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Purpose: Heterozygous mutations around codon 838 of the guanylate cyclase 2D (GUCY2D) gene have recently been
associated with more than a third of autosomal dominant macular dystrophy patients. The aim of our study was to evaluate
the prevalence of these mutations in Spanish families with autosomal dominant cone, cone-rod, and macular dystrophies.
Methods: Mutation analysis was performed by PCR amplification of exon 13 of GUCY2D and subsequent restriction
analysis. To confirm the results, automatic sequencing analysis was also performed.
Results: Among the 22 unrelated Spanish families included in the study, we found two associated disease mutations at
codon 838 of the GUCY2D gene, one of which had not been previously described (p.R838P). This novel mutation exhibited
phenotypic variability.
Conclusions: The prevalence of mutations around codon 838 of GUCY2D in our group of families (9.09%) is lower than
that previously reported in other populations. However, the discovery of a novel mutation at codon 838 further suggests
that this locus is a mutation hotspot within the GUCY2D gene, and confirms the importance of analyzing this codon to
characterize molecularly these autosomal dominant retinal disorders.

Cone-rod dystrophy (CORD) and cone dystrophy (COD)
are a subgroup of inherited retinal dystrophies characterized
by progressive loss of photoreceptor function. In CORD, there
is a progressive loss of cone photoreceptor function followed
by gradual loss of rod photoreceptor function and retinal
degeneration. In COD however, cone function decreases
progressively from its onset, though rod function is well
preserved until the late stages of the disease. The predominant
symptoms of these disorders are decreased visual acuity,
bright light aversion, and decreased sensitivity in the central
visual field, sometimes followed by progressive loss of
peripheral vision and night blindness [1-6].

CORD and COD are genetically heterogeneous, with
described dominant, recessive and X-linked inheritance
patterns. To date, ten loci for autosomal dominant CORD and
COD have been identified: cone-rod dystrophy 4 (CORD4)
[7], retinal cone dystrophy 1 (RCD1) [8], arylhydrocarbon-
interacting receptor protein-like 1 (AIPL1) [9], cone-rod
homeobox-containing gene (CRX) [10], guanylate cyclase
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activator 1A (GUCA1A) [11], guanylate cyclase 2D
(GUCY2D) [12], phosphatidylinositol transfer protein
membrane-associated 3 (PITPNM) [13], protein regulating
synaptic membrane exocytosis 1 (RIM1) [14], semaphorin 4A
(SEMA4A) [15] and Homolog of C. elegans 119 (UNC119)
[16].

The previously reported prevalence of the GUCY2D gene
mutations around codon 838 in CORD and COD is about 35%.
Heterozygous missense mutations at codons 837, 838, or 839
in the GUCY2D gene, which produce a gain of function, have
been shown to cause autosomal dominant CORD and COD
[12,17-21], whereas homozygous or compound heterozygous
mutations, which produce loss of function, cause Leber
congenital amaurosis (LCA) [22-24].

The GUCY2D gene is located in 17p13.1 (LCA1/
CORD6) [18,25]. It is 16 kb long and encodes a protein 1,103
amino acids long. The 20 exons identified in this gene code
for a photoreceptor-specific protein, retinal guanylyl
cyclase-1 (RetGC-1), mostly located in the marginal region
of the cone’s outer segments. RetGC proteins play an
important role in restoring photoreceptor sensitivity due to
their involvement in the synthesis of cyclic guanosine
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monophosphate (cGMP) from guanosine triphosphate (GTP).
Light stimulates the degradation of cGMP, causing the closing
of cation channels, which results in a reduction of the Na+ and
Ca2+ concentration, cell hyperpolarization, and slowing of
neurotransmitter release. At a lower concentration, the Ca2+

binds guanylate cyclase activator proteins (GCAPs) and
stimulates the RetGCs, and in consequence, the cGMP level
is restored. As a result, the cation channels reopen and
photosensitivity is restored to the cell [26].

To our knowledge, all GUCY2D mutations identified so
far in CORD or COD patients are located at codon 838 or the
two adjacent ones (Figure 1) [12,17-21]. The aim of this study
was to analyze the prevalence of GUCY2D mutations
clustered at codon 838 in Spanish patients with CORD, COD,
and autosomal dominant macular dystrophy (adMD).

METHODS
Selection of patients: A total of 22 unrelated Spanish patients
clinically diagnosed with CORD-COD or adMD and with a
family history consistent with an autosomal dominant mode
of inheritance were included in this study.

After ophthalmologic examination, adMD patients were
classified according to the following criteria: fundus
compatible with MD (atrophy and/or hyperpigmentation spots
restricted to the macular region, drusen-like fundus, yellow
spots), an electroretinogram (ERG) showing reduction of cone
signals but normal rod signals, progressive loss of central

Figure 2. Figure shows a map of the CORD6 region. Distance
between markers and the locus CORD6 are indicated in bp.

Figure 1. Reported mutations in a
fragment of the primary structure of the
retinal guanylyl cyclase-1 (RetGC-1)
protein, encoded by exon 13 of
Guanylate Cyclase 2D (GUCY2D). This
figure shows the different mutations that
have been previously described in
codons 837, 838, and 839 of the
GUCY2D gene. The asterisk indicates
the novel p.Arg838Pro mutation
described in this manuscript. The
shadowed area corresponds to the
Hemophilus hemolyticus (HhaI)
recognition site.
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vision (central scotoma), progressive reduction of visual
acuity, and dyschromatopsia.

Applying these criteria and based on clinical examination
(ERG and fundus photographs), 10 patients were diagnosed
with CORD or COD, whereas 12 patients were classified as
having adMD. The first group (CORD or COD) included
cases with decreased central vision, abnormal color vision,
abnormal ERG, and fundus pigment changes. Ganzfeld
electroretinography was recorded according to International
Society for Clinical Electrophysiology of Vision (ISCEV)
standards, using the UTAS 2000 system (LKC Technology,
Gaithersburg, MD) and jet electrodes.

In the family with the novel mutation, seven affected
members and four unaffected members were used for
segregation analysis and clinical examinations.

In addition, 190 randomly selected DNA samples (380
chromosomes) from a healthy control population were
analyzed to assess the frequency of sequence changes in the
normal population.

Informed consent was obtained from all persons involved
in the study, in accordance with the tenets of the Declaration
of Helsinki (Seoul, 2008).
Screening for mutations: DNA was extracted from peripheral
blood leukocytes collected in EDTA tubes, in an automated

DNA extractor according to manufacturer instructions
(BioRobot EZ1; Qiagen, Hilden, Germany).

Exon 13 of the human GUCY2D gene, which includes
codon 838 and surrounding codons, was directly amplified
from genomic DNA using primers previously described [27]
Forward primer: 5′CAG CTT TAC CAG CTT CCT TC 3′,
melting temperature=56.9 °C; Reverse primer: 5′ GCA GGC
AGT GAG GTC ACC TG 3′, melting temperature=64.4 °C).
A sample of genomic DNA (100 ng) from patients or control
individuals were used in a 25 µl reaction mixture containing
0.6 µM of forward and reverse primers, 24 µM of each dNTP,
1× PCR buffer, and 1 U of FastStart Taq DNA polymerase
(Roche, Indianapolis, IN). After an initial denaturation of

Figure 3. Results of the haplotype
analysis performed in a family with the
p.R838P mutation in Guanylate Cyclase
2D (GUCY2D). The figure also shows
the status of genotyped individuals for
mutation p.R838P, where “+” is used for
normal alleles and “–” is used for
mutated alleles.

Figure 4. A heterozygous mutation (Guanine-to-Citosine; G>C) results in an arginine-to-proline mutation at codon 838 of the Guanylate
Cyclase 2D (GUCY2D) gene.
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95 °C for 5 min, 30 cycles were performed at 95 °C for 30 s,
63 °C for 20 s, and 74 °C for 50 s, with a final extension step
of 74 °C for 5 min.

The PCR products (278 base pairs length) were digested
with HhaI according to the manufacturer instructions (New
England BioLabs, Beverly, MA) and resolved by
electrophoresis in 5% metaphor agarose (Lonza, Rockland,
ME). Wild-type samples produce two fragments of 130 bp and
150 bp, but the restriction target site (5′-… GCGC …-3′) in
exon 13 of GUCY2D, which lies between the last nucleotide
of codon 837 and the last nucleotides of codon 838 (both
included), is destroyed by the previously reported mutations
at these two codons (Figure 1).

To confirm the results obtained (positive and negative for
restriction enzyme digest), PCR products were also sequenced
using the BigDye Terminator v. 1.1 Cycle Sequencing kit
(Applied Biosystems, Foster City, CA) in the ABI 3130xl
Genetic Analyzer (Applied Biosystems) and analyzed with
the Sequencing Analysis v. 5.2 software package (Applied
Biosystems).

Haplotype analysis: To assess the role of the CORD6 locus,
haplotype analysis was performed using four polymorphic
markers with a strong link to this locus: D17S938, D17S1353,
D17S786, and D17S1858 (Figure 2). For all four markers,
each forward PCR primer was fluorescently labeled and
separately amplified by PCR in a total volume of 15 µl
containing 100 ng of genomic DNA, 125 µM of each dNTP,
10 pmol of each primer (forward and reverse), 1× Taq DNA
polymerase buffer (500 mM Tris/HCl, 100 mM KCl, 50 mM
[NH4]2SO4, 20 mM MgCl2), and 0.6 U of FastStart Taq DNA
Polymerase (Roche). After denaturation at 95 °C for 5 min,
PCR was performed in a GeneAmp PCR System 2700
(Applied Biosystems) for 10 cycles at 94 °C for 30 s, 55 °C
for 30 s, and 72 °C for 90 s, and then at 15 cycles at 89 °C for
30 s, 55 °C for 30 s, and 72 °C for 90 s, with a final extension
time of 30 min at 72 °C. For the genotyping process, PCR
products were electrophoresed in an ABI 3130xl Genetic
Analyzer (Applied Biosystems) and analyzed with the
GeneMapper v. 4.0 software package (Applied Biosystems).

RESULTS
We identified the mutation associated with the disease in two
of the 22 (9.09%) unrelated Spanish families that were
included in this study because of their suspected clinical
diagnosis. In all cases, the additional sequencing analysis of
exon 13 of the human GUCY2D gene confirmed the results
obtained using restriction analysis.

One proband carried a novel c.2513G>C (p.R838P)
mutation that segregated with the disease in this family, as all
affected members presented this change which was absent in
his family (Figure 3) and was absent in 380 control
chromosomes (Figure 4). In the family with the novel
mutation (p.R838P), the clinical phenotype associated with
the disease was characterized both by its onset in the first
decade of life and by the detection of a central scotoma.
Nystagmus and reduced visual acuity were noticed in all
affected family members, although no color vision
abnormality or increased glare sensitivity were reported
(Table 1). Within this family, older patients typically had a
more severe phenotype than did the younger patients (Figure
5).

In addition, another affected patient was heterozygous for
the mutation c.2513G>A (p.R838H), previously reported by
Weigell-Weber et al. [19]. This affected patient had gross
central macular degeneration in both eyes, with bilateral
central scotoma. The best-corrected visual acuity was 0.1 in
each eye at the age of 59 years.

DISCUSSION
Since the aim of our study was to evaluate the prevalence of
mutations at codon 838, we used a restriction enzyme
digestion (RE) that could detect all possible mutations at
codon 838 and also at codon 837, but not at the adjacent codon
839. Additional sequencing of exon 13 of GUCY2D
confirmed that only the two mutations previously detected at
codon 838 by using RE (c.2513G>C and c.2513G>A) were
associated with the disease in our cohort of patients. For that
reason, we proposed the use of RE as a quick first step to
analyze our families.

TABLE 1. CLINICAL FEATURES OF THE FAMILIES WITH THE P.R838P MUTATION IN GUCY2D.

Individual Age Visual acuity
(RE/ LE)

Fundus findings Central
scotoma

Color vision Nystagmus

II:1 70 0.01/0.01 Macular degeneration +++ Normal +
II: 3 61 0.3/0.2 Macular degeneration N/A Normal +
II:4 59 0.01/0.01 Macular degeneration Salt-and-pepper fundus

appearance in the posterior pole
++ Normal +

III:2 35 0.2/0.2 Tapetoretinal degeneration
Salt-and-pepper fundus appearance

++ Normal +

III:5 28 0.3/0.1 Discreet salt-and-pepper fundus appearance ++ Normal +
IV:1 21 N/A Salt-and-pepper fundus appearance ++ Normal +
IV:2 15 0.1/0.1 Poorly distinguishable macula + Normal +
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Figure 5. Fundus photograph of five different patients of the families with p.R838P mutation in GUCY2D. Older patients had a more severe
phenotype compared to the younger generation, and to the Goldmann kinetic perimetric fields of patients III:5 and IV:2. Fundus description
for these five patients has been summarized in Table 1.
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Although a previous study reported mutations around
codon 838 of GUCY2D associated with CORD or COD in
more than a third of the patients [17], the prevalence of
GUCY2D mutations around this codon was lower (9.09%) in
our group of Spanish families.

Four different mutations have previously been reported
as affecting codon 838: p.R838C [12], p.R838H [19],
p.R838S [19], and p.R838G [17]. We report a new mutation
at this particular locus, (p.R838P), which further indicates the
importance of this codon and leads us to confirm that it is a
mutational hotspot in the GUCY2D gene, associated with
CORD, COD, and adMD disease.

At a lower concentration, the Ca2+ binding GCAPs
stimulate the RetGC proteins. Activation of RetGC1 by
GCAP1 involved dimerization of two RetGC1 monomers.
The dimerization domain of RetGC-1 extends from amino
acid 817 to 857, and this region is likely to adopt a coiled-coil
structure [28]. Mutations at position 838 have been described
as increasing the stability of the coiled-coil; hence, the mutant
protein retains residual catalytic activity even at high calcium
levels [27]. These mutations increase the affinity of RetGC-1
for GCAP1 and alter the Ca2+ sensitivity of the GCAP1
response, allowing the mutant to be stimulated by GCAP1 at
higher Ca2+ concentrations than is the wild type [28]. This gain
of function results in the maintenance of GMP levels, and
consequently in a persistently high intracellular Ca+2 level. It
is known that a persistent elevated calcium level in the cell
tends to disrupt the membrane potential of the mitochondrial
inner membrane, leading to the release of cytochrome C, with
subsequent caspase activation and apoptosis [23]. This may
be the mechanism, resulting from GUCY2D mutations, of
photoreceptor degeneration in CORD or COD, and in adMD.
While, heterozygous mutations in GUCY2D associated with
CORD or COD have been described that cause a gain of
function, individuals harbouring either homozygous or
compound heterozygous GUCY2D loss-of-function
mutations present a more severe disease, such as LCA is
associated with being homozygous or compound
heterozygous for GUCY2D loss-of-function mutations [12,
22].

The phenotypes of the families with mutations at codons
837, 838, or 839 of GUCY2D appear to vary, depending on
the specific mutation and the presence or absence of multiple
mutations [17,27,29]. In our family with the novel mutation
p.R838P, no color vision abnormalities or increased glare
sensitivity were reported, though affected members showed
reduced visual acuity and a central scotoma.

We believe that this report highlights the importance of
codon 838 of GUCY2D as a mutation hotspot associated with
CORD or COD and with adMD. In addition, genetic studies
of families clinically diagnosed as having CORD, COD, or
adMD are important for performing correct genetic
counseling.

Moreover, knowledge of the molecular mechanism of
these diseases would permit the development of new potential
therapies, such as gene therapy. Mutations at codon 838 of
GUCY2D are related to autosomal dominant disease;
therefore, silencing the mutant allele using allele-specific
interference RNA could be used in this case to partially rescue
the protein function [30-32].
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