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Abstract
Follicular Lymphoma (FL) is one of the most common types of non-Hodgkin Lymphoma in the
United States. Diagnosis of FL is based on tissue biopsy that shows characteristic morphologic
and immunohistochemical findings. Our group’s work focuses on development of computer-aided
image analysis techniques to improve FL grading. Since centroblast enumeration needs to be
performed in malignant follicles, the development of an automated system to accurately identify
follicles on digital images of lymphoid tissue is an important step. In this paper we describe an
automated system to identify follicles in IHC stained tissue sections. A unique feature of the
system described here is the use of texture and color information to mimic the process that a
human expert might use to identify follicle regions. Comparison of system-generated results with
expert-generated ground truth has shown promising results, with a mean similarity score of
87.11%.
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I. Introduction
FOLLICULAR Lymphoma (FL) is the second most common non-Hodgkins lymphoma in
the United States. It accounts for 35% of all adult B cell lymphomas, and 70% of low grade
lymphomas in U.S. clinical trials. A grading system adopted by the World Health
Organization (WHO) divides FL into three histological grades based on the average number
of centroblasts (CB), in ten random, microscopic standard high power fields (HPF) [1].
Grade 1 has up to 5 CB/HPF, grade 2 has 6-15 CB/HPF and grade 3 has greater than 15 CB/
HPF. Grades I and II are considered indolent with long average survival rates and patients
with these grades of FL and low clinical stage do not require chemotherapy. In contrast,
grade III FL is an aggressive disease that is rapidly fatal if not immediately treated with
aggressive chemotherapy. These differences underscore the importance of accurate
histological grading of FL to appropriately risk stratify FL patients and to guide crucial
clinical decisions of timing and type of chemotherapy. Establishing the diagnosis of FL in
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the majority of cases is not difficult and is based on characteristic morphologic and
immunophenotypic findings using hematoxilin and eosin (H&E) and
immunohistochemically (IHC) stained tissue sections. Histological grading of FL using
WHO adopted manual method is labor intensive and difficult and shows poor
reproducibility. One tool that may greatly aid pathologists in accurate FL grading is
computer based image analysis.

Computer-aided diagnosis (CAD) tools are gaining more acceptance with advancements in
imaging technologies and the mature image analysis tools available to researchers. Our
group has been developing tools for computer-aided prognosis of neuroblastoma [2],[3] and
grading of follicular lymphoma [4],[5] with promising results. The work described in [5]
develops tools for the detection of follicles using H&E and IHC stained tissue. Using these
results, we developed models to describe tissue histology for classification of FL grades [4].
Previous research in this area has focused on morphometric analysis of FL images [6],
which compared diagnosis based on three different stains while [7] developed classifiers for
subtyping FL. Recently, [8] has developed image analysis tools for counting nuclei in IHC
stained FL tissue images using color features and watershed segmentation.

In this paper, we describe a new method for the detection of follicles in IHC slides based on
the work done in [5]. The approach in [5] used color and texture features to identify
potential follicle regions and attempted to fit an ellipse to the region. However, fitting an
ellipse to a follicle is not always optimal since the shape of follicles can vary significantly
depending on the tissue. In this paper, we extend the work in [5] by using different color and
texture measures for identifying follicles. By using the proposed algorithm, we alleviate the
need to fit ellipses to follicles and obtain better follicle boundaries. We also implement an
iterative watershed segmentation algorithm for splitting up merged regions. The recursive
algorithm adapts to each object and thus reduces over and under-segmentation. Finally, our
algorithm uses boundary smoothing based on Fourier descriptors to obtain a smooth follicle
boundary.

II. Proposed Method for Follicle Segmentation
FL grading is based on the number of centroblasts in ten random standard microscopic high
power fields representing malignant follicles in H&E stained tissue. To build an effective
computer-aided system for FL diagnosis and grading, it is important to identify the follicle
regions in the tissue. IHC stains help identify follicle regions in tissue which are then
registered with the H&E image which is used for the diagnosis. Figures 1(a) and 1(b) show
two sample images of tissue stained with CD10 and CD20 stains, respectively. Follicle
regions are marked with blue boundaries in both images.

From Figure 1 it can be seen that under low magnification, the follicular patterns appear
similar in both images. Follicles can range in shape from circular to elliptical with a large
variation in the size depending on the tissue. The follicle regions are comprised of brown
hues with varying amount of blue regions separating the follicles. Based on the
characteristics of the stained tissue images, we propose a novel three step process for the
segmentation of the individual follicles in the image. The first step performs a rough
segmentation of the follicles using a combination of color and texture features, the second
step separates overlapping follicle regions into individual follicles and the third step
smoothes the estimated follicle boundaries. The flowchart for the algorithm is shown in
Figure 2.
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III. Rough Segmentation of Follicles using Clustering
Rough segmentation of follicles is achieved by clustering the image into four classes
(background, blue cells, dark brown regions and light brown regions) using a three element
feature vector consisting of one color feature and two texture features calculated from the
image as described in this section.

A. Color Feature
Color is a very important feature that is used to identify objects of interest in images. Color
images are typically represented as linear combinations of the primary colors: Red, Green
and Blue (RGB). However, in RGB images, there is significant correlation between the three
color channels and may not be a suitable representation for image processing purposes.
Several other color-spaces such as the YIQ, HSV, CIE La*b are defined for representing
color images. In our work, we have used the HSV (Hue, Saturation, Value) color-space
because it decouples color information from the intensity information and is similar human
color perception [9]. The Hue channel describes color, (i.e. red, green, blue, etc.) and can be
used to identify colors of interest. In CD10 and CD20 stained tissues, the regions of interest
consist mainly of brown hues separated by blue and/or background regions. Therefore, we
used the pixel values in the Hue channel as one of the features for clustering. Two sample
histograms are shown in Figure 7.

B. Smoothing
The second feature is obtained through the reduction in texture variations inside the follicle
regions by a smoothing operation on a grayscale version of the RGB image. While a low-
pass filter may be used, it has the disadvantage of smoothing edges in the image. We use a
median filter for smoothing the textural variations inside follicle while preserving the
follicle boundaries.

We use a median filter with a large kernel size for smoothing the grayscale image under
consideration. For 4x resolution images, a kernel size of 15 × 15 is used. Because the
median filtered image demonstrates low contrast, a histogram equalization operation is used
to increase the contrast of the image. The equalization operation also helps in better
identifying the follicle regions. The pixel values in the histogram-equalized image was then
used as the second feature.

C. Texture Energy using Co-Occurrence Matrix
The last feature used for follicle identification is calculated using gray level co-occurrence
matrices. Gray level co-occurrence matrices provide a statistical method for characterizing
spatial dependencies of gray levels in an image [10]. Co-occurrence matrices measure the
frequency of occurrence of pairs of gray values separated by a fixed distance and angle.

Using the co-occurrence matrix, a number of textural attributes to characterize properties
such homogeneity, contrast, energy, complexity of image, etc can be calculated [10]. In the
detection of follicles it is observed that follicle regions consist of tightly packed cells and
thus can be seen as having more textural energy than non-follicle regions in the image.
Therefore, the energy metric is used as a feature vector for determining follicle locations.

D. Clustering
The three element feature vector consisting of the Hue channel values, histogram equalized
output of the median filter and the energy vector calculated from the co-occurrence matrix
were used to cluster the image into follicle and non-follicle regions. We use the K-means
clustering algorithm for this purpose. The K-means algorithm is an unsupervised clustering
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method for partitioning data into K subsets. In CD10 images, we expect to find four clusters
comprising of the slide background, cells that have been stained blue, follicle regions
corresponding to the darker brown regions, regions that appear light brown due to sparcity
of cells in that part of the image.

After K-means clustering, we identify the cluster corresponding to follicle region by using
the average of the median filtered pixel value of all pixels assigned to a given cluster. Since
the follicles are expected to be the darkest regions in the tissue, the cluster with the lowest
average pixel value corresponds to the follicles in the image and a segmented image is
obtained by setting the corresponding pixel locations to 1 and all other pixels to 0. This
process can produce regions with mis-classified pixels inside follicles, we use
morphological filling to enforce a smoothness constraint on the binary image. We apply the
watershed transform to the distance transform of this binary image as described in the next
section.

IV. Overlapping Follicle Separation
The K-means algorithm described in Section III-D is used to produce a segmented image in
which follicle regions are marked as 1 and background regions as 0. However, this process
may result in multiple follicles that are merged into one region and must be separated. This
is achieved using the watershed transform.

The watershed transform can lead to oversegmentation and several approaches have been
proposed for reducing the oversegmentation such as the use of shape priors. However, this
typically requires a representative training set. Due to the large variation in follicle shapes,
this approach is not suited for our task. Another approach is the use of the H-minima
transform [9], [11] which is used to suppress minima in the image that are less than a
specified value. To overcome the problem of choosing a value for the H-minima transform
that works on all potential objects, we employ an adaptive method similar to [12] in which
we apply the watershed transform to the image recursively until the segmentation can no
longer proceed. Following the notation in [12], let H(gI, h) be the H-minima transform for
threshold h on the inner distance map gI of the image I and Nh be the number of objects in
the image. The algorithm proceeds as follows

i. Set h = 1, hadp = 0

ii. Calculate H(gI, h), Nh and Nhadp

iii. While Nh > Nhadp do :

hadp = h, Set h = h + 1

Calculate H(gI, h) and Nh

Figure 4 shows the progression of this when algorithm applied to connected object. This
iterative approach was found to be effective in splitting objects that are merged during
segmentation. However, in the case of CD10 images it was observed that a narrowing of
objects was not a sufficient condition for splitting objects. For example, even though the
watershed process separated multiple objects, they were considered a single follicle by the
human expert. On the other hand, in case of CD20 images, this approach was successful in
splitting B-cell regions of interest in almost all cases.

V. Follicle Boundary Smoothing
The output of the watershed transform described in Section IV produces disjoint regions that
corresponds to the follicle regions. However, the boundaries of the follicles are very noisy
and further processing is required to smooth the boundaries. We use Fourier descriptors for
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smoothing object boundaries. Fourier descriptors are used for representing object boundaries
[9] by representing the co-ordinates of each pixel on the boundary of an object as a complex
number and calculating the Fourier transform of the complex numbers. Boundary smoothing
is achieved by using only a subset of the Fourier coefficients for reconstructing the object
boundary. Figure V shows an example of boundary smoothing.

VI. RESULTS
A. Segmentation Results

Images used in this study were acquired using an Aperio ScanScope XT digitizer and
scanned at 40x microscope resolution. At 40x resolution, the CD10 image used in this study
was 96,899 × 174,600 pixels in size and was scaled down to 4x resolution for analysis. Our
proposed algorithm was applied to 8 images of a CD10 stained tissue. Average image size of
the test data was 900 × 1400 pixels. Images of different sizes were chosen due to the fact
that follicles can have widely varying sizes and shapes and each image used in the paper was
large enough to have several follicles. Results of the automated image analysis were
compared with ground truth generated with the help of pathologists.

Figure 6 shows the follicle boundaries detected by our algorithm on one of the test images,
using immunostaining for CD10. The blue boundaries were marked manually by a trained
pathologist and red boundaries are generated by the proposed algorithm.

B. Measuring Segmentation Accuracy
The goal of this research is to find follicle regions in IHC images. The follicle regions are
then registered with an adjacent H&E stained tissue slice. Thus, the shape of the follicles
and their location in the tissue are critical to the process. The proposed algorithm is
evaluated by comparing the agreement between the manually segmented follicles and the
computer segmented follicles by using a similarity index as defined in [13]. This similarity

measure is defined as :  where, M and A are the objects obtained from
manual and automatic segmentation respectively and n{A} is the number of elements in set
A.

In some cases, the algorithm splits follicles which are treated as a single follicle by the
expert pathologist. In such cases, the similarity score is calculated by considering all the

split follicles using the formula , where A1 and A2 are the
computer detected objects.

Similarity scores were calculated for each follicle in each image. Table I shows the average
similarity scores for 8 test images. The score listed in the table is the average score of all
follicles in a given image.

The average similarity score for Image 8 is low because classification of the image into four
classes as described in Section III-D leads to oversegmentation. By reducing the number of
k-means classes to three, a significantly better result is obtained. Additional steps are thus
necessary to better identify the number of classes in the image based on the content of the
image. One approach to adaptive selection of the number of classes is through the
examination of the Hue channel histogram. We have observed that in some cases, the image
can be classified into only three classes consisting of dark brown, light brown and
background/blue regions. In such cases, the Hue histogram shows that the amount of blue in
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the image is significantly lower than in other cases. An example of the Hue histogram from
two such images is shown in Figure 7.

The proposed algorithm was applied to a whole slide image of CD10 stained tissue of
dimension 9,689×17,460 pixels and takes approximately 1 hour 15 minutes to process a
single image. Several additional challenges are posed by the large image size and additional
work is necessary to parallelize the algorithm and run on multiple CPUs in order to make the
processing practical for clinical application.

C. Sensitivity to processing parameters
Our algorithm was found to be most sensitive to the median filter size and the number of
classes used for k-means clustering. Using smaller median filter sizes leads to follicles being
broken up into smaller objects that need significant processing to merge. On the other hand,
larger filter sizes lead to too much merging of regions, especially when applied to analysis
of CD20 images. This led to our choice of a 15×15 median filter. As discussed in the
previous section, the number of classes in the image can vary depending on the tissue and an
adaptive method for selecting the number of classes is necessary.

VII. Conclusion
In this paper we have presented a novel method for detecting follicles in CD10 images. Our
algorithm combines color and texture information from the image for identifying follicle
regions. We propose and implement an iterative watershed algorithm for splitting merged
regions in order to avoid oversegmentation which is a major problem for these kinds of
problems. Computer segmentation results were compared with manual segmentation
resulting in an average similarity score of 87.11%. Our algorithm was also applied to CD20
images and has been found to be successful in locating all B-cell regions which include the
follicle and the mantle zones. Further research is under way to separate the follicles from the
mantle zone in CD20 slides.

This algorithm is the first crucial step in a computer-aided diagnosis system for Follicular
Lymphoma. By identifying all the follicles in the image, we can use the entire tissue section
for diagnosis and grading of the disease, thus providing experts with another tool that can
help improve accuracy of the diagnosis.
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Fig. 1.
Follicle regions in IHC stained tissue
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Fig. 2.
Outline of proposed algorithm
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Fig. 3.
Example scatter plot for test image after clustering
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Fig. 4.
Application of recursive watershed transform to split objects
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Fig. 5.
Boundary smoothing using Fourier descriptors
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Fig. 6.
Result of proposed algorithm for images using CD10 immunostaining
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Fig. 7.
Hue channel histogram for different image content
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TABLE I
Similarity scores for 8 test images at 4x microscope resolution: Overall average score
87.11%

Image Avg. Score (%)

1 91.77

2 89.68

3 93.47

4 93.91

5 92.04

6 91.38

7 84.37

8 60.29
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