However, the pattern of
results suggest that the nature of ‘stress’ that is measured, and how it is measured matters.
Based on the results of these studies, several intriguing hypotheses present themselves: Does
S/S increase the maximal effect of childhood trauma, leading to recurrent MDD that recurs
through old age? Does the S/S allele interact with elevated inflammatory cytokines, shifting
the inflammation-MDD curve leftward? Does S/S shift the precipitating stress-MDD curve
leftward, for psychosocial precipitants?

Only very tentative conclusions are possible. For 5-HTTLPR, there is some evidence that
the long-lasting effects of severe early life trauma is enhanced by the S/S genotype.
Preliminary findings also support this for genes affecting the HPA axis and BDNF. In most
of these studies, the interactive effects seem to be most evident at very severe stress, and
often sexual trauma. This suggests that these genes may influence the maximal effect of
early-life trauma (shifting the curve upward rather than leftward), a set of hypotheses that
requires more definitive testing. In elderly adults, one would specifically predict that this
type of G×E would result in an enhanced history of recurrent depression (i.e., early onset
MDD) throughout the life.

Whether 5-HTTLPR influences the potency of precipitating psychosocial stressors is
debatable. One possibility is the ‘double-hit’ hypothesis, whereby early trauma increases the
risk for MDD by shifting the ‘precipitating stress-MDD’ relationship in subsequent years.163
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In other words, traumatized children are more vulnerable to the effects of subsequent
stresses as adults. Thus, 5-HTTLPR may influence the maximal effect of early trauma, and
by this pathway indirectly influence the subsequent ‘precipitating stress-MDD’ relationship
later in life. Alternatively, 5-HTTLPR may shift left-ward the ‘precipitating stress-MDD’
relationship regardless of childhood trauma. There is some evidence for this.52 Regardless,
testing and replication of this hypothesis will require careful attention to measurement of E,
including its timing, intensity, and chronicity.

In adults, the influence of medical illness on co-morbid MDD does appear to be enhanced
by the S/S genotype, with the preponderance of evidence suggesting that the ‘potency’ of
illness is affected (shifting the curve leftward). However, this affect on potency may
conceivably be mitigated by concurrent effects on platelet reactivity and vascular risk.
Nonetheless, one critical question is: what aspect of medical illness is in interaction with
genetics? Is it psychosocial stress, increased inflammation, or something else? If it is
increased inflammation, then this proffers the opportunity to have a blood-based measure of
‘environment.’ One speculative but tempting hypothesis is that the S/S genotype affects the
‘inflammation-MDD’ relationship. To examine this, inflammatory cytokines such as
interleukin-6 and interleukin-1b can be used as direct biomarkers of ‘medical stress.’ In
other words, quantitatively measuring E using endocrine and inflammatory biomarkers may
be one way of feasibly determining its interaction with 5-HTTLPR.

Polymorphisms in BDNF, the HPA axis, and other monoaminergic genes are also recently
being examined as potential sources of vulnerability to adverse environments. This same set
of questions will likely apply to them, but additional hypotheses arise. For example, do
specific precipitants such as low-estrogen states interact with specific genes products such as
CYP1A1? That is, should we be matching specific environments with specific
polymorphisms? This question is particularly important for the elderly, where a variety of
potential sources for depression can exist, sometimes simultaneously.

One might anticipate no progress for a complex, multi-factorial disorder such as geriatric
MDD, which can have a complicated recurring presentation, a new onset late in life, and/or
comorbidity with either vascular disease or prodromal dementia. Nonetheless, progress has
been made. As we better understand the potential nature of G×E interactions, as well as the
pathways that likely mediate these effects, we can anticipate further progress. With careful
attention to robust measures of E, of G and of MDD, it is likely that this trend will
accelerate.

Synopsis
In older adults, several environmental challenges can potentially trigger the onset of an
episode of major depression. Vulnerability to these challenges can be influenced by
genetics. There is accumulating evidence for an interaction between stress and a serotonin
transporter polymorphism, though there is also heterogeneity among studies. Other relevant
genes include those encoding for the neuroendocrine stress axis, growth factors, and other
monoaminergic systems. Each of these may interact with either predisposing traumas in
early childhood or precipitating events later in life.
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