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Accurate characterization of tissue pathologies using ultrasonic attenuation is strongly dependent

on the accuracy of the algorithm that is used to obtain the attenuation coefficient estimates. In this

paper, computer simulations were used to compare the accuracy and the precision of the three

methods that are commonly used to estimate the local ultrasonic attenuation within a region of in-

terest (ROI) in tissue; namely, the spectral log difference method, the spectral difference method,

and the hybrid method. The effects of the inhomgeneities within the ROI on the accuracy of the

three algorithms were studied, and the optimal ROI size (the number of independent echoes later-

ally and the number of pulse lengths axially) was quantified for each method. The three algorithms

were tested for when the ROI was homogeneous, the ROI had variations in scatterer number den-

sity, and the ROI had variations in effective scatterer size. The results showed that when the ROI

was homogeneous, the spectral difference method had the highest accuracy and precision followed

by the spectral log difference method and the hybrid method, respectively. Also, when the scatterer

number density varied, the spectral difference method completely failed, while the log difference

method and hybrid method still gave good results. Lastly, when the scatterer size varied, all of the

methods failed.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3559677]
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I. INTRODUCTION

The ultrasonic attenuation coefficient is an important pa-

rameter in the characterization of tissue pathologies. In liver

disease, inflamed livers were shown to have lower than nor-

mal attenuation coefficients while cirrhotic livers have

higher than normal attenuation coefficients (Kuc and

Schwartz, 1979). In breast tissue, the attenuation coefficient

is low for fatty tissue and medullary carcinoma and high for

infiltrating ductal carcinoma and fibrosis (Landini et al.,
1985; Landini and Sarnelli, 1986). Accurate characterization

of tissue pathologies using ultrasonic attenuation is strongly

dependent on the accuracy of the algorithm that is used to

obtain the attenuation coefficient estimates.

One method for estimating the ultrasonic attenuation coef-

ficient is the spectral shift technique (Flax et al., 1983; Parker

and Waag, 1983; Leeman et al., 1984; Narayana and Ophir,

1984; Bigelow and O’Brien, 2006). This method is a paramet-

ric approach that assumes a Gaussian spectral shape of the

propagating pulse and echo and estimates the attenuation

coefficient slope by measuring the downshift in the center

frequency with respect to depth. The downshift in the center

frequency is caused by the higher attenuation of the high fre-

quencies compared to the low frequencies. A number of time

domain and frequency domain techniques were used to esti-

mate the change in the center frequency with respect to depth.

In the time domain, the number of sign changes per unit inter-

val gives an estimate of the center frequency under the assump-

tion of a narrow band signal (Flax et al., 1983; Leeman et al.,
1984; Narayana and Ophir, 1984). In the frequency domain,

the center frequency can be estimated by calculating the first

moment of the power spectrum (Parker et al., 1988) or by fit-

ting a Gaussian function to the spectrum and finding the mean

frequency (Bigelow and O’Brien, 2006). One disadvantage of

the spectral shift method is that it does not normally correct for

the effects of diffraction which leads to inaccurate estimates of

the attenuation coefficient. While some corrections have been

developed for spherically focused sources when the ROI is

within the focal zone, these methods are challenging to imple-

ment in a clinical setting where array sources are used (Bigelow

and O’Brien, 2006).

In order to correct for the diffraction effects, other meth-

ods for estimating the ultrasound attenuation coefficient

have been developed. These methods use a tissue mimicking

phantom (TMP) to obtain a reference power spectrum. The

most common is the spectral difference method which meas-

ures the decay of the power spectrum frequency components

with respect to depth to estimate the attenuation coefficient

as a function of frequency (Parker and Waag, 1983; Parker

et al., 1988; Yao et al., 1990). Another reference phantom

technique is the spectral log difference method which

assumes that the attenuation has a linear frequency depend-

ence and obtains an estimate of the attenuation coefficient

slope by calculating the slope of the straight line that fits the

log ratio (difference between log spectra) of the two power

spectra from the proximal and the distal segments of the

region of interest (ROI) (Kuc and Schwartz, 1979; Kuc,

1980; Insana et al., 1983; Kuc, 1984). The hybrid method is

a recently developed technique that estimates the attenuation

coefficient slope by measuring the downshift in the center
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frequency of the spectra that result from multiplying the

power spectra, of windowed segments at various depths of

the ROI, by a Gaussian filter (Kim and Varghese, 2008). The

hybrid method and the spectral log difference method are

theoretically not affected by some of the variations in the

backscatter that occur at boundaries.

The spectral difference method, the spectral log differ-

ence method, and the hybrid method have all been used for

estimating the attenuation in liver, kidney, cervix, rat

tumors, etc. (Kuc and Schwartz, 1979; Kuc, 1980; Hall

et al., 1996; Oelze et al., 2002; McFarlin et al., 2006;

Bigelow et al., 2008). The accuracy and the precision of

these methods are strongly dependent on the ROI size (the

number of independent echoes laterally and the number of

pulse lengths axially) and on the level of homogeneity

within the ROI. However, there has been no quantitative

comparison of the minimum ROI size that is required for

each method to obtain certain accuracy and precision in

the attenuation coefficient estimates. Furthermore, the limi-

tations of each technique have not been completely studied.

Specifically, errors that result from in-homogeneities due to

differences in scatterer size have not been considered. This

is especially true for the hybrid method since the original

paper on this work (Kim and Varghese, 2008) implies that

the method will yield reliable attenuation estimates when

the backscatter changes within the ROI without distinguish-

ing between backscatter changes due to number density

variations and backscatter changes due to scatter size varia-

tions. In this study, we use computer simulations to gener-

ate ROIs that are homogeneous, ROIs that have the same

scatterer size but different scatterer number densities, and

ROIs that have the same scatterer number density but dif-

ferent scatterer sizes. The accuracy and precision of the

three attenuation estimation techniques are then compared

as a function of ROI size in all the simulation cases. The

spectral difference method and the spectral log difference

method make no prior assumption about the frequency de-

pendence of the attenuation. The hybrid method, however,

assumes that the attenuation increases linearly with fre-

quency. In order to evaluate how variations in backscatter

affect each method, we have chosen a linear frequency de-

pendence of the attenuation in the sample. In reality, many

tissues have a power law frequency dependence. However,

because of the relatively small bandwidths of the current

diagnostic transducers, the attenuation can be assumed to

have a linear frequency dependence over the usable fre-

quency range of most transducers.

II. SUMMARY OF THE ALGORITHMS

A. The spectral difference method

In order to estimate the ultrasonic attenuation in an ROI

of a sample (material of interest), the same transducer and

the same power settings are used to obtain backscattered sig-

nals from the tissue sample and from a homogeneous TMP.

The TMP has a known attenuation coefficient and a sound

speed that closely matches the sound speed in soft tissue.

Each radio frequency (RF) echo line of the ROI is parti-

tioned into several overlapping time-gated windows. The

Fourier transform is applied to every window, and the power

spectra of the windows that correspond to the same depth are

averaged. The same procedure is performed on the region of

the reference phantom that has the same compared depth as

the ROI of the sample. In standard pulse echo imaging, the

measured power spectrum of a windowed region in a statisti-

cally homogeneous tissue is given by (Hyungsuk and

Varghese, 2007)

Szðf ; zÞ ¼ Pðf ÞDsðf ; zÞAsðf ; z0ÞBsðf ; zÞe�4asðf Þðz�z0Þ: (1)

This equation assumes that the windows that are used to

gate the echoes are small compared to the depth of focus

of the transducer so that the variations of the field within

each gated region could be ignored (Bigelow and O’Brien,

2004; Kim and Varghese, 2008). The subscripts represent

the sample. The distance from the surface of the transducer

to the center of a particular time-gated window within the

ROI is denoted by z. The frequency is denoted by f. P(f)
represents the combined effect of the transmit pulse and

the transducer sensitivity (electro-acoustic and acousto-

electric transfer functions). Ds(f, z) denotes the effects of

diffraction that are related to the transducer geometry. As(f,
z0) is the cumulative attenuation along the propagation

path from the surface of the transducer to the depth z0

which corresponds to the start of the ROI. as(f) is the

attenuation coefficient within the ROI. Bs(f, z) is a result of

the scattering properties of the tissue within the gated win-

dow, namely the effective scatter size, the scatterer number

density, and the mean square variation in acoustic imped-

ance between the scatterers and the background. Similarly,

the power spectrum of the backscattered signal from the

reference phantom is

Srðf ; zÞ ¼ Pðf ÞDrðf ; zÞArðf ; z0ÞBrðf ; zÞe�4arðf Þðz�z0Þ: (2)

The subscript r represents the reference phantom. If the aver-

age sound speed in TMP and in the tissue sample is assumed

equal, the diffraction terms Ds(f, z) and Dr(f, z) are the same,

i.e.,

Dðf ; zÞ ¼ Dsðf ; zÞ ¼ Drðf ; zÞ: (3)

The spectral difference method makes a prior assumption

that the tissue within the ROI is homogeneous and isotropic,

i.e., the scattering term B(f, z) does not vary with depth

within the ROI, therefore

Bsðf ; zÞ ¼ Bsðf Þ;
Brðf ; zÞ ¼ Brðf Þ:

(4)

Dividing the power spectra of the sample by the power spec-

tra of the reference phantom yields

RSðf ; zÞ ¼ Ssðf ; zÞ
Srðf ; zÞ

¼ Asðf ; z0ÞBsðf Þ
Arðf ; z0ÞBrðf Þ

exp½4ðz� z0ÞDaðf Þ�; (5)

where

Da ¼ ½arðf Þ � asðf Þ�: (6)
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Computing the natural logarithm yields

ln½RSðf ; zÞ� ¼ 4ðz� z0ÞDaðf Þ þ ln
Asðf ; z0ÞBsðf Þ
Arðf ; z0ÞBrðf Þ

� �
: (7)

The attenuation coefficient of the sample (Np/cm) can be esti-

mated at each frequency component by calculating c, the

slope of the straight line that fits the log ratio of the two spec-

tra, i.e., the slope of the straight line that fits Eq. (7) versus

depth. The estimated attenuation coefficient can be written as

asðf Þ ¼ arðf Þ �
cðf Þ

4
: (8)

If the attenuation is assumed to increase linearly with fre-

quency, then the attenuation coefficient slope (Np/cm-MHz)

is used as a measure for the attenuation in the tissue of inter-

est. The attenuation coefficient can be written as

asðf Þ ¼ bf ; (9)

where the single parameter b is the attenuation coefficient

slope (Np/cm-MHz). b can be estimated by finding the slope

of the straight line that fits Eq. (9), or by dividing the at-

tenuation coefficient as(f) by the frequency at each Fourier

component and computing the average. Dividing by f
and computing the average was the approach taken in our

study.

B. The spectral log difference method

Unlike the spectral difference method which uses all the

time-gated windows within the ROI, the spectral log differ-

ence method uses the power spectra from only the proximal

and the distal window of the ROI. As in Eq. (5), dividing the

power spectrum of the proximal window of the sample by

the power spectrum of the proximal window of the TMP and

computing the natural logarithm yields

ln
Ssðf ;zpÞ
Srðf ;zpÞ

� �
¼ 4ðzp� z0ÞDaðf Þþ ln

Asðf ;z0ÞBsðf ;zpÞ
Arðf ;z0ÞBrðf ;zpÞ

� �
: (10)

The subscript p stands for proximal. zp is the distance from the

surface of the transducer to center of the proximal window of

the ROI. Similarly, dividing the power spectrum of the distal

window of the sample by the power spectrum of the distal win-

dow of the TMP and computing the natural logarithm yields

ln
Ssðf ;zdÞ
Srðf ;zdÞ

� �
¼ 4ðzd� z0ÞDaðf Þþ ln

Asðf ;z0ÞBsðf ;zdÞ
Arðf ;z0ÞBrðf ;zdÞ

� �
: (11)

The subscript d stands for distal. zd is the distance from the

surface of the transducer to center of the distal window of

the ROI. Computing the difference between the spectra from

Eqs. (10) and (11) yields

Sðf Þ ¼ 4ðzp � zdÞDaðf Þ þ ln
Asðf ; z0ÞBsðf ; zpÞ
Arðf ; z0ÞBrðf ; zpÞ

� �

� ln
Asðf ; z0ÞBsðf ; zdÞ
Arðf ; z0ÞBrðf ; zdÞ

� �
: (12)

The TMP is homogeneous and isotropic, hence Br(f, zp)

¼ Br(f, zd). If the material within the proximal window has

the same effective scatterer size as the material within distal

window of the sample, we can write

Bsðf ; zpÞ ¼ cs � Bsðf ; zdÞ; (13)

where cs is a multiplicative constant. Equation (13) is valid

even if the material within the proximal window of the sam-

ple and the material within the distal window of the sample

have different scatterer number densities and or different

mean square variation in acoustic impedance between the

scatterers and the background. Equation (12) becomes

Sðf Þ ¼ 4Daðf Þðzp � zdÞ þ const (14)

where const is a constant. The common parameterization of

the attenuation coefficient is given by (Leeman et al., 1984)

asðf Þ ¼ bf n: (15)

Equation (14) becomes

Sðf Þ ¼ 4½arðf Þ � bf n�ðzp � zdÞ þ const: (16)

The unknowns b, n, and const can be estimated by fitting a

power function versus frequency to Eq. (16). If the attenua-

tion is assumed to increase linearly with frequency as in

Eq. (9), the attenuation coefficient slope can be estimated by

fitting a straight line frequency to Eq. (16) which is the

approach taken in this study.

C. The hybrid method

As in the spectral difference method, the hybrid method

uses all of the time-gated widows within the ROI. The hybrid

method, as originally derived, makes a prior assumption that

the local attenuation within the ROI and the cumulative

attenuation from the surface of the transducer to the depth that

corresponds to the beginning of the ROI increase linearly with

frequency. Equations (1) and (2) become

Ssðf ; zÞ ¼ Pðf ÞDðf ; zÞBsðf ; zÞe�4bsf ðz�z0Þe�4bs�totfz0 ; (17)

Srðf ; zÞ ¼ Pðf ÞDðf ; zÞBrðf ; zÞe�4br f ðz�z0Þe�4br�totfz0 ; (18)

where bs�tot and br�tot are the cumulative attenuation coeffi-

cient slopes of the sample and the reference, respectively. bs

and br are the local attenuation coefficient slopes within the

ROIs of the sample and the reference, respectively. Dividing

the power spectrum of the sample by the power spectrum of

the reference yields

RSðf ;zÞ¼Ssðf ;zÞ
Srðf ;zÞ

¼Bsðf ;zÞ
Brðf ;zÞ

expf4f ½ðz�z0ÞDbþz0Dbtot�g; (19)

where

Db ¼ br � bs;

Dbtot ¼ br�tot � bs�tot:
(20)
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The scattering term B(f, z) is modeled as a power function of

frequency and is expressed as an exponential form of the first

two terms of the Taylor series expansion (Treece et al.,
2005; Kim and Varghese, 2008)

Bðf Þ ¼ cf n � exp n logðfcÞ þ n log 1þ f � fc

fc

� �� �

/ exp � nðf 2 � 4fcf Þ
2f 2

c

� �
; (21)

where c is a constant and fc is the center frequency of the

transmit pulse. Equation (19) becomes

RSðf ; zÞ / exp �ðns � nrÞðf 2 � 4fcf Þ
2f 2

c

� �
� expf4f ½ðz� z0ÞDbþ z0Dbtot�g: (22)

The subscripts s and r represent the sample and the refer-

ence, respectively. A Gaussian filter G(f) with a center fre-

quency fc and a variance r2 is then applied to RS(f, z). The

Gaussian filtered intensity ratio is given by

GRSðf ; zÞ ¼ Gðf ÞRSðf ; zÞ

¼ exp �ðf � fcÞ2

2r2

" #
exp �ðns� nrÞðf 2� 4fcf Þ

2f 2
c

� �
� expf4f ½ðz� z0ÞDbþ z0Dbtot�g: (23)

In the original implementation of the hybrid method, fc was

selected to be the center frequency of the transmit pulse, and

r2 was given by the bandwidth of the transmit pulse.

However, we found a slight improvement in the accuracy of

the algorithm when fc was selected such that the frequency

corresponding to the spectral peak of GRS(f, z) was in the

middle of the usable frequency band. We also used the band-

width of the received echoes from the unknown sample to

set r2 as this only required processing the backscattered echo

data. After manipulating Eq. (23), the center frequency of

GRS(f) at the depth z is given by

f̂cðzÞ ¼
fc þ 4r2½ðz� z0ÞDbþ z0Dbtot� þ

r2ðns � nrÞ
f 2
c

1þ r2ðns � nrÞ
f 2
c

� 4r2Dbðz� z0Þ þ ðf þ 4r2Dbtotz0Þ: (24)

The approximation r2ðns � nrÞ=f 2
c � 0 was made because

the transmit center frequency is generally greater than the

square root of the variance, and the parameter ns for human

tissue is approximately equal to the parameter nr for the ref-

erence phantom. The attenuation coefficient slope of the

sample is estimated by calculating the slope c of the straight

line that fits Eq. (24) versus depth. The estimated attenuation

coefficient slope is given by

bs ¼ br �
c

4r2
ðNp=cm�MHzÞ: (25)

III. PROCEDURE

Computer simulations were used to obtain four differ-

ent data sets of RF backscattered signals using a Gaussian

focused beam (5 cm focal length, 10 MHz center fre-

quency, 0.385 mm spatial pulse length, and a 50% �3 dB

bandwidth). The first data set is obtained from a homoge-

neous region that has randomly distributed 10 lm radius

spherical shell scatterers (i.e., glass beads) and a scatter-

ing number density of 100 mm�3. This data set was used

to obtain the reference power spectrum. The second data

set is obtained from a homogeneous region which has ran-

domly distributed 20 lm effective radius scatterers that

have a Gaussian form factor and a scattering density of

100 mm�3. The third data set is obtained from an in-ho-

mogeneous region which has randomly distributed 20 lm

effective radius scatterers that have a Gaussian form fac-

tor and a 100 mm�3 scattering number density after the

focal plane and a 200 mm�3 scattering number density

before the focal plane axially (i.e., two distinct regions

separated by the focal plane). These values of number

density were selected to correspond to a 3 dB change in

the backscatter within the ROI. The fourth data set is

obtained from an in-homogeneous sample which has a

scattering number density of 100 mm�3 and randomly dis-

tributed scatterers that have a Gaussian form factor with a

20 lm effective radius after the focal plane and a 10 lm

effective radius before the focal plane axially (i.e., two

distinct regions separated by the focal plane). These val-

ues were selected to correspond to a doubling of the scat-

terer size within the ROI. For the data sets, 3000

independent scatterer distributions resulting in 3000 inde-

pendent echo lines were generated for each of the sample

data sets and 100 independent scatterer distributions

resulting in 100 independent echo lines were generated

for the reference data set. The equivalent of a B-mode

image is shown in Fig. 1 to illustrate each of the simu-

lated data sets. The y-axis in these images corresponds to

depth in centimeters while x-axis corresponds to the dif-

ferent independent echo lines. Each echo line was gener-

ated from its own distribution of scatterers so there is no

correlation between the columns in the images.

The attenuation coefficients of the sample and the ref-

erence are 0.7 dB cm�1 MHz�1 and 0.5 dB cm�1 MHz�1,

respectively. The form factor is proportional to the Fourier

transform of the spatial correlation coefficient of the scatter-

ing medium (Insana et al., 1990). A correlation coefficient

bc(Dr) that has a Gaussian form yields a Gaussian form fac-

tor F(2k) such that

bcðDrÞ ¼ expð�Dr2=2dÞ;
Fð2kÞ ¼ expð�2k2d2Þ ’ expð�0:827k2a2

effÞ;
(26)

where d is the characteristic dimension, Dr is the distance

between two point in space, k is the wave number, and aeff is

the effective scatterer size. For our simulations, the Gaussian

correlation coefficient was generated by giving each scat-

terer a Gaussian impedance distribution with the max
~r
ðcð~rÞÞ

set to one where (Insana et al., 1990)
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cð~rÞ ¼ jsð~rÞ � j
j

� qsð~rÞ � q
qsð~rÞ

: (27)

In this equation, jsð~rÞ is the compressibility of the scatterer,

j is the compressibility of the background, qsð~rÞ is the den-

sity of the scatterer, q is the density of the background, and~r
corresponds to the local spatial coordinates of the scatterer.

The maximum value of c will not impact the results of our

study.

In the simulations, the focal plane is used as the center

of the ROI. Each echo line within the ROI is gated using rec-

tangular windows with 50% overlapping, each window con-

taining seven pulse lengths. The spatial pulse length is the

length of space over which a pulse occurs. We chose seven

pulse lengths in each time-gated window because the full

width at half-maximum (FWHM) bandwidth of the backscat-

ter power spectrum doesn’t change significantly for windows

that contain more than seven pulse lengths. The power spec-

trum of each time-gated window is approximated by taking

the Fourier transform of the RF data and squaring the magni-

tude of the result. The power spectra of the rectangular win-

dows that correspond to the same depth are averaged. In

order to operate above the noise floor, the usable frequency

range was selected to be the frequencies common to the �20

dB bandwidths of the sample and the reference spectra. The

noise floor is the magnitude of the power spectrum that is

nearly constant over the frequencies that are outside the usa-

ble bandwidth of the transducer. In the simulations, the noise

floor was always less than �20 dB.

To find how the error in the attenuation coefficient slope

estimates (ACE) changes with respect to the ROI length axi-

ally for the three sample cases that were simulated, we var-

ied the length of the ROI from two to nine overlapping

rectangular windows (10.5 to 35 pulse lengths). Figure 2

shows an example of a backscattered RF signal from a ROI.

This example signal is gated by five overlapping windows

(50% overlapping) denoted by w1, w2, w3, w4, and w5. As

was described previously, each window, w5 through w5, was

seven pulse lengths long. Likewise, to find how the errors in

the ACE changed with ROI width laterally for the three sam-

ple cases, we varied the number of independent echoes per

ROI from 5 to 100 with increments of four echo lines. We

obtained 30 estimates for each combination using the three

techniques (30� 100 independent echoes gives the 3000

independent echoes generated in the simulations). We varied

the length of the ROI in terms of the number of pulse lengths

instead of the number wavelengths because it was shown

than the optimal ROI length depends on the number of pulse

lengths per ROI and not on the center frequency of the trans-

ducer (Bigelow, 2010).

IV. RESULTS

A. Homogeneous ROI

Figures 3(a), 4(a), and 5(a) show the mean in the percent

error of the ACEs that were obtained using the spectral dif-

ference method, the spectral log difference method, and the

hybrid method, respectively, versus the number of pulse

lengths and the number of echoes per ROI. Figures 3(b),

4(b), and 5(b) show the standard deviation of the percent

error in the ACEs that were obtained using the spectral dif-

ference method, the spectral log difference method, and the

hybrid method, respectively, versus the number of pulse

lengths and the number of echoes per ROI. Based on these

plots, we observed that the mean and the standard deviation

FIG. 1. The equivalent of a B-mode

image for the three different sample

data sets corresponding to (a) a

homogenous ROI, (b) an ROI with

varying number density, and (c) an

ROI with varying effective scatterer

size. The x-axis corresponds to inde-

pendent echo lines with each line

corresponding to its own randomly

generated arrangement of scatterers.

FIG. 2. Example of a backscattered RF signal from a ROI. This signal is

gated by five overlapping windows (50% overlapping) denoted by w1, w2,

w3, w4, and w5.
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of the percent error decrease with increasing ROI length axi-

ally and increasing number of echoes laterally for all the

attenuation measurement techniques. The accuracy and

the precision are better for smaller ROI sizes in the case of

the spectral difference method compared with the spectral

log difference and the hybrid methods.

B. In-homogeneous ROI with varying scatterer
number density

Figures 6(a) and 7(a) show the mean in the percent error

of the ACEs that were obtained using the spectral log differ-

ence method and the hybrid method, respectively, versus the

number of pulse lengths and the number of echoes per ROI.

Figures 6(b) and 7(b) show the standard deviation of the per-

cent error in the ACEs that were obtained using the spectral

log difference method and the hybrid method, respectively,

versus the number of pulse lengths and the number of echoes

per ROI. The spectral difference method gave errors larger

than a 100%, a result that was expected based on the

assumptions that were taken when the algorithm was

derived. Specifically, in the spectral difference method, any

changes in the scattering term B(f, z) with depth are inter-

preted as attenuation by the algorithm. For this reason, the

mean and the standard deviation of the percent error in the

ACEs was not plotted for the spectral difference method.

Based on Figs. 6 and 7, we observed that the spectral log dif-

ference method and the hybrid method have comparable ac-

curacy and precision. In both methods, the accuracy and the

precision increase with increasing ROI length and increasing

ROI width (number of independent echoes per ROI).

FIG. 4. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

spectral log difference method from the homogeneous sample versus the

number of pulse lengths and the number of echoes per ROI.

FIG. 5. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

hybrid method from the homogeneous sample versus the number of pulse

lengths and the number of echoes per ROI.

FIG. 6. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

spectral log difference method from the in-homogeneous sample that has the

same effective scatterer size but different scatterer number densities versus

the number of pulse lengths and the number of echoes per ROI.

FIG. 3. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

spectral difference method from the homogeneous sample versus the num-

ber of pulse lengths and the number of echoes per ROI.
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C. In-homogeneous ROI with varying scatterer size

Figures 8(a) and 9(a) show the mean in the percent error

of the ACEs that were obtained using the spectral log differ-

ence method and the hybrid method, respectively, versus the

number of pulse lengths and the number of echoes per ROI.

Figures 8(b) and 9(b) show the standard deviation of the per-

cent error in the ACEs that were obtained using the spectral

log difference method and the hybrid method, respectively,

versus the number of pulse lengths and the number of echoes

per ROI. The spectral difference method once again gave

errors larger than a 100% as was expected based on the

assumptions that were taken when the algorithm was

derived. For this reason, the mean and the standard deviation

of the percent error in the ACEs once again were not plotted

for the spectral difference method. Based on Figs. 8 and 9,

we observed that the spectral log difference method and the

hybrid method did not completely fail in estimating the

attenuation; however, the accuracy and the precision are

poor. The accuracy is within 25% for large ROI sizes in both

methods. The precision in the ACEs increases with increas-

ing number of echoes and increasing ROI length.

V. DISCUSSION AND CONCLUSION

Based on the above results, the spectral difference

method gave accurate attenuation coefficient estimates when

the tissue was homogeneous; however it failed completely

when the scatterer number densities and or the effective scat-

terer radii are different within the ROI. These results were

expected from the derivation of the algorithm. The spectral

log difference method and the hybrid method gave accurate

attenuation estimates when the ROI was homogeneous, and

when the ROI had the same scatterer size but different scat-

ter number densities, with both methods having a compara-

ble accuracy and precision. However, because there was no

correction for variation in the scatterer size during the deri-

vation of the two algorithms, it was surprising that these two

methods gave only a 25% error when the ROI had the same

scatterer number densities but different effective scatterer

size. In order to quantify how the error in the ACEs depends

on the variations in the scatterer size within the ROI, we

modeled the backscatter coefficient B(f, z) with a Gaussian

scattering model (Insana et al., 1990) and re-derived the

spectral log difference method and the hybrid method. The

term Bs(f, z) in Eqs. (12) and (17) can be written as

Bðf ; zÞ ¼ MðzÞf 4 exp � 32:6496a2
effðzÞf 2

c2

� �
; (28)

where M(z) is a function of the scatterer number density and

mean square variation in acoustic impedance, aeff is the

effective scatter radius, and c is the average sound speed.

FIG. 8. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

spectral log difference method from the in-homogeneous sample that has the

same scatterer number density but different effective scatterer size versus

the number of pulse lengths and the number of echoes per ROI.

FIG. 9. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

hybrid method from the in-homogeneous sample that has the same scatterer

number density but different effective scatterer size versus the number of

pulse lengths and the number of echoes per ROI.

FIG. 7. The mean (a) and (b) the standard deviation (SD) in the percent

error of the attenuation coefficient estimates that were obtained using the

hybrid method from the in-homogeneous sample that has the same effective

scatterer size but different scatterer number densities versus the number of

pulse lengths and the number of echoes per ROI.
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In the spectral log difference method, Eq. (12) becomes

Sðf Þ ¼ 4fDbDz� 32:649f 2Da2
eff

c2
; (29)

where Db¼ (br�bs), Dz ¼ (zp� zd), and Da2
eff ¼ ½a2

eff�s�p zð Þ
�a2

eff�s�d zð Þ�, the subscripts s and r denote the sample and the

reference, respectively, p and d stand for proximal and distal,

respectively. Taking the derivative of S(f) with respect to fre-

quency, we obtain:

d
df

Sðf Þ ¼ 4DbDz� 65:298fDa2
eff

c2
: (30)

If we approximate the frequency f by the middle frequency

of the usable frequency range fmid, we find that the estimated

attenuation coefficient slope of the sample is given by

b̂s ffi bs þ
16:32 fmidDa2

eff

c2Dz

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Error Term

: (31)

Equation (31) shows that the error in the attenuation coeffi-

cient slope of the sample increases with increasing scatterer

size difference between the proximal and distal windows of

the ROI and decreases with increasing range between the

proximal and distal windows of the ROI.

Similarly, in the hybrid method, Eq. (23) becomes

GRSðf ;zÞ¼Ssðf ;zÞ
Srðf ;zÞ

¼exp �ðf � fcÞ2

2r2

" #
MsðzÞ
MrðzÞ

� �

�exp �5:19f 2½a2
eff�sðzÞ�a2

eff�rðzÞ�
c

� �
exp½4zDbf �:

(32)

After manipulating Eq. (32), it was shown that center frequency

of GRS(f) at the depth z can be expressed as (Bigelow, 2010):

f̂cðzÞ¼�4zDb~r2þfc 1þ65:298

c2
~r2½a2

eff�sðzÞ�a2
eff�rðzÞ�

� �
(33)

where

~r2¼ r2 1þ65:298

c2
r2½a2

eff�sðzÞ�a2
eff�rðzÞ�

� �
ffi r2 (34)

In the hybrid method, Db is estimated by dividing the slope

the straight line that fits Eq. (33) with respect to depth. How-

ever, if we take the derivative of f̂cðzÞ with respect to depth,

we obtain

@

@z
f̂cðzÞ¼�4Dbr2þ 65:298fcr2

c2

@

@z
½a2

eff�sðzÞ�a2
eff�rðzÞ�

þ�4Dbr2þ 65:298fcr2

c2

@

@z
a2

eff�sðzÞ (35)

If we approximate, @=@za2
eff�sðzÞ by ½a2

eff�s�pðzÞ � a2
eff�s�d

ðzÞ�=ðzp � zdÞ ¼ Da2
eff=Dz, we find that the estimated attenu-

ation coefficient slope of the sample is given by

b̂s ffi bs þ
16:32 fcDa2

eff

c2Dz

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Error Term

: (36)

Equations (36) and (31) show that the error in the attenua-

tion coefficient slope of the sample is very similar between

the hybrid method and the spectral log difference method.

To test the expressions given by Eqs. (31) and (36) for the

difference in scatterer size, two additional cases were simu-

lated and compared to our previous results. Figure 10

FIG. 10. (Color online) The expected

percent error and the measured per-

cent error in the attenuation coeffi-

cient slope of the sample using the

hybrid method and the modified spec-

tral log difference method for the four

simulated cases.
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shows the expected percent error and the measured percent

error in the attenuation coefficient slope of the sample

using the hybrid method and the modified spectral log dif-

ference method for the four cases using an ROI length of

35 pulse lengths and 100 independent echoes. In Fig. 10,

the first two cases correspond to our previous results were

for a homogeneous sample with 20 lm effective radius

scatterers that have a Gaussian form factor (case 1 in Fig.

10) and for an in-homogeneous sample which had scatterers

that have a Gaussian form factor and 20 lm effective radii

after the focal plane and 10 lm effective radii before the

focal plane axially (case 2 in Fig. 10). The first new case

(case 3 in Fig. 10) was an in-homogeneous sample which

had scatterers that have Gaussian form factor and 40 lm

effective radii after the focal plane and 10 lm effective radii

before the focal plane axially. The fourth case (case 4 in Fig.

10) was an in-homogeneous sample which had scatterers that

have a Gaussian form factor and 60 lm effective radii after

the focal plane and 10 lm effective radii before the focal

plane axially. These cases were selected to sweep through a

range of scattering properties to validate our derived equa-

tions. We observe the percent error in the attenuation estimate

increases with increasing difference of scatterer size between

the top half and bottom half of the ROI in agreement with

Eqs. (36) and (31). Also, the expected error and measured

error are comparable in both the hybrid and the modified

spectral log difference method confirming our derived error

terms.
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