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This work derives a quantitative description of the conformational distribution in self-guided
Langevin dynamics (SGLD) simulations. SGLD simulations employ guiding forces calculated from
local average momentums to enhance low-frequency motion. This enhancement in low-frequency
motion dramatically accelerates conformational search efficiency, but also induces certain perturba-
tions in conformational distribution. Through the local averaging, we separate properties of molec-
ular systems into low-frequency and high-frequency portions. The guiding force effect on the con-
formational distribution is quantitatively described using these low-frequency and high-frequency
properties. This quantitative relation provides a way to convert between a canonical ensemble and
a self-guided ensemble. Using example systems, we demonstrated how to utilize the relation to ob-
tain canonical ensemble properties and conformational distributions from SGLD simulations. This
development makes SGLD not only an efficient approach for conformational searching, but also an
accurate means for conformational sampling. [doi:10.1063/1.3574397]

I. INTRODUCTION

The self-guided Langevin dynamics simulation method1

was developed for efficient conformational searching so that
rare events, such as protein folding and ligand binding, can
be accessed with much less computing resources. It has been
successfully applied to a range of computational studies.2, 3

While it can accelerate slow events to an affordable time scale,
the perturbation in conformational distribution from the self-
guiding force remained a major concern. For some calcula-
tions, such as free energy simulation, conformational search
efficiency is a crucial factor to obtain convergent results, while
the correct conformational distribution is responsible for ac-
curacy.

Because the guiding force is calculated from the so called
local averages, it has been a difficult task to quantitatively un-
derstand the effect of the guiding force on ensemble distribu-
tions. A common practice for self-guided Langevin dynamics
(SGLD) simulation is to limit the guiding factor to a small
range so that the effect on conformational distribution is very
small and can be neglected.1 Without a quantitative under-
standing of the perturbation on conformational distribution,
it is difficult to take full advantage of the acceleration that
SGLD simulations can achieve.

To obtain correct thermodynamic average properties,
Andricioaei et al. proposed a Monte Carlo procedure called
the momentum-enhanced hybrid Monte Carlo method to in-
clude the benefit of the guiding force while preserving the en-
semble average properties.4 In dynamics simulations, the dif-
ficulty in characterizing the guiding force effect on ensemble
distributions is mainly due to the lack of quantitative defini-
tion on the low-frequency motion to be enhanced. To tackle
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the problem in dynamics simulations, this work proposes a
way to separate low-frequency and high-frequency portions
of thermodynamic properties through the local averaging pro-
cedure. Based on this separation, this work derives a quanti-
tative relation between conformational distribution and guid-
ing parameters. The details of the derivation are described in
Sec. II. Examples of applying this relation are provided in
Sec. IV.

II. THEORY AND METHOD

A. The low-frequency and high-frequency properties

Thermal motion in a molecular system has a distribution
of frequencies. Chemical bonds vibrate and bend at high fre-
quencies, while ion translation and protein folding events take
a relatively long time to happen. High-frequency events re-
peat on a short time scale and are often most easy to study
in molecular simulations. Low-frequency events are impor-
tant for many macroscopic behaviors, such as protein fold-
ing and binding, but often are beyond the time scale ac-
cessible by molecular simulations with available computing
resources.

Low-frequency properties are related to low-frequency
events. For example, interaction between a pair of water
molecules depends on the relative position between the wa-
ter molecules. This interaction energy means the energy at
zero frequency, i.e., the average among all bond vibration
and bending states. At each given moment, bond vibration
and bending, and even electron density fluctuation, produce
an instantaneous energy deviation, which depends on the
high-frequency motions and is called the high-frequency en-
ergy. For slow events, low-frequency properties give a more
accurate picture, while for fast events, high-frequency proper-
ties are needed to describe them.
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We propose to define a low-frequency property by the so
called local average property. A local averaging procedure,1, 5

typically on force or momentum, is performed by the follow-
ing equation:

〈p〉L = 1

L

n∑
i=n−L+1

pi = 1

tL

∫ t

t−tL

p(τ )dτ

≈
(

1 − 1

L

)
p̃n−1 + 1

L
pn

=
(

1 − δt

tL

)
p̃(t − δt) + δt

tL
p(t) = p̃. (1)

As can be seen from Eq. (1), a local average, denoted as
“〈 〉L”, is calculated by averaging over the most recent L
points, or the most recent tL = Lδt time period. Here, δt is
the time interval between data points. We call L as the local
averaging size and tL as the local average time. This average
can be approximately calculated as an evolving average with
a constant updating of the current value as shown in the right
hand portion of Eq. (1). This evolving average is denoted with
a “∼” cap: p̃. Because all local averages in this work are cal-
culated as evolving averages, we also use “〈p〉L ” to represent
evolving averages when the cap ∼ is not easy to print. Cor-
responding to the low-frequency properties, we define high-
frequency properties as the difference between instantaneous
properties and their low-frequency ones: p − p̃.

The local averaging shown in Eq. (1) suppresses high-
frequency effects and emphasizes low-frequency contribu-
tions. From Eq. (1) we can see that the local average time,
tL, determines the contribution frequency range. To better un-
derstand the evolving averaging, we can rearrange Eq. (1) to
the following form:

p̃(t) − p̃(t − δt)

δt
= p(t) − p̃(t − δt)

tL
.

When δt→0, we have

dp̃(t)

dt
= p(t) − p̃(t)

tL
.

This differential equation can be solved:

p̃(t) = 1

tL

∫ t

0
p(τ )e− t−τ

tL dτ . (2)

Therefore, a property at any moment provides an exponen-
tially decaying contribution to the evolving average as a
function of time. The decaying rate depends on the local av-
erage time, tL.

The separation of the low-frequency properties and the
high-frequency properties is at the center of the SGLD simu-
lation method. The low-frequency properties are calculated
through the evolving averaging shown in Eq. (1). To ex-
plain the behavior of the evolving averaging, we use q(t)
= sin(2π� t) as an example function of frequency � to show
how frequency and local average time affect the evolving
average.

Substituting q(t) = sin(2π� t) into Eq. (2), we get its
evolving average:

q̃(t) = 2π� tL (e−t/tL − cos(2π� t)) + sin(2π� t)

1 + 4π2t2
L� 2

. (3)

As can be seen from Eq. (3) that for high frequency,
2π� tL � 1, the amplitude of q̃(t) is inversely proportional
to � , while for low frequency, 2π� tL � 1, q̃(t) ≈ q(t). The
local average time, tL, defines the separation of what is high
frequency and what is low frequency as compared with a local
averaging frequency of �L = 1/tL . This example shows that
the evolving averaging suppresses the high-frequency contri-
bution while it has less effect on low-frequency components.
The high-frequency portion can be expressed as

q(t) − q̃(t)

= −2π� tL (e−t/tL − cos(2π� t)) + 4π2t2
L� 2 sin(2π� t)

1 + 4π2t2
L� 2

.

(4)

As can be seen from Eq. (4), when 2π� tL � 1,
q(t) − q̃(t) ≈ sin(2π� t) = q(t), and when 2π� tL � 1,
q(t) − q̃(t) ≈ −2π� tL (e−t/tL − cos(2π� t)) → 0. That is,
the high-frequency portion keeps the high-frequency contri-
butions while suppressing the low-frequency components.

Figure 1(a) shows the example function and its evolving
averages at different local average times. Clearly, we can see
that the frequencies of the averaging results remain the same
as the example function, but the amplitudes and phases are
very different from each other. When � tL = 0.1, this func-
tion represents a low-frequency motion and its evolving aver-
age has a magnitude similar to the function. When � tL = 10,
this function represents a high-frequency motion and the mag-
nitude of its evolving average is very small as compared to
the function. Figure 1(b) shows an averaging result as a func-
tion of � tL . The envelope function represents the amplitude
of the averages. Clearly we can see, with a small � tL , the
amplitude of the average has little change from the example
function, while with a large � tL , the amplitude of the average
approaches zero, indicating that low-frequency function will
remain in the evolving average and high-frequency function
will be suppressed.

With the evolving averaging, many low-frequency prop-
erties can be obtained in molecular simulation. For example,
low-frequency forces:

f̃i (t) =
(

1 − δt

tL

)
f̃i (t − δt) + δt

tL
fi (t);

low-frequency momentums:

p̃i (t) =
(

1 − δt

tL

)
p̃i (t − δt) + δt

tL
pi (t);

and low-frequency potential energies:

Ẽ p(t) =
(

1 − δt

tL

)
Ẽ p(t − δt) + δt

tL
E p(t).

We can calculate some derived low-frequency quantities
from these low-frequency properties, such as low-frequency
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FIG. 1. (a) The example function, q(t) = sin(2π� t), and its evolving averages at three local average times: � tL = 0.1, 1, and 10. (b) The evolving average
of the example function as a function of the frequency. The envelope curves show the amplitude as a function of � tL . At small � tL , which corresponds to a
low frequency, the amplitude is approaching 1, very similar to that of the example function, while at a large � tL , which corresponds to a high frequency, the
amplitude approaches 0.

kinetic energies:

Ẽk = 1

2

∑
i

p̃2
i

mi
, (5)

and low-frequency temperature:

T̃ = Ẽk

NDFk
. (6)

Here, NDF is the number of degree of freedom and k is the
Boltzmann constant.

B. The self-guided Langevin dynamics

Langevin dynamics (LD) is based on the following equa-
tion of motion:

ṗi = fi − γi pi + Ri , (7)
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where ṗi and fi are the time derivative of the momentum and
the interaction force of particle i, respectively. Ri is a random
force, which is related to mass, mi , the collision frequency, γi ,
and simulation temperature, T , by the following equation:

〈Ri (0)Ri (t)〉 = 2mi kT γiδ(t). (8)

By adding a guiding force, we obtain the equation of motion
for SGLD:1

ṗi = fi + gi − γi pi + Ri , (9)

gi is called the guiding force and is calculated based on the
low-frequency momentum:

gi (t) = λiγi (p̃i (t) − ξpi (t)). (10)

Here, λi is the guiding factor. The parameter, ξ , is an energy
conservation factor to cancel the energy input from the guid-
ing force,∑

i

gi · ṙi =
∑

i

λiγi p̃i · ṙi − ξ
∑

i

λiγi pi · ṙi = 0. (11)

Here, the summation runs over all particles in a simulation
system. From Eq. (11) we have

ξ =
∑

i λiγi p̃i · ṙi∑
i λiγi pi · ṙi

. (12)

C. Conformational distribution in SGLD

The guiding force in a SGLD simulation is designed to
accelerate the low-frequency motion so the conformational
search efficiency can be enhanced. It has two types of effects
on a simulation system. First, the guiding force enhances the
low-frequency motion as measured by the increase in the low-
frequency temperature, and also it reduces the high-frequency
motion due to the energy conservation force that comes with
the guiding force [see Eq. (10)]. Second, the guiding force
produces a bias in the energy surface. Based on these two ef-
fects, the partition function of a SGLD ensemble is split into
low-frequency and high-frequency parts:

	SGLD =
∑


 exp

(
−λlf Ẽ p

kTlf
− λhf(E p − Ẽ p)

kThf

)
. (13)

Here, λlf is called the low-frequency energy factor, describ-
ing the energy bias in the low-frequency energy surface, Ẽ p,
and λhf is the high-frequency energy factor, describing the
energy bias in the high-frequency energy surface, E p − Ẽ p.
The low-frequency and high-frequency energy surfaces under
the guiding effect are λlf Ẽ p and λhf (E p − Ẽ p), respectively.
Tlf and Thf are the effective temperatures in low-frequency
and high-frequency conformational spaces, respectively. In
normal conditions without the guiding forces (λ = 0), λlf

= λhf = 1, and Tlf = Thf = T , we have:

	SGLD(λ = 0) =
∑


 exp

(
− Ẽ p

kT
− (E p − Ẽ p)

kT

)

=
∑


 exp

(
− E p

kT

)
= 	LD.

In the low-frequency conformational space, the equation
of motion can be expressed as an evolving averaging of
Eq. (9):

˙̃pi = f̃i + g̃i − γi p̃i + R̃i . (14)

The low-frequency energy factor, λlf, can be calculated ac-
cording to the projection of the total low-frequency force in
the direction of the low-frequency forces:

λlf =
〈∑

i (f̃i + g̃i − γi p̃i )f̃i

〉
〈∑

i f̃i f̃i

〉 . (15)

Similarly, in the high-frequency conformational space, the
equation of motion can be expressed as the difference between
the instantaneous motion, Eq. (9), and the low-frequency mo-
tion Eq. (14):

ṗi − ˙̃pi = fi − f̃i + gi − g̃i − γi (pi − p̃i ) + Ri − R̃i .

(16)
The high-frequency energy factor, λhf, can be calculated ac-
cording to the projection of the total high-frequency force in
the direction of the high-frequency forces:

λhf =
〈∑

i (fi − f̃i + gi − g̃i − γi (pi − p̃i ))(fi − f̃i )
〉

〈∑
i (fi − f̃i )(fi − f̃i )

〉 .

(17)
Next, let us examine the guiding force effect on low-
frequency and high-frequency motions. Under the guid-
ing force, a system experiences an enhanced motion in
the low-frequency conformational space. This motion in
the low-frequency conformational space can be measured by
the low-frequency temperature [see Eq. (6)]. It is reasonable
to assume that the effective temperature in the local frequency
conformational space is proportional to the low-frequency
temperature:

Tlf = ClfT̃ .

And the effective temperature in the high-frequency confor-
mational space is proportional to the high-frequency temper-
ature:

Thf = Chf(T − T̃ ).

The proportional constants can be estimated from a LD sim-
ulation or a SGLD simulation without the guiding forces
(λ = 0), where Tlf = Thf = T :

Clf = T

T̃0
,

Chf = T

T − T̃0
.

Here, T̃0 is the low-frequency temperature when λ = 0 and
is called the reference low-frequency temperature. Based on
the definition, we know T̃0 depends on the simulation con-
dition and the local average time, tL. Therefore, the partition
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function of a SGLD simulation can be written as

	SGLD =
∑


 exp

(
−λlfT̃0

T̃

Ẽ p

kT
− λhf(T − T̃0)

T − T̃

E p − Ẽ p

kT

)
.

(18)
To utilize Eq. (18), in addition to λlf, λhf, Ẽ p, and T̃ from
a SGLD simulation, we also need T̃0 from a LD simulation
or a SGLD simulation with λ = 0. To avoid this burden, we
propose the following way to estimate T̃0 directly from the
same SGLD simulation.

The low-frequency motion, Eq. (14), corresponds to a
Langevin dynamics in a low-frequency conformational space
and can be rewritten to a Langevin dynamics form:

˙̃pi = f̃i − χlfγi p̃i + R̃i . (19)

Equation (19) corresponds to a Langevin dynamics with a
collision frequency of χlfγi . The factor, χlf, is called the
low-frequency collision factor and can be calculated by the
following equation:

χlf =
∑

i (γi p̃i − g̃i )γi p̃i∑
i γ 2

i p̃i p̃i
. (20)

Based on the Langevin dynamics relation, Eq. (8), with a
given distribution of random forces, the product of temper-
ature and collision frequency is a constant:

T γi = 〈Ri (0)Ri (t)〉
2mi kδ(t)

. (21)

The reference low-frequency temperature, T̃0, corresponds to
the low-frequency temperature at a collision frequency of γi ,
while the low-frequency temperature in a SGLD simulation,
T̃ , corresponds to that at the collision frequency of χlfγi . Be-
cause the guiding force does not affect the random force, from
Eq. (21), we have

T̃0 = T̃ χlf. (22)

Equation (22) provides a way to estimate T̃0 from T̃ , which
can be calculated directly in a SGLD simulation according to
Eq. (6). Therefore, the partition function can be approximated
as

	SGLD ≈
∑


 exp

(
−λlfχlf

Ẽ p

kT
− λhf

T − χlfT̃

T −T̃

E p − Ẽ p

kT

)
.

(23)

In summary, at a given temperature, T , the guiding force pro-
duces the following effects in both low and high-frequency
conformational spaces:

a. In the low-frequency conformational space, the low-
frequency energy surface, Ẽ p, is modified by a factor
of λlf. The effective temperature is changed from T to
Tlf = T̃

T̃0
T = T

χlf
.

b. In the high-frequency conformational space, the high-
frequency energy surface, E p − Ẽ p, is modified by a fac-
tor of λhf. The effective temperature is changed from T to
Thf = T −T̃

T −T̃0
T = T −T̃

T −χlf T̃
T .

The partition function of a canonical ensemble from a LD
simulation can be related to that of a SGLD ensemble by the

following equation:

	LD =
∑


 exp

(
− Ẽ p

kT
− E p − Ẽ p

kT

)

=
∑


 exp

(
−λlf

T̃0

T̃

Ẽ p

kT
− λhf

(T − T̃0)

(T − T̃ )

E p − Ẽ p

kT

)

× exp

((
λl f

T̃0

T̃
− 1

)
Ẽ p

kT
+

(
λhf

(T − T̃0)

(T − T̃ )
− 1

)

× E p − Ẽ p

kT

)
.

= 	SGLD〈wSGLD〉SGLD (24)

Here, wSGLD is called the SGLD weighting factor:

wSGLD = exp

( (
λlf

T̃0

T̃
− 1

)
Ẽ p

kT
+

(
λhf

T − T̃0

T − T̃
− 1

)

× E p − Ẽ p

kT

)

≈ exp

(
(λlfχlf − 1)

Ẽ p

kT

+
(

λhf
T − χlfT̃

T − T̃
− 1

)
E p − Ẽ p

kT

)
. (25)

To calculate the weighting factor according to Eq. (25), we
need E p and Ẽ p for each conformation, as well as T̃ , λlf, λhf,
and χlf from the SGLD simulation. Once we have the weight-
ing factor, any ensemble average, 〈A 〉, can be calculated in a
SGLD simulation as

〈A〉 = 〈AwSGLD〉SGLD

〈wSGLD〉SGLD
. (26)

D. The self-guiding temperature

In SGLD simulations, the guiding factor, λ, is an input
parameter whose value is often hard to decide for its lack of
physical meaning. For the convenience in describing the con-
formational search ability of a SGLD simulation, we define a
so called self-guiding temperature, Tsg, based on the effective
temperatures in the low and high-frequency conformational
spaces:

Tsg = Tlf

Thf
T = T̃ (T − T̃0)

T̃0(T − T̃ )
T . (27)

The self-guiding temperature, Tsg, provides a rough measure
of the conformational searching ability in the unit of temper-
ature. A SGLD simulation with a self-guiding temperature of
Tsg has a conformational search ability comparable to that in a
high-temperature simulation at the temperature of Tsg. As can
be seen from Eq. (27), for a LD simulation, T̃ = T̃0, we have
Tsg = T . For a SGLD simulation with λ > 0, we have T̃ > T̃0

and Tsg > T , and with λ < 0, , we have T̃ < T̃0 and Tsg < T .
Tsg can be used as a guidance for choosing λ. For example,
it is reasonable to choose a λ that produces Tsg = 2T . How-
ever, when λ is large and Tsg is too large as compared to T,
it is difficult to obtain accurate canonical ensemble through
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reweighting with Eqs. (25) and (26). Therefore, λ should be
chosen to balance the acceleration of conformational search
and the accuracy in converting conformational distribution.

III. SIMULATION DETAILS

To demonstrate the ensemble distribution in SGLD sim-
ulations and the conversion to canonical ensembles, we report
the results for several simple systems. A leap-frog Verlet al-
gorithm for the SGLD simulation has been implemented into
CHARMM (Refs. 6 and 7), version 36 and is described in the
Appendix. Because a SGLD simulation involves extra calcu-
lation only in the propagation of the equations of motion as
compared to a normal LD simulation, the cost of a SGLD
simulation is almost identical to a LD simulation for the same
number of time steps. SGLD simulations do require additional
memory because of the need to store the guiding forces, as
well as some arrays for the weighting factor calculation.

IV. RESULTS AND DISCUSSIONS

Through the three model systems presented here we
demonstrate three points: (1) effect of guiding forces on con-
formational search, (2) effect of guiding forces on conforma-
tional distribution, and (3) conversion from SGLD conforma-
tional distributions to LD conformational distributions.

A. The skewed double well system

A skewed double well system represents the simplest
nonsymmetric system with an energy barrier to cross. This
system has only one particle and the particle moves on a fixed
energy surface. This energy surface is designed in such a way
that it restricts the particle to move near the y-axis with two
energy minimums of different depths along the y-axis. Such a
design forces the particle to have a high-frequency motion in
the x–z direction and a low-frequency motion in the y direc-
tion. The potential profiles along the y-axis and across the y-
axis are shown in Fig. 2. The potential function (in kcal/mol)
is

εp = 500(x2 + z2) + y2(y − 2)2 + 0.25y. (28)

An argon atom was used to represent the particle. Simulations
were carried out at 80 K with a local average time, tL = 0.2 ps.
A time step of 1 fs was used and the simulation length was
100 ns for each simulation.

Figure 3 shows two trajectories in y coordinates, one in
a LD simulation [Fig. 3(a)] and the other in a SGLD simu-
lation with λ = 1 [Fig. 3(b)]. Clearly, the transition between
the two wells at y = 0 Å and y = 2 Å are more frequent in
the SGLD simulation than that in the LD simulation, demon-
strating an enhanced energy barrier overcoming ability in the
SGLD simulation. Figure 3(c) shows the number of transi-
tions as a function of Tsg. When λ increases, Tsg increases,
so does the transitions between the wells. At λ = 1, Tsg

= 100.7 K, the transitions increases by about 10 times more
than the transitions in a LD simulation (i.e., λ = 0 and Tsg = T
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FIG. 2. The skewed double well potential along the y-axis (lower panel)
when rxz = 0 and perpendicular to the y-axis (upper panel) when y = 0.
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FIG. 3. Transitions of the particle in the double well system. (a) Trajectory
in the LD simulation; (b) Trajectory in the SGLD simulation with λ = 1
where Tsg = 100.7 K. (c) Transition number as a function of the self-guiding
temperature, Tsg. The collision frequency is 10/ps and temperature is 80 K.
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simulations: (a) unweighted; (b) weighted. The collision frequency is 10/ps
and temperature is 80 K.

= 80 K). This result demonstrates the dramatic enhancement
in the energy barrier crossing ability.

Figure 4(a) shows the potential energy distribution in
the SGLD simulations. As λ increases, the distribution de-
creases in the low-energy region and increases in the high-
energy region. Figure 4(b) shows the weighted energy distri-

butions. Clearly, all curves converge fairly well to the one with
λ = 0, demonstrating that the weighting scheme can convert
the SGLD distributions to the canonical energy distribution
with a reasonable degree of accuracy.

To further examine the guiding effect on the conforma-
tional distribution, we plot the conformational density as a
function of the y coordinate in Fig. 5. Figure 5(a) shows
the distributions at different guiding factors. There are two
peaks with different heights, corresponding to the skewed
double wells. Examining the peak heights at different λ,
we can see that as λ increases, the left peak (the higher
peak) decreases, while the right peak (the lower peak) grows.
Figure 5(b) shows the weighted conformational distribution.
All distributions converge fairly well to the one with λ = 0.
This result again validates the reweighting scheme.

It should be noted that the reweighting scheme,
Eqs. (24)–(26), is based on the first order perturbation approx-
imation and is limited to small difference in conformational
distribution. As can be seen in Fig. 5(b), when the guiding fac-
tor is large, the deviation from the LD distribution increases.
Further increasing the guiding factor will make the reweight-
ing hard to converge.

B. Argon fluid

Argon liquid represents a typical homogeneous system. It
is a convenient system to examine ensemble average proper-
ties. Argon atoms were described by the Lennard-Jones 6–12
potentials with ε = 119.8 K and σ = 3.405 Å. In this example
system, 500 argon atoms were placed in a cubic periodic box
(28.53 × 28.53 × 28.53 Å3). A time step of 1 fs was used
for all simulations. The simulation length was 10 ns for each
simulation. The temperature was set to 100 K except other-
wise noted. Nonbonded interactions were calculated using the
following rationalized polynomial 3D isotropic periodic sum
(IPS) potentials.6, 8

Lennard-Jones IPS potentials:

εIPS
disp(r, R) =

⎧⎪⎪⎨
⎪⎪⎩

−Ci j

r6
− Ci j

R6

(
1341

3064
+ 77

141

( r

R

)2
+ 61

141

( r

R

)4
+ 56

141

( r

R

)8
)

0

r ≤ R

r > R

, (29)

εIPS
rep (r, R) =

⎧⎪⎪⎨
⎪⎪⎩

Ai j

r12
+ Ai j

R12

(
23

3620
+ 8

151

( r

R

)2
+ 66

151

( r

R

)6
+ 100

151

( r

R

)10
)

0

r ≤ R

r > R

. (30)

Figure 6(a) shows the potential energy distributions in
the SGLD simulations at different guiding factors. Clearly,
the energy distribution changes with the guiding factor. When
applying the weighting scheme, the energy distribution con-
verges together [Fig. 6(b)], except when λ > 1 where nu-

merical convergence becomes a problem due to the large
difference in the conformational distribution. As shown in
Eq. (25), the weighting factor varies exponentially with the
energies. The weighting scheme will converge poorly if the
major distribution to be calculated is not properly sampled
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FIG. 5. The y-coordinate distributions of the double well system in the
SGLD simulations: (a) unweighted; (b) weighted. The collision frequency
is 10/ps and temperature is 80 K.

in the simulation. Note that if the simulation length is sig-
nificantly increased, convergence would improve for larger λ

values. About the precision of reweighting in simulations,
Shen and Hamelberg has a more thorough analysis.9

Many enhanced sampling techniques come with a cer-
tain alteration of the conformational distribution. Increas-
ing temperature is a commonly used approach to speed up
a conformational search. However, the change in conforma-
tional distribution due to a rise in temperature is significant.
Figure 7 shows the potential energy distributions of the argon
fluid from LD simulations at different temperatures. Clearly
we can see potential energies shift toward high energies when
temperature increases. Comparing the distributions at 100 and
140 K, there is little conformation shared by both distribu-
tions. In other words, a temperature increase can speed up
simulations but most of the conformations searched at 140 K
are of little importance to the distribution at 100 K, which
makes a reweighting formula to correct for the effects of
higher temperature difficult to converge.

Obviously, the potential energy shifts up in a much
smaller scale in SGLD simulations [Fig. 6(a)] than that when
raising the temperature. Comparing Figs. 6(a) and 7, we
can see that the energy deviations due to the guiding effect
is much smaller than the deviation due to the temperature
increase.

To quantitatively compare the SGLD and high-
temperature LD simulations, we plot the average potential
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FIG. 6. The energy distributions of the argon liquid in the SGLD simulations
at 100 K: (a) unweighted; (b) weighted. The collision frequency is 1/ps.

energies against diffusion constants in Fig. 8. Diffusion con-
stants measure the conformational change in the slowest
frequency and can be a good measurement of the con-
formational search efficiency. The diffusion constants were
calculated with a fixed center of mass to avoid any exag-
geration due to the motion of the center of mass. As can be
seen from Fig. 8, SGLD increases diffusion constants with
much smaller energy deviations than LD simulations at ele-
vated temperatures. This plot tells us that SGLD can speed up
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FIG. 7. The energy distributions of the argon liquid in the LD simulations at
different temperatures (as labeled). The collision frequency is 1/ps.
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FIG. 8. Average potential energies vs diffusion constants for the argon liquid
in the LD simulations at different temperatures (as labeled) and in the SGLD
simulations at different guiding factors (as labeled). The collision frequency
is 1/ps. The SGLD simulations were performed at 100 K.

conformational searches with little change in conformational
distribution, while high-temperature LD simulation speeds up
conformational search, but searches a conformational space
far away from that at the temperature of interest.

The weighted average potential energies are also plotted
against diffusion constants in Fig. 8. For SGLD, the weighted
potential energy is very flat against diffusion constant. In
other words, through the weighting procedure, SGLD can
speed up conformational searches and produce accurate con-
formational distribution.

C. Alanine dipeptide

The Alanine dipeptide is perhaps the simplest and the
most well studied molecule that is relevant to proteins.

FIG. 9. A conformation of an alanine dipeptide. Chemical bonds are shown
as sticks. Oxygen and nitrogen atoms are shown as red and blue, respectively.
Two backbone dihedral angles, φ and ψ , are marked by arrows.

Figure 9 shows one conformation of an alanine dipeptide. The
conformation of this molecule is mainly characterized by two
dihedral angles, φ: CT–N–Cα–C and ψ : N–Cα–C–NT. The
CHARMM all-atom force field6 was used to describe the inter-
actions. Here, we used a distance-dependent dielectric con-
stant of 4r to represent solvent screening effect to simplify
the example. The cutoff distance is set to 100 Å to avoid any
cutoff effect in the nonbonded interaction calculation within
this small molecule.

All simulations were performed with a time step of 2 fs
and SHAKE algorithm10 was employed to fix the bond lengths.
Each simulation was 200 ns in length and conformations of
every 2 ps were saved for postanalysis. The SGLD simula-
tions were performed with a local average time of tL = 0.2 ps
and a temperature of 300 K.

To demonstrate the conformational search of SGLD sim-
ulations, we performed high-temperature LD simulations, as
well as SGLD simulations with different guiding factors for
the alanine dipeptide. To quantitatively describe the confor-
mational search of this peptide, we calculated the transition
rate for the dihedral angles, (φ, ψ) to transfer from one local
minimum at (–90◦,–70◦) to another local minimum at (–90◦,
170◦). One transfer is counted when (φ, ψ) is changing from
within 40◦ of one local minimum to within 40◦ of the other
local minimum.

Figure 10 shows the transition rate in the LD simulations
against the simulation temperature and in the SGLD simula-
tions against the self-guiding temperature. The self-guiding
temperature is defined to reflect the conformational searching
ability [Eq. (27)] of a SGLD simulation so that users can have
a rough idea of how much conformational search ability has
been achieved. As can be seen from Fig. 10, the transition rate
increases with the temperature or the self-guiding temperature
in a similar trend. The transition rates of SGLD simulations
is somewhat higher than that of the LD simulations at the
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FIG. 10. Conformational transitions of the alanine dipeptide as a function of
temperature in the LD simulations and as a function of the self-guiding tem-
perature, Tsg, in the SGLD simulations. The self-guiding temperature, Tsg,
defined by Eq. (27), reflects the conformational searching ability that is com-
parable to a high-temperature simulation at T = Tsg. The collision frequency
is γ = 10/ps. The SGLD simulations were performed at 300 K.
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FIG. 11. (a) φ−ψ distributions of the alanine dipeptide in the LD (λ = 0) and SGLD simulations at λ = 0.7 and λ = 1 before reweighting. The collision
frequency is γ = 10/ps. The SGLD simulations were performed at 300 K. (b) φ−ψ distributions of the alanine dipeptide in the LD (λ = 0) and SGLD
simulations at λ = 0.7 and λ = 1 after reweighting. The collision frequency is γ = 10/ps. The SGLD simulations were performed at 300 K.

temperature of Tsg, indicating Tsg somewhat underestimates
the conformational searching ability of the SGLD simulations
in this case. Figure 10 shows that the SGLD simulations at
guiding factors of 0.2, 0.5, and 1 have self-guiding tempera-
tures of 346, 458, and 1067 K, respectively, indicating that the
conformational search abilities of these simulations are com-
parable to that of high-temperature LD simulations at 346,
458, and 1067 K, respectively. It is clear that SGLD simu-

lations have increased the conformational search ability dra-
matically.

To examine the reweighting scheme in a multidimen-
sional distribution, we plot the φ−ψ dihedral angle distribu-
tions from the LD and SGLD simulations in Fig. 11. Before
reweighting, as shown in Fig. 11(a), SGLD simulations have
lower peak heights and broader baselines than the LD sim-
ulation. This result indicates that the dramatical acceleration
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in conformational search accompanies a change in conforma-
tional distribution. An increase in the guiding factor, λ, results
in an increase in the self-guiding temperatures (Fig. 10), and
as a result, the system experiences an enhanced motion in the
low-frequency conformational space. This enhanced motion
increases conformational search ability, but also flattens the
conformational distribution. As the guiding factor increases,
the high peaks become lower and the valleys become shal-
lower. After reweighting, as can be seen in Fig. 11(b), the
peak heights and the baseline broadness of the SGLD results
are quite similar to that of the LD simulation. This result again
validates the weighting scheme. Obviously, the reweighting
result is noisier at a larger guiding factor. A smaller guid-
ing factor will help reduce the reweighting noise, but have
a weaker conformational search ability. Therefore, the guid-
ing factor should be set to have enough conformational search
ability while allowing a reweighting of acceptable accuracy.

V. CONCLUSIONS

The conformational distribution from SGLD simula-
tion is quantitatively described through the low-frequency
and high-frequency properties. This provides a way to con-
vert conformational distributions from SGLD simulations
to canonical ensemble distributions. Through this work, the
SGLD simulation method can be used not only to achieve
a dramatically enhanced conformational search, but also to
produce an accurate conformational distribution. This under-
standing of the SGLD conformational distribution provides a
sound theoretical basis for further development and applica-
tion of this method.

APPENDIX: SGLD SIMULATION ALGORITHM

To help understand how to calculate ensemble aver-
ages from SGLD simulations, we describe a leap-frog Verlet
SGLD simulation algorithm below.

(i) Initiate low-frequency variables: Ẽ p(0) = E p(0),
f̃i (0) = 0, p̃i (0) = 0, and g̃i (0) = 0.

(ii) At time step, t, calculate interaction forces, fi (t), ran-
dom forces, Ri (t), and the uncorrected guiding forces,
g′

i (t) = λiγi p̃i (t). The interaction forces, fi (t), must in-
clude any constraint force as described later. Random
forces, Ri (t), are generated from a Gaussian distribu-
tion with zero mean:

ρ(Ri ) = 1√
4πγi mi kT

e− R2
i

4γi mi kT . (A1)

The low-frequency momentum is calculated using the
momentum in the previous half step, pi (t − δt

2 ):

p̃i (t) =
(

1 − δt

tL

)
p̃i (t − δt) + δt

tL
pi

(
t − δt

2

)
.

(A2)

(iii) Calculate the energy conservation factor, ξ . The half
step velocity, ṙi (t), can be expressed in the following
form:

ṙi (t) = ṙi

(
t − δt

2

)
+ δt

2mi
(fi (t) + g′

i (t) + Ri (t))

− δt

2
(γi + ξλiγi )ṙi (t); (A3)

calculate the friction-free velocity at the half step:

ṙ′
i (t) = ṙi

(
t − δt

2

)
+ δt

2mi
(fi (t) + g′

i (t) + Ri (t)).

(A4)
From Eqs. (A3) and (A4), we have

ṙi (t) = ṙ′
i (t)

1 + (1 + ξλi )γiδt

2

≈ ṙ′
i (t)

1 + γiδt

2

− ṙ′
i (t)(

1 + γiδt

2

)2

ξλiγiδt

2
. (A5)

Based on the energy conservation relation, Eq. (11), and
neglect the higher power term of ξ , we can solve the
energy conservation factor:

ξ =

N∑
i

λiγi p̃i (t)ṙ′
i (t)

(
1 + γiδt

2

)−1

N∑
i

λiγi mi ṙ′2
i (t)

(
1 + γiδt

2

)−2

+ δt

2

N∑
i

λ2
i γ

2
i p̃i (t)ṙ′

i (t)

(
1 + γiδt

2

)−2
. (A6)

The actual guiding force is

gi (t) = λiγi p̃i (t) − ξpi (t)

= λiγi p̃i (t) − ξmi ṙ′
i (t)

1 + (1 + ξλi )γiδt

2

. (A7)

(iv) Update low-frequency variables and accumulators for
the calculation of the SGLD weighting factor. Low-

frequency forces:

f̃i (t) =
(

1 − δt

tL

)
f̃i (t − δt) + δt

tL
fi (t).

Low-frequency potential energy:

Ẽ p(t) =
(

1 − δt

tL

)
Ẽ p(t − δt) + δt

tL
E p(t).
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Low-frequency guiding forces:

g̃i (t) =
(

1 − δt

tL

)
g̃i (t − δt) + δt

tL
gi ((t).

From the low-frequency momentums we can calculate
the low-frequency temperature:

T̃ = 1

NDF

∑
i

p̃2
i

mi
.

Update accumulators for the collision factors and
energy factors:

FLF =
∑

t

N∑
i

f̃i (t) · f̃i (t),

FHF =
∑

t

N∑
i

(fi (t) − f̃i (t)) · (fi (t) − f̃i (t)),

GLF =
∑

t

N∑
i

(g̃i (t) − γi p̃i (t)) · f̃i (t),

GHF =
∑

t

N∑
i

(gi (t) − g̃i (t) − γi (pi (t) − p̃i (t)))

· (fi (t) − f̃i (t))

PPLF =
∑

t

N∑
i

γ 2
i p̃i (t) · p̃i (t),

GPLF =
∑

t

N∑
i

g̃i (t) · γi p̃i (t).

The collision and energy factors are calculated with the
accumulators:

λlf = 1 + GLF

FLF
, λhf = 1 + GHF

FHF
,

χlf = T̃0

T̃
= 1 − GPLF

PPLF
.

(A8)

When T̃0 is available from a previous SGLD simulation
with λ = 0, χlf = T̃0

T̃
is recommended, otherwise, χlf

= 1 − GPLF
PPLF has to be used. The SGLD weighting factor

of each conformation can be calculated as below during
a simulation or in a postsimulation processing:

wSGLD = exp

(
(λlfχlf − 1)

Ẽ p − Ē p

kT

+
(

λhf
T − χlfT̃

T − T̃
− 1

)
E p − Ẽ p

kT

)
. (A9)

In Eq. (A9), the average potential energy is subtracted
from the low-frequency energy to avoid overflow in

calculating the exponential function. With the weight-
ing factor, any ensemble averages can be calculated dur-
ing a simulation or in a postsimulation process.

(v) Advance velocities to the next half time step:

ṙi

(
t + δt

2

)
= (2χi − 1) ṙi

(
t − δt

2

)

+χi
δt

mi
(fi (t) + gi (t) + Ri (t)). (A10)

Here, the scaling parameter, χi , is calculated as

χi =
(

1 + (1 + ξλi )γiδt

2

)−1

. (A11)

Then advance positions to the next time step:

ri (t + δt) = ri (t) + ṙi

(
t + δt

2

)
δt. (A12)

If internal coordinates need to be constrained, ap-
ply constraining algorithms, such as SHAKE (Ref. 10)
or semiflexible constraint dynamics,11 to obtain con-
strained positions, rCON

i (t + δt), from ri (t + δt). The
constraint forces must be included in the low-frequency
force calculation. The constraint forces are calculated
by the following equation:

fCON
i (t + δt) = 2mi

δt2

(
rCON

i (t + δt) − ri (t + δt)
)
.

(A13)

(vi) Continue to step (ii) with t = t + δt until the end of the
simulation.
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