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Abstract
We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for
large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a
simple and very efficient convex algorithm for minimizing the reconstruction error subject to a
bound on the nuclear norm. Our algorithm SOFT-IMPUTE iteratively replaces the missing elements with
those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently
compute an entire regularization path of solutions on a grid of values of the regularization
parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD
of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a
complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily
scalable to large matrices: for example it can obtain a rank-80 approximation of a 106 × 106

incomplete matrix with 105 observed entries in 2.5 hours, and can fit a rank 40 approximation to
the full Netflix training set in 6.6 hours. Our methods show very good performance both in
training and test error when compared to other competitive state-of-the art techniques.

1. Introduction
In many applications measured data can be represented in a matrix Xm×n, for which only a
relatively small number of entries are observed. The problem is to “complete” the matrix
based on the observed entries, and has been dubbed the matrix completion problem
[CCS08,CR08,RFP07,CT09,KOM09,RS05]. The “Netflix” competition (e.g. [SN07]) is a
popular example, where the data is the basis for a recommender system. The rows
correspond to viewers and the columns to movies, with the entry Xij being the rating ∈ {1,
…,5} by viewer i for movie j. There are 480K viewers and 18K movies, and hence 8.6
billion (8.6 × 109) potential entries. However, on average each viewer rates about 200
movies, so only 1.2% or 108 entries are observed. The task is to predict the ratings that
viewers would give to movies they have not yet rated.

These problems can be phrased as learning an unknown parameter (a matrix Zm×n) with very
high dimensionality, based on very few observations. In order for such inference to be
meaningful, we assume that the parameter Z lies in a much lower dimensional manifold. In
this paper, as is relevant in many real life applications, we assume that Z can be well
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represented by a matrix of low rank, i.e. Z ≈ Vm×kGk×n, where k ≪ min(n, m). In this
recommender-system example, low rank structure suggests that movies can be grouped into
a small number of “genres”, with Gℓj the relative score for movie j in genre ℓ. Viewer i on
the other hand has an affinity Viℓ for genre ℓ, and hence the modeled score for viewer i on

movie j is the sum  of genre affinities times genre scores. Typically we view the
observed entries in X as the corresponding entries from Z contaminated with noise.

Recently [CR08,CT09,KOM09] showed theoretically that under certain assumptions on the
entries of the matrix, locations, and proportion of unobserved entries, the true underlying
matrix can be recovered within very high accuracy. [SAJ05] studied generalization error
bounds for learning low-rank matrices.

For a matrix Xm×n let Ω ⊂ {1,…,m} × {1,…,n} denote the indices of observed entries. We
consider the following optimization problem:

(1)

where δ ≥ 0 is a regularization parameter controlling the tolerance in training error. The rank
constraint in (1) makes the problem for general Ω combinatorially hard [SJ03]. For a fully-
observed X on the other hand, the solution is given by a truncated singular value
decomposition (SVD) of X. The following seemingly small modification to (1),

(2)

makes the problem convex [Faz02]. Here ‖Z‖* is the nuclear norm, or the sum of the singular
values of Z. Under many situations the nuclear norm is an effective convex relaxation to the
rank constraint [Faz02, CR08, CT09, RFP07]. Optimization of (2) is a semi-definite
programming problem [BV04, Faz02] and can be solved efficiently for small problems,
using modern convex optimization software like SeDuMi and SDPT3. However, since these
algorithms are based on second order methods [LV08], they can become prohibitively
expensive if the dimensions of the matrix get large [CCS08]. Equivalently we can
reformulate (2) in Lagrange form

(3)

Here λ ≥ 0 is a regularization parameter controlling the nuclear norm of the minimizer Ẑλ of
(3); there is a 1-1 mapping between δ ≥ 0 and λ ≥ 0 over their active domains.

In this paper we propose an algorithm SOFT-IMPUTE for the nuclear norm regularized least-
squares problem (3) that scales to large problems with m, n ≈ 105–106 with around 104–105

or more observed entries. At every iteration SOFT-IMPUTE decreases the value of the objective
function towards its minimum, and at the same time gets closer to the set of optimal
solutions of the problem 2. We study the convergence properties of this algorithm and
discuss how it can be extended to other more sophisticated forms of spectral regularization.
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To summarize some performance results1:

• We obtain a rank-11 solution to (2) for a problem of size (5 × 105) × (5 × 105) and |
Ω| = 104 observed entries in under 11 minutes.

• For the same sized matrix with |Ω| = 105 we obtain a rank-52 solution in under 80
minutes.

• For a 106 × 106 sized matrix with |Ω| = 105 a rank-80 solution is obtained in
approximately 2.5 hours.

• We fit a rank-40 solution for the Netflix data in 6.6 hours. Here there are 108

observed entries in a matrix with 4.8 × 105 rows and 1.8 × 104 columns. A rank 60
solution takes 9.7 hours.

The paper is organized as follows. In Section 2, we discuss related work and provide some
context for this paper. In Section 3 we introduce the SOFT-IMPUTE algorithm and study its
convergence properties. The computational aspects of the algorithm are described in Section
4, and Section 5 discusses how nuclear norm regularization can be generalized to more
aggressive and general types of spectral regularization. Section 6 describes post-processing
of “selectors” and initialization. We discuss simulations and experimental studies in Section
7 and application to the Netflix data in Section 8.

2. Context and related work
[CT09,CCS08,CR08] consider the criterion

(4)

With δ = 0, the criterion (1) is equivalent to (4), in that it requires the training error to be
zero. Cai et. al. [CCS08] propose a first-order singular-value-thresholding algorithm SVT
scalable to large matrices for the problem (4). They comment on the problem (2) with δ > 0,
but dismiss it as being computationally prohibitive for large problems.

We believe that (4) will almost always be too rigid and will result in overfitting. If
minimization of prediction error is an important goal, then the optimal solution Z* will
typically lie somewhere in the interior of the path (Figures 1,2,3), indexed by δ.

In this paper we provide an algorithm for computing solutions of (2) on a grid of δ values,
based on warm restarts. The algorithm is inspired by Hastie et al.’s SVD- impute
[HTS+99,TCS+01], and is very different from the proximal forward-backward splitting
method of [CCS08,CW05] as well as the Bregman iterative method proposed in [MGC09].
The latter is motivated by an analogous algorithm used for the ℓ1 penalized least-squares
problem. All these algorithms [CCS08,CW05,MGC09] require the specification of a step
size, and can be quite sensitive to the chosen value. Our algorithm does not require a step-
size, or any such parameter.

In [MGC09] the SVD step becomes prohibitive, so randomized algorithms are used in the
computation. Our algorithm SOFT-IMPUTE also requires an SVD computation at every iteration,
but by exploiting the problem structure, can easily handle matrices of dimensions much
larger than those in [MGC09]. At each iteration the non-sparse matrix has the structure:

1all times are reported based on computations done in a Intel Xeon Linux 3GHz processor using MATLAB, with no C or Fortran
interlacing
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(5)

In (5) YSP has the same sparsity structure as the observed X, and YLR has the rank r ≪ m, n
of the estimated Z. For large scale problems, we use iterative methods based on Lanczos
bidiagonalization with partial re-orthogonalization (as in the PROPACK algorithm [Lar98]),
for computing the first r singular vectors/values of Y. Due to the specific structure of (5),
multiplication by Y and Y′ can both be achieved in a cost-efficient way. More precisely, in
the sparse + low-rank situation, the computationally burdensome work in computing the
SVD is of an order that depends linearly on the matrix dimensions — O((m + n)r) + O(|Ω|).
In our experimental studies we find that our algorithm converges in very few iterations; with
warm-starts the entire regularization path can be computed very efficiently along a dense
series of values for δ.

Although the nuclear norm is motivated here as a convex relaxation to a rank constraint, we
believe in many situations it will outperform the rank-restricted estimator. This is supported
by our experimental studies and explored in [SAJ05,RS05]. We draw the natural analogy
with model selection in linear regression, and compare best-subset regression (ℓ0
regularization) with the lasso (ℓ1 regularization) [Tib96,THF09]. There too the ℓ1 penalty
can be viewed as a convex relaxation of the ℓ0 penalty. But in many situations with
moderate sparsity, the LASSO will outperform best subset in terms of prediction accuracy
[Fri08,THF09]. By shrinking the parameters in the model (and hence reducing their
variance), the lasso permits more parameters to be included. The nuclear norm is the ℓ1
penalty in matrix completion, as compared to the ℓ0 rank. By shrinking the singular values,
we allow more dimensions to be included without incurring undue estimation variance.

Another class of techniques used in collaborative filtering problems are close in spirit to (2).
These are known as maximum margin factorization methods, and use a factor model for the
matrix Z [SRJ05]. Let Z = UV′ where Um×r and Vn×r (U, V are not orthogonal), and consider
the following problem

(6)

It turns out that (6) is equivalent to (3), since

(7)

This problem formulation and related optimization methods have been explored by [SRJ05,
RS05, TPNT09]. A very similar formulation is studied in [KOM09]. However (6) is a non-
convex optimization problem in (U, V). It has been observed empirically and theoretically
[BM05, RS05] that bi-convex methods used in the optimization of (6) get stuck in
suboptimal local minima if the rank r is small. For a large number of factors r and large
dimensions m, n the computational cost may be quite high [RS05]. Moreover the factors (U,
V) are not orthogonal, and if this is required, additional computations are required [O(r(m +
n) + r3)].

Our criterion (3), on the other hand, is convex in Z for every value of λ (and hence rank r)
and it outputs the solution Ẑ in the form of its SVD, implying that the “factors” U, V are
already orthogonal. Additionally the formulation (6) has two different tuning parameters r
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and λ, both of which are related to the rank or spectral properties of the matrices U, V. Our
formulation has only one tuning parameter λ. The presence of two tuning parameters is
problematic:

• It results in a significant increase in computational burden, since for every given
value of r, one needs to compute an entire system of solutions by varying λ.

• In practice when neither the optimal values of r and λ are known, a two-
dimensional search (eg by cross validation) is required to select suitable values.

3. Algorithm and Convergence analysis
3.1 Notation

We adopt the notation of [CCS08]. Define a matrix PΩ(Y) (with dimension n × m)

(8)

which is a projection of the matrix Ym×n onto the observed entries. In the same spirit, define
the complementary projection  via . Using (8) we can rewrite Σ(i,j)∈Ω

(Xij – Zij)2 as .

3.2 Nuclear norm regularization
We present the following lemma, given in [CCS08], which forms a basic ingredient in our
algorithm.

Lemma 1. Suppose the matrix Wm×n has rank r. The solution to the optimization problem

(9)

is given by Ẑ = Sλ(W) where

(10)

UDV′ is the SVD of W, D = diag [d1,…,dr], and t+ = max(t, 0).

The notation Sλ(W) refers to soft-thresholding [DJKP95]. Lemma 1 appears in
[CCS08,MGC09] where the proof utilizes the sub-gradient characterization of the nuclear
norm. In Appendix A.1 we present an entirely different proof, which can be extended in a
relatively straightforward way to other complicated forms of spectral regularization
discussed in Section 5. Our proof is followed by a remark that covers these more general
cases.

3.3 Algorithm
Using the notation in 3.1, we rewrite (3)

(11)
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Let  denote the objective in (11).

We now present Algorithm 1—SOFT-IMPUTE—for computing a series of solutions to (11) for
different values of λ using warm starts.

Algorithm 1 SOFT-IMPUTE

1 Initialize Zold = 0 and create a decreasing grid Λ of values λ1 > … > λK.

2 For every fixed λ = λ1, λ2,… ∈ Λ iterate till convergence:

a.
Compute 

b.

If  go to step 2d.

c. Assign Zold ← Znew and go to step 2a.

d. Assign Ẑλ ← Znew and go to step 2.

3 Output the sequence of solutions Ẑλ1,…,ẐλK.

The algorithm repeatedly replaces the missing entries with the current guess, and then
updates the guess by solving (9). Figures 1, 2 and 3 show some examples of solutions using
SOFT-IMPUTE (blue curves). We see test and training error in the top rows as a function of the
nuclear norm, obtained from a grid of values Λ. These error curves show a smooth and very
competitive performance.

3.4 Convergence analysis
In this section we study the convergence properties of Algorithm 1. We prove that SOFT-IMPUTE

converges to the solution to (11). It is an iterative algorithm that produces a sequence of
solutions for which the criterion decreases to the optimal solution with every iteration. This
aspect is absent in many first order convex minimization algorithms [Boy08]. In addition the
successive iterates get closer to the optimal set of solutions of the problem 2. Unlike many
other competitive first-order methods [CCS08, CW05, MGC09], SOFT-IMPUTE does not involve
the choice of any step-size. Most importantly our algorithm is readily scalable for solving
large scale semidefinite programming problems (2,11) as will be explained later in Section
4.

For an arbitrary matrix Z ͂, define

(12)

a surrogate of the objective function fλ(z). Note that fλ (Z ͂) = Qλ (Z ͂|Z ͂) for any Z ͂

Lemma 2. For every fixed λ ≥ 0, define a sequence  by

(13)

with any starting point . The sequence  satisfies
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(14)

Proof. Note that

(15)

by Lemma 1 and the definition (12) of .

(16)

(17)

Lemma 3. The nuclear norm shrinkage operator Sλ(·) satisfies the following for any W1, W2
(with matching dimensions)

(18)

In particular this implies that Sλ (W) is a continuous map in W.

Lemma 3 is proved in [MGC09]; their proof is complex and based on trace inequalities. We
give a concise proof in Appendix A.2.

Lemma 4. The successive differences  of the sequence  are monotone
decreasing:

(19)

Moreover the difference sequence converges to zero. That is

The proof of Lemma 4 is given in Appendix A.3.

Lemma 5. Every limit point of the sequence  defined in Lemma 2 is a stationary point of
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(20)

Hence it is a solution to the fixed point equation

(21)

The proof of Lemma 5 is given in Appendix A.4.

Theorem 1. The sequence  defined in Lemma 2 converges to a limit  that solves

(22)

Proof. It suffices to prove that  converges; the theorem then follows from Lemma 5.

Let Ẑλ be a limit point of the sequence . There exists a subsequence mk such that

. By Lemma 5, Ẑλ solves the problem (22) and satisfies the fixed point equation
(21).

Hence

(23)

(24)

In (23) two substitutions were made; the left one using (21) in Lemma 5, the right one using

(15). Inequality (24) implies that the sequence  converges as k → ∞. To show

the convergence of the sequence  it suffices to prove that the sequence  converges
to zero. We prove this by contradiction.

Suppose the sequence  has another limit point . Then  has two distinct

limit points 0 and . This contradicts the convergence of the sequence

. Hence the sequence  converges to .

The inequality in (24) implies that at every iteration  gets closer to an optimal solution for
the problem (22)2. This property holds in addition to the decrease of the objective function

2In fact this statement can be strengthened further — at every iteration the distance of the estimate decreases from the set of optimal
solutions

Mazumder et al. Page 8

J Mach Learn Res. Author manuscript; available in PMC 2011 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Lemma 2) at every iteration. This is a very nice property of the algorithm and is in general
absent in many first order methods such as projected sub-gradient minimization [Boy08].

4. Computation

The computationally demanding part of Algorithm 1 is in . This requires
calculating a low-rank SVD of a matrix, since the underlying model assumption is that
rank(Z) ≪ min{m, n}. In Algorithm 1, for fixed λ, the entire sequence of matrices  have
explicit low-rank representations of the form  corresponding to 

In addition, observe that  can be rewritten as

(25)

In the numerical linear algebra literature, there are very efficient direct matrix factorization
methods for calculating the SVD of matrices of moderate size (at most a few thousand).
When the matrix is sparse, larger problems can be solved but the computational cost
depends heavily upon the sparsity structure of the matrix. In general however, for large
matrices one has to resort to indirect iterative methods for calculating the leading singular
vectors/values of a matrix. There is a lot research in numerical linear algebra for developing
sophisticated algorithms for this purpose. In this paper we will use the PROPACK algorithm
[Lar,Lar98] because of its low storage requirements, effective flop count and its well
documented MATLAB version. The algorithm for calculating the truncated SVD for a
matrix W (say), becomes efficient if multiplication operations Wb1 and W′b2 (with b1 ∈ ℜn,
b2 ∈ ℜm) can be done with minimal cost.

Algorithm SOFT-IMPUTE requires repeated computation of a truncated SVD for a matrix W with
structure as in (25). Note that in (25) the term  can be computed in O(|Ω|r) flops using
only the required outer products (i.e. our algorithm does not compute the matrix explicitly).

The cost of computing the truncated SVD will depend upon the cost in the operations Wb1
and W′b2 (which are equal). For the sparse part these multiplications cost O(|Ω|). Although it
costs O(|Ω|r) to create the matrix , this is used for each of the r such multiplications
(which also cost O(|Ω|r)), so we need not include that cost here. The LowRank part costs
O((m + n)r) for the multiplication by b1. Hence the cost is O(|Ω|) + O((m + n)r) per vector
multiplication.

For the reconstruction problem to be theoretically meaningful in the sense of [CT09] we
require that |Ω| ≈ nr · poly(log n). In practice often |Ω| is very small. Hence introducing the
Low Rank part does not add any further complexity in the multiplication by W and W′. So
the dominant cost in calculating the truncated SVD in our algorithm is O(|Ω|). The SVT
algorithm [CCS08] for exact matrix completion (4) involves calculating the SVD of a sparse
matrix with cost O(|Ω|). This implies that the computational cost of our algorithm and that of
[CCS08] is the same. This order computation does not include the number of iterations
required for convergence. In our experimental studies we use warm-starts for efficiently
computing the entire regularization path. We find that our algorithm converges in a few
iterations. Since the true rank of the matrix r ≪ min {m, n}, the computational cost of
evaluating the truncated SVD (with rank ≈ r) is linear in matrix dimensions. This justifies
the large-scale computational feasibility of our algorithm.

Mazumder et al. Page 9

J Mach Learn Res. Author manuscript; available in PMC 2011 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The PROPACK package does not allow one to request (and hence compute) only the
singular values larger than a threshold λ — one has to specify the number in advance. So
once all the computed singular values fall above the current threshold λ, our algorithm
increases the number to be computed until the smallest is smaller than λ. In large scale
problems, we put an absolute limit on the maximum number.

5. Generalized spectral regularization: from soft to hard-thresholding
In Section 1 we discussed the role of the nuclear norm as a convex surrogate for the rank of
a matrix, and drew the analogy with lasso regression versus best-subset selection. We argued
that in many problems ℓ1 regularization gives better prediction accuracy [ZY06]. However,
if the underlying model is very sparse, then the LASSO with its uniform shrinkage can
overestimate the number of non-zero coefficients [Fri08]. It can also produce highly shrunk
and hence biased estimates of the coefficients.

Consider again the problem

(26)

a rephrasing of (1). This best rank-k solution also solves

(27)

where γj(Z) is the jth singular value of Z, and for a suitable choice of λ that produces a
solution with rank k.

The “fully observed” matrix version of the above problem is given by the ℓ0 version of (9)
as follows:

(28)

where ‖Z‖0 = rank(Z). The solution of (28) is given by a reduced-rank SVD of W; for every λ
there is a corresponding q = q(λ) number of singular-values to be retained in the SVD
decomposition. Problem 28 is non-convex in W but its global minimizer can be evaluated.
As in (10) the thresholding operator resulting from (28) is

(29)

Similar to SOFT-IMPUTE (Algorithm 1), we present below HARD-IMPUTE (Algorithm 2) for the ℓ0
penalty.

In penalized regression there have been recent developments directed towards “bridging” the
gap between the ℓ1 and ℓ0 penalties [Fri08,FL01,Zha07]. This is done via using concave
penalties that are a better surrogate (in the sense of approximating the penalty) to ℓ0 over the
ℓ1. They also produce less biased estimates than those produced by the ℓ1 penalized
solutions. When the underlying model is very sparse they often perform very well
[Fri08,FL01,Zha07], and often enjoy superior prediction accuracy when compared to softer
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penalties like ℓ1. These methods still shrink, but are less aggressive than the best-subset
selection.

By analogy, we propose using a more sophisticated version of spectral regularization. This
goes beyond nuclear norm regularization by using slightly more aggressive penalties that
bridge the gap between ℓ1 (nuclear norm) and ℓ0 (rank constraint). We propose minimizing

(30)

Algorithm 2 HARD-IMPUTE

1 Create a decreasing grid Λ of values λ1 > … > λK. Initialize Z ̃λk k = 1,…,K (see Section 6).

2 For every fixed λ = λ1, λ2,… ∈ Λ iterate till convergence:

a. Initialize Zold ← Z ̃λ.

b.
Compute 

c.

If , go to step 2e.

d. Assign Zold ← Znew and go to step 2a.

e. Assign ẐH,λ ← Znew.

3 Output the sequence of solutions ẐH, λ1, …, ẐH, λK.

where p(|t|;µ) is concave in |t|. The parameter µ ∈ [µinf, µsup] controls the degree of
concavity. We may think of p(|t|; µinf) = |t| (ℓ1 penalty) on one end and p(|t|; µsup) = ‖t‖0 (ℓ0
penalty) on the other. In particular for the ℓ0 penalty denote fp,λ (Z) by fH,λ (Z) for “hard”
thresholding. See [Fri08,FL01,Zha07] for examples of such penalties.

In Remark 1 in Appendix A.1 we argue how the proof can be modified for general types of
spectral regularization. Hence for minimizing the objective (30) we will look at the
analogous version of (9), (28) which is

(31)

The solution is given by a thresholded SVD of W:

(32)

Where Dp,λ is a entry-wise thresholding of the diagonal entries of the matrix D consisting of
singular values of the matrix W. The exact form of the thresholding depends upon the form
of the penalty function p(·;·), as discussed in Remark 1. Algorithm 1 and Algorithm 2 can be
modified for the penalty p(·;µ) by using a more general thresholding function  in Step
2b. The corresponding step becomes:
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However these types of spectral regularization make the criterion (30) non-convex and
hence it becomes difficult to optimize globally.

6. Post-processing of “selectors” and initialization
Because the ℓ1 norm regularizes by shrinking the singular values, the number of singular
values retained (through cross-validation, say) may exceed the actual rank of the matrix. In
such cases it is reasonable to undo the shrinkage of the chosen models, which might permit a
lower-rank solution.

If Zλ is the solution to (11), then its post-processed version  obtained by “unshrinking” the
eigen-values of the matrix Zλ is obtained by

(33)

where Dα = diag(α1,…,αrλ). Here rλ is the rank of Zλ and Zλ = UDλV′ is its SVD. The
estimation in (33) can be done via ordinary least squares, which is feasible because of the
sparsity of  and that rλ is small.3 If the least squares solutions α do not meet the
positivity constraints, then the negative sign can be absorbed into the corresponding singular
vector.

Rather than estimating a diagonal matrix Dα as above, one can insert a matrix Mrλ×rλ
between U and V above to obtain better training error for the same rank [KOM09]. Hence
given U, V (each of rank rλ) from the SOFT-IMPUTE algorithm, we solve

(34)

The objective function in (34) is the Frobenius norm of an affine function of M and hence
can be optimized very efficiently. Scalability issues pertaining to the optimization problem
(34) can be handled fairly efficiently via conjugate gradients. Criterion (34) will definitely
lead to a decrease in training error as that attained by Ẑ = U Dλ V′ for the same rank and is
potentially an attractive proposal for the original problem (1). However this heuristic cannot
be caste as a (jointly) convex problem in (U, M, V). In addition, this requires the estimation
of up to  parameters, and has the potential for overfitting. In this paper we report
experiments based on (33).

In many simulated examples we have observed that this post-processing step gives a good
estimate of the underlying true rank of the matrix (based on prediction error). Since fixed
points of Algorithm 2 correspond to local minima of the function (30), well-chosen warm
starts Ẑλ are helpful. A reasonable prescription for warms-starts is the nuclear norm solution

3Observe that the  i = 1,…,rλ are not orthogonal, though the  are.
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via (SOFT-IMPUTE), or the post processed version (33). The latter appears to significantly speed
up convergence for HARD-IMPUTE. This observation is based on our simulation studies.

7. Simulation Studies
In this section we study the training and test errors achieved by the estimated matrix by our
proposed algorithms and those by [CCS08,KOM09]. The Reconstruction algorithm
(OPTSPACE) described in [KOM09] considers criterion (1) (in presence of noise). It writes Z =
USV′ (which need not correspond to the SVD). For every fixed rank r it uses a two-stage
minimization procedure: firstly on S and then on U, V (in a Grassmann Manifold) for
computing a rank-r decomposition Ẑ = ÛŜV̂′ It uses a suitable starting point obtained by
performing a sparse SVD on a clean version of the observed matrix PΩ(X). This is similar to
the formulation of Maximum Margin Factorization (MMF) (6) as outlined in Section 1,
without the Frobenius norm regularization on the components U, V.

To summarize, we look at the performance of the following methods:

• (a) SOFT-IMPUTE (algorithm 1); (b) PP-SI Post-processing on the output of Algorithm 1,
(c) HARD-IMPUTE (Algorithm 2) starting with the output of (b).

• SVT algorithm by [CCS08]

• OPTSPACE reconstruction algorithm by [KOM09]

In all our simulation studies we took the underlying model as  + noise; where
U and V are random matrices with standard normal Gaussian entries, and noise is i.i.d.
Gaussian. Ω is uniformly random over the indices of the matrix with p% percent of missing
entries. These are the models under which the coherence conditions hold true for the matrix
completion problem to be meaningful as pointed out in [CT09,KOM09]. The signal to noise
ratio for the model and the test-error (standardized) are defined as

(35)

Training error (standardized) is defined as — the fraction of the error
explained on the observed entries by the estimate relative to a zero estimate.

In Figures 1,2,3 results corresponding to the training and test errors are shown for all
algorithms mentioned above — nuclear norm and rank— in three problem instances. The
results displayed in the figures are averaged over 50 simulations. Since OPTSPACE only uses
rank, it is excluded from the left panels. In all examples (m, n) = (100, 100). SNR, true rank
and percentage of missing entries are indicated in the figures. There is a unique
correspondence between λ and nuclear norm. The plots vs the rank indicate how effective
the nuclear norm is as a rank approximation — that is whether it recovers the true rank while
minimizing prediction error.

For SVT we use the MATLAB implementation of the algorithm downloaded from the
second author’s [CCS08] webpage. For OPTSPACE we use the MATLAB implementation of
the algorithm as obtained from the third author’s webpage [KOM09].
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7.1 Observations
In Type a, the SNR= 1, fifty percent of entries are missing and the true underlying rank is
ten. The performances of PP-SI and SOFT-IMPUTE are clearly better than the rest. The solution of
SVT recovers a matrix with a rank much larger than the true rank. The SVT also has very
poor prediction error, suggesting once again that exactly fitting the training data is far too
rigid. SOFT-IMPUTE recovers an optimal rank (corresponding to the minima of the test error
curve) which is larger than the true rank of the matrix, but the prediction error is very
competitive. PP-SI estimates the right rank of the matrix based on the minima of the
prediction error curve. This seems to be the only algorithm to do so in this example. Both
HARD-IMPUTE and OPTSPACE perform very poorly in test error. This is a high noise situation, so the
HARD-IMPUTE is too aggressive in selecting the singular vectors from the observed entries and
hence ends up reaching a very sub-optimal subspace. The training errors of PP-SI and HARD-
IMPUTE are smaller than that achieved by the SOFT-IMPUTE solution for a fixed rank along the
regularization path. This is expected by the very method of construction. However this
deteriorates the test error performance of the HARD-IMPUTE, at the same rank. The nuclear norm
may not give very good training error at a certain rank (in the sense it has strong
competitors), but this trade off is compensated in the better prediction error it achieves.
Though the nuclear norm is a surrogate of rank it eventually turns out to be a good
regularization method. Hence it should not be merely seen as a rank approximation
technique. Such a phenomenon is observed in the context of penalized linear regression as
well. It is seen that the LASSO, a convex surrogate of ℓ0 penalty produces parsimonious models
with good prediction error in a wide variety of situations — and is indeed a good model
building method.

In Type b, the SNR = 1, fifty percent of entries are missing and the true underlying rank is
six. OPTSPACE performs poorly in test error. HARD-IMPUTE performs worse than the PP-SI and SOFT-
IMPUTE, but is pretty competitive near the true rank of the matrix. In this example however the
PP-SI is the best in test error and nails the right rank of the matrix. Based on the above two
example we observe that in high noise models HARD-IMPUTE and OPTSPACE behave very similarly.

In Type-c the SNR= 10, the noise is relatively small as compared to the other two cases. The
true underlying rank is 5, but the proportion of missing entries is much higher around eighty
percent. Test errors of both PP-SI and SOFT-IMPUTE are found to decrease till a large nuclear
norm after which they become roughly the same, suggesting no further impact of
regularization. OPTSPACE performs well in this example getting a sharp minima at the true rank
of the matrix. This good behavior of the latter as compared to the previous two instances is
because the SNR is very high. HARD-IMPUTE however shows the best performance in this
example. The better performance of both OPTSPACE and HARD-IMPUTE over SOFT-IMPUTE is because
the true underlying rank of the matrix is very small. This is reminiscent of better predictive
performance of best-subset or concave penalized regression over LASSO in set-ups where the
underlying model is very sparse [Fri08].

In addition we performed some large scale simulations in Table 1 for our algorithm in
different problem sizes. The problem dimensions, SNR and time in seconds are reported. All
computations are done in MATLAB and the MATLAB implementation of PROPACK is
used.

8. Application to Netflix data
In this section we report briefly on the application of our proposed methods to the Netflix
movie prediction contest. The training data consists of the ratings of 17,770 movies by
480,189 Netflix customers. The data matrix is extremely sparse, with 100,480,507 or 1% of
the entries observed. The task is to predict the unseen ratings for a qualifying set and a test

Mazumder et al. Page 14

J Mach Learn Res. Author manuscript; available in PMC 2011 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



set of about 1.4 million ratings each, with the true ratings in these datasets held in secret by
Netflix. A probe set of about 1.4 million ratings is distributed to participants, for calibration
purposes. The movies and customers in the qualifying, test and probe sets are all subsets of
those in the training set.

The ratings are integers from 1 (poor) to 5 (best). Netflix’s own algorithm has an RMSE of
0.9525 and the contest goal is to improve this by 10%, or an RMSE of 0.8572. The contest
has been going for almost 3 years, and the leaders have recently passed the 10%
improvement threshold and may soon be awarded the grand prize. Many of the leading
algorithms use the SVD as a starting point, refining it and combining it with other
approaches. Computation of the SVD on such a large problem is prohibitive, and many
researchers resort to approximations such as subsampling (see e.g. [RMH07]). Here we
demonstrate that our spectral regularization algorithm can be applied to entire Netflix
training set (the Probe dataset has been left outside the training set) with a reasonable
computation time.

We removed the movie and customer means, and then applied HARD-IMPUTE with varying
ranks. The results are shown in Table 2.

These results are not meant to be competitive with the best results obtained by the leading
groups, but rather just demonstrate the feasibility of applying HARD-IMPUTE to such a large
dataset. In addition, it may be mentioned here that the objective criterion as in Algorithm 1
or Algorithm 2 is known to have optimal generalization error or reconstruction error under
the assumption that the structure of missing-ness is approximately uniform
[CT09,SAJ05,CR08,KOM09]. This assumption is definitely not true for the Netflix data due
to the high imbalance in the degree of missingness. The results shown above are without any
sophisticated rounding schemes to bring the predictions within [1, 5]. As we saw in the
simulated examples, for small SNR HARD-IMPUTE performs pretty poorly in prediction error as
compared to SOFT-IMPUTE; the Netflix data is likely to be very noisy. These provide some
explanations for the RMSE values obtained in our results and suggest possible directions for
modifications and improvements to achieve further improvements in prediction error.
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Appendix A. Appendix

A.1 Proof of Lemma 1
Proof. Let  be the SVD of Z. Assume WLOG m ≥ n. We will explicitly
evaluate the closed form solution of the problem (9).

(36)

where
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(37)

Minimizing (36) is equivalent to minimizing

under the constraints U ͂′U͂ = In, V͂′V͂ = In and d͂i ≥ 0∀i

Observe the above is equivalent to minimizing (wrt U ͂, V͂) the function Q(U ͂, V͂)

(38)

Since the objective to be minimized wrt D ͂ (38) is separable in d͂i, i = 1, …, n it suffices to
minimize it wrt each di separately.

The problem

(39)

can be solved looking at the stationary conditions of the function using its sub-gradient

[Boy08]. The solution of the above problem is given by  the soft-
thresholding of 4. More generally the soft-thresholding operator [FHHT07,THF09] is
given by Sλ(x) = sgn(x)(|x| − λ)+. See [FHHT07] for more elaborate discussions on how the
soft-thresholding operator arises in univariate penalized least-squares problems with the ℓ1
penalization.

Plugging the values of optimal d͂i, i = 1, …, n; obtained from (39) in (38) we get

(40)

Minimizing Q(U ͂, V͂) wrt (U ͂, V͂) is equivalent to maximizing

(41)

It is a standard fact that for every i the problem

4WLOG we can take  to be non-negative
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(42)

is solved by ûi, v̂i the left and right singular vectors of the matrix W corresponding to its ith
largest singular value. The maximum value equals the singular value. It is easy to see that
maximizing the expression to the right of (41) wrt (ui, vi), i = 1,…,n is equivalent to
maximizing the individual terms . If r(λ) denotes the number of singular values of W
larger than λ then the (ûi, v̂i), i = 1,… that maximize the expression (41) correspond to [u1,
…,ur(λ)] and [v1,…,vr(λ)]; the r(λ) left and right singular vectors of W corresponding to the
largest singular values. From (39) the optimal D ͂ = diag [d͂1,…,d͂n] is given by Dλ = diag [(d1
− λ)+,…, (dn − λ)+].

Since the rank of W is r, the minimizer Ẑ of (9) is given by UDλV′ as in (10).

Remark 1. For a more general spectral regularization of the form λ Σi p(γi(Z)) (as
compared to Σiλγi(Z) used above) the optimization problem (39) will be modified
accordingly. The solution of the resultant univariate minimization problem will be given by

 for some generalized “thresholding operator” , where

(43)

The optimization problem analogous to (40) will be

(44)

where , ∀i. Any spectral function for which the above (44) is monotonically
increasing in  for every i can be solved by a similar argument as given in the above
proof. The solution will correspond to the first few largest left and right singular vectors of
the matrix W. The optimal singular values will correspond to the relevant shrinkage/
threshold operator  operated on the singular values of W. In particular for the indicator
function p(t) = λ1(t ≠ 0), the top few singular values (un-shrunk) and the corresponding
singular vectors is the solution.

A.2 Proof of Lemma 3
This proof is based on sub-gradient characterizations ans is inspired by some techniques
used in [CCS08].

Proof. From Lemma 1, we know that if Ẑ solves the problem (9), then it satisfies the sub-
gradient stationary conditions:

(45)

Sλ(W1) and Sλ(W2) solve the problem (9) with W = W1 and W = W2 respectively hence (45)
holds with W = W1, Ẑ1 = Sλ(W1) and W = W2, Ẑ2 = Sλ(W1).
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The sub-gradients of the nuclear norm ‖Z‖* are given by [CCS08,MGC09]

(46)

where Z = U DV′ is the SVD of Z.

Let p(Ẑi) denote an element in ∂‖Ẑi‖*. Then

(47)

The above gives

(48)

from which we obtain

(49)

where 〈a, b〉 = trace (a′b).

Now observe that

(50)

By the characterization of subgradients as in (46) and as also observed in [CCS08], we have

which implies

Using the above inequalities in (50) we obtain:

(51)

(52)

Using (51),(52) we see that the r.h.s. of (50) is non-negative. Hence

Mazumder et al. Page 18

J Mach Learn Res. Author manuscript; available in PMC 2011 May 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using the above in (48), we obtain:

(53)

Using the Cauchy-Schwarz Inequality ‖Ẑ1 − Ẑ2‖2‖W1 − W2‖2 ≥ 〈Ẑ1 − Ẑ2, W1 − W2〉 in (53)
we get

and in particular

which further simplifies to

A.3 Proof of Lemma 4
Proof. We will first show (19) by observing the following inequalities

(54)

(55)

The above implies that the sequence  converges (since it is decreasing and

bounded below). We still require to show that  converges to zero.

The convergence of  implies that:

The above observation along with the inequality in (54),(55) gives

(56)

as k → ∞.
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Lemma 2 shows that the non-negative sequence  is decreasing in k. So as k → ∞ the
sequence  converges. Furthermore from (16),(17) we have

which implies that

The above along with (56) gives

This completes the proof.

A.4 Proof of Lemma 5
Proof. The sub-gradients of the nuclear norm ‖Z‖* are given by

(57)

where Z = U DV′ is the SVD of Z. Since  minimizes , it satisfies:

(58)

Suppose Z* is a limit point of the sequence . Then there exists a subsequence {nk} ⊂ {1,
2, …} such that  as k → ∞.

By Lemma 4 this subsequence  satisfies

implying

Hence,

(59)

For every k, a sub-gradient  corresponds to a tuple (uk, vk, wk) satisfying the
properties of the set  (57).
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Consider  along the sub-sequence nk. As nk → ∞, . Let

denote the SVD’s. The product of the singular vectors converge .
Furthermore due to boundedness (passing on to a further subsequence if necessary) wnk →
w∞. The limit  clearly satisfies the criterion of being a sub-gradient of Z*. Hence
this limit corresponds to .

Furthermore from (58), (59), passing on to the limits along the subsequence nk we have

(60)

Hence the limit point  is a stationary point of fλ(Z).

We shall now prove (21). We know that for every nk

(61)

From Lemma 4 we know . This observation along with the continuity of
Sλ(·) gives

Thus passing over to the limits on both sides of (61) we get

therefore completing the proof.
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Figure 1.
L1: solution for SOFT-IMPUTE; L1-U: Post processing after SOFT-IMPUTE; L1-L0 HARD-IMPUTE applied
to L1-U; C : SVT algorithm; M: OPTSPACE algorithm. Both SOFT-IMPUTE and PP-SI perform well
(prediction error) in the presence of noise. The latter estimates the actual rank of the matrix.
Both the PP-SI and HARD-IMPUTE perform better than SOFT-IMPUTE in training error for the same
rank or nuclear norm. HARD-IMPUTE and OPTSPACE perform poorly in prediction error. SVT
algorithm does very poorly in prediction error, confirming our claim that (4) causes
overfitting — it recovers a matrix with high nuclear norm and rank > 60 where the true rank
is only 10. Values of test error larger than one are not shown in the figure. OPTSPACE is
evaluated for a series of ranks ≤ 30.
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Figure 2.
PP-SI does the best in prediction error, closely followed by SOFT-IMPUTE. Both HARD-IMPUTE,
OPTSPACE have poor prediction error apart from near the true rank of the matrix ie 6 where
they show reasonable performance. SVT algorithm does very poorly in prediction error — it
recovers a matrix with high nuclear norm and rank > 60 where the true rank is only 6.
OPTSPACE is evaluated for a series of ranks ≤ 35.
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Figure 3.
When the noise is low, HARD-IMPUTE can improve its performance. It gets the correct rank
whereas OPTSPACE overestimates it. HARD-IMPUTE performs the best here wrt prediction error,
followed by OPTSPACE. The latter does better than SOFT-IMPUTE. The noise here is low, still the
SVT recovers a matrix with high rank approximately 30 and has poor prediction error as
well. The test error of the SVT is found to be different from the limiting solution of SOFT-
IMPUTE, though the former is allowed to run for 1000 iterations for convergence. This suggests
that for small fluctuations of the objective criteria (11,2) around the minima the estimated
“optimal solution” is not robust.
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Table 2

Results of applying HARD-IMPUTE to the Netflix data. The computations were done on a Intel Xeon Linux 3GHz
processor; timings are reported based on MAT-LAB implementations of PROPACK and our algorithm.
RMSE is the root mean squared error over the probe set. “train error” is the proportion of error on the
observed dataset achieved by our estimator relative to the zero estimator.

rank time (hrs) train error RMSE

20 3.3 0.217 0.986

30 5.8 0.203 0.977

40 6.6 0.194 0.965

60 9.7 0.181 0.966
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