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Hypometabolism is a hallmark of Alzheimer’s disease (AD) and implicates a mitochondrial role in the neuropathology associated
with AD. Mitochondrial amyloid-beta (Af) accumulation precedes extracellular Af3 deposition. In addition to increasing oxidative
stress, Af has been shown to directly inhibit mitochondrial enzymes. Inhibition of mitochondrial enzymes as a result of oxidative
damage or Af interaction perpetuates oxidative stress and leads to a hypometabolic state. Additionally, AB has also been shown
to interact with cyclophilin D, a component of the mitochondrial permeability transition pore, which may promote cell death.
Therefore, ample evidence exists indicating that the mitochondrion plays a vital role in the pathophysiology observed in AD.

1. Introduction

The incidence of Alzheimer’s disease (AD) in the US is
expected to increase to as many as 13.2 million by 2050 [1].
AD pathology is characterized by the progressive accumula-
tion of senile plaques (consisting of amyloid f-peptide, Af3)
and neurofibrillary tangles (consisting of aggregates of the
microtubule-associated protein tau). Oxidative damage has
been implicated to play an early role in the pathogenesis
of AD [2]. In AD patients a significant decrease in energy
metabolism is observed in the frontal and temporal lobes as
indicated by in vivo positron emission tomography (PET)
[3]. Correlated with this increase in oxidative damage and
decrease in energy metabolism is a decrease in mitochondrial
enzyme (cytochrome ¢ oxidase, pyruvate dehydrogenase, o -
ketoglutarate dehydrogenase) activity in AD patients [4-6].
Mitochondrial dysfunction has been shown to play a
key role in age-related neurodegenerative diseases, such as
Alzheimer’s disease and Parkinson’s disease [7]. Mitochon-
dria produce the majority of ATP in cells and function to
maintain Ca*" homeostasis. Mitochondria produce ATP by
coupling electron transfer to the pumping of protons across
the inner mitochondrial membrane. However, electrons can
escape the electron transport chain and reduce oxygen
to form reactive oxygen species (ROS). Oxidative damage
results from a disturbance in the ROS-antioxidant balance

that favors oxidation. Oxidative damage to mitochondria
may be especially relevant in neurodegenerative disease since
mitochondria are regulators of both cellular metabolism and
apoptosis [8].

2. Mitochondrial Enzyme Oxidative Damage
and ROS Production

A hallmark of AD is hypometabolism which, importantly,
precedes the clinical presentation of the disease [9, 10].
Early studies utilizing PET indicated that brain metabolism
throughout the cortex in AD patients is significantly lower
than cortical metabolism in normal subjects [11, 12]. Clinical
data from PET studies have shown which areas of the
brain are mostly affected by mild and moderate AD, such
as the posterior cingulate cortex, parietotemporal cortex,
and prefrontal association cortices [13]. Also decreased
metabolism and synaptic loss have been shown to overlap in
the frontal and middle temporal gyri [14-17].

Mitochondria sustain the activity of neurons by produc-
ing ATP via the electron transport system (ETC) (Figure 1).
Complex I (NADH dehydrogenase) catalyzes the transfer of
two electrons from NADH to coenzyme Q [18]. Complex
I (ubiquinol-cytochrome ¢ oxidoreductase) catalyzes the
transfer of electrons from coenzyme Q to cytochrome c.
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Complex IV (cytochrome ¢ oxidase) reduces oxygen to
water. As electrons are transported through complexes I,
III, and IV, protons are pumped into the inner membrane
space, generating an electrochemical gradient. This store of
energy is used to generate ATP via the ATP synthase. ROS
production is linked to membrane potential (Ay) such that
a high Ay promotes increased ROS production [9]. High
Ay results in altered redox potential of ETC carriers and an
increase in the half-life time of ubisemiquinone leading to
increased ROS production. Also, any damage to components
of the ETC could lead to a stalling of reduced intermediates of
the ETC which would increase the probability of an electron
slipping and reducing O; to form ROS.

Postmortem assessment of human AD brains has re-
vealed increased levels of oxidative damage which coincides
with impairments in metabolism and A processing [19].
Since mitochondria are the primary source of cellular ROS
production, it is at least conceivable that as an organism
ages mitochondrial enzymes would be especially vulnerable
to oxidative damage. Damage to mitochondrial enzymes
would cause defects in electron transport and promote ROS
production. Redox proteomic analysis has revealed that a
number of mitochondrial proteins are oxidatively modified
including VDAC, aconitase, GAPDH, and lactate dehydroge-
nase in AD patients [20].

The most documented reduction of mitochondrial en-
zyme activity in AD is the activity of complex IV [5, 21-23].
Since peroxidative damage of cardiolipin in mitochondrial
membranes has been shown to affect the activity of complex
IV; ROS-mediated damage of membranes is postulated to
partly be responsible for A inhibition of complex IV [24].
However, since antioxidants fail to fully protect mitochon-
dria from amyloid beta toxicity, it has been hypothesized
that A itself directly inhibits mitochondrial enzymes [24].
The AfBss-35 fragment has been shown to selectively inhibit
complex IV [25]. The AfB,s5_35 fragment retains the residues
required for aggregation and undergoes aggregation more
rapidly than full-length Af. In another study, both the full-
length Afy_4, and Af,5 35 fragment resulted in inhibition of
complex 1V, and Ap,s_35 raised the K, of complex IV for
reduced cytochrome ¢ [26]. The authors concluded that Af
may act as an inhibitor of one of the cytochrome ¢ binding
sites of complex IV.

Additionally, a-ketoglutarate dehydrogenase has been
shown to have reduced activity in AD [27]. Recently we
reported an age-dependent decrease in NADH-linked, com-
plex I- driven respiration rate and an increase in mitochon-
drial ROS production in aged dogs [28]. Therefore, it is
evident that cumulative oxidative damage over the lifespan
of an organism can affect mitochondrial efficiency and leave
neurons susceptible to cell death.

3. Oxidation of Mitochondrial DNA

It has been hypothesized that ongoing oxidative damage
to mitochondrial DNA (mtDNA) may be the underlying
mechanism for cellular senescence [29]. Since mtDNA repair
mechanisms are limited and because mtDNA is situated in
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F1GURE 1: The relationship between amyloid-f (Af), mitochondrial
electron transport chain (ETC), and superoxide (O, *) formation.
As electrons are transferred through complexes I, III, and IV,
protons are pumped into the inner membrane space, generating
an electrochemical gradient. The energy stored is used to generate
ATP via complex V (ATP synthase). Damage to components of
the ETC can lead to a stalling of reduced intermediates which
increases the probability of electrons slipping and reducing O, to
form superoxide. Af has been shown to directly inhibit complex
IV which would lead to bioenergetic impairment and increased
formation of reactive oxygen species.

close proximity to the site of ROS production, mtDNA is
more vulnerable to oxidative damage than nuclear DNA
[30]. With age, oxidation of mtDNA increases compared
to nuclear DNA leading to an age-dependent accumulation
of mtDNA mutations [31]. One recent study found that
somatic mtDNA control region mutations are elevated in
AD patients [32]. These mutations would lead to an overall
reduction in mtDNA copy number which would result
in a decrease in oxidative phosphorylation. In addition, a
mutation that affects L-strand transcription was also dis-
covered. This mutation inhibits complex I respiration which
leads to increased ROS production, decreased membrane
potential, and subsequent Ca?* deregulation. The effects of
these mutations may lead to opening of the mitochondrial
permeability transition pore and subsequent neuronal death.
Other evidence that oxidative damage to mtDNA could
contribute to AD pathology is the observation that a risk
factor for late-onset AD is a maternal history of AD [33]. This
observation could be related to the fact that mitochondrial
DNA is maternally inherited.

4. Amyloid-p: Cause or Effect of
Mitochondrial Dysfunction

Af3 has been shown to accumulate in mitochondria from
AD patients [34]. Altered processing of amyloid precursor
protein (APP) which results in deposition of neurotoxic
forms of AS, known as the amyloid hypothesis of AD, is
believed to play a central role in the development of AD
[35]. This hypothesis is supported by studies which show
that immunization against Af decreases amyloid levels and
improves cognition in APP transgenic mice [36-38].
Intracellular and mitochondrial accumulation of Af
likely precedes extracellular AB deposition [34, 39, 40].
Recently Af3 has been shown to accumulate early (as young



International Journal of Alzheimer’s Disease

as 4 mo) and specifically in synaptic mitochondria [40]. We
have shown that synaptic mitochondria have high levels of
cyclophilin D (CypD) which makes them more susceptible
to changes in synaptic Ca** [41]. Importantly, synaptic
Ca?* homeostasis is regulated by synaptic mitochondria,
and susceptibility to Ca?* would disrupt synaptic function
[42]. CypD is a peptidyl-prolyl cis-trans isomerase located
in the matrix and is a component of the mitochondrial
permeability transition pore (mPTP). CypD translocates
from the matrix to the mPTP and interacts with the adenine
nucleotide translocase of the inner membrane to promote
pore formation. Opening of the mPTP leads to a collapse in
Ay and release of proapoptotic molecules (i.e., cytochrome
C, Smac/Diablo, and apoptosis-inducing factor). A reduction
in Ay would lead to bioenergetic failure and subsequent
synaptic failure ending in neuronal death. In fact, mitochon-
drial Af has been shown to interact with CypD, and CypD
deficiency attenuates AB-induced mitochondrial stress [43].
This may indicate that because synaptic mitochondria have
increased levels of, (i) cyclophilin D and (ii) Af, they are
important in the pathogenesis of AD.

Mitochondrial dynamics are altered in AD patients, and
mitochondrial fission has been shown to be more prevalent
than fusion in AD [44]. This observation is supported by
evidence indicating that the number of mitochondria is
decreased in AD which corresponds with an increase in
mitochondrial size [45]. APP overexpression, through Af
production, was shown to increase protein levels of proteins
associated with fission (Fis1) and decreased protein levels of
those involved in fusion (dynamin-like protein and OPA1)
[46]. In addition Af has been shown to cause oxidative dam-
age to Drpl which resulted in mitochondrial fission [47].
Altered mitochondrial dynamics may result in decreased
mtDNA copy number which would result in defects in
mitochondrial electron transport activity.

While the exact mechanism underlying APP misme-
tabolism is unclear, it appears that A production itself
is least partially induced by oxidative stress [48]. A can
function both as an antioxidant and pro-oxidant [49]. At low
concentrations (low-nanomolar) A remains monomeric
and can function as an antioxidant. However, at higher
concentrations, aggregation of Af produces H,O,. Af-
induced oxidative stress and mitochondrial dysfunction
has been demonstrated in AD models [50, 51]. In APP
mutant mice that display increased levels of AS, cognition-
related brain regions have altered glucose metabolism [52].
Furthermore, mitochondria-targeted antioxidants have been
shown to attenuate AfS-induced mitochondrial dysfunction
[53]. Taken together, mitochondrial-induced oxidative stress
may induce the production of AS, which itself increases
oxidative stress and impairs mitochondrial function and may
provide a feed-forward loop that increases Af3 levels.

5. Conclusion

In summary, since cerebral hypometabolism and inhibition
of mitochondrial function have been demonstrated in AD,
mitochondria likely play a role in AD neuropathology. Af3

has been shown to both directly and indirectly impair
mitochondrial function. Impairment of mitochondrial func-
tion increases ROS production which may further damage
mitochondrial enzymes and mtDNA. Likely, mitochondrial
dysfunction exacerbates the production of ROS and Af,
which provides a feed-forward mechanism ultimately lead-
ing to AD pathology.
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