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Abstract:  Single molecule localization based super-resolution imaging
techniques require repeated localization of many single emitters. We
describe a method that uses the maximum likelihood estimator to local-
ize multiple emitters simultaneously within a single, two-dimensional
fitting sub-region, yielding an order of magnitude improvement in the
tolerance of the analysis routine with regards to the single-frame active
emitter density. Multiple-emitter fitting enables the overall performance
of single-molecule super-resolution to be improved in one or more of
several metrics that result in higher single-frame density of localized active
emitters. For speed, the algorithm is implemented on Graphics Processing
Unit (GPU) architecture, resulting in analysis times on the order of minutes.
We show the performance of multiple emitter fitting as a function of
the single-frame active emitter density. We describe the details of the
algorithm that allow robust fitting, the details of the GPU implementation,
and the other imaging processing steps required for the analysis of data sets.

© 2011 Optical Society of America

OCI S codes: (100.6640) Superresolution; (180.2520) Fluorescence microscopy; (100.3010)
Image reconstruction techniques.
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1. Introduction

Single molecule based super resolution (SM-SR) techniques have revolutionized fluorescence
microscopy, achieving spatial resolution of approximately 20 nm, an order of magnitude im-
provement from conventional fluorescence microscopy that islimited by diffraction to A /2NA
or approximately 250 nm [1-5]. The SM-SR concept relies on making precise and accurate
estimations of the positions of individual emittersthat label the structure of interest. Resolution
is then a function of both the position uncertainty and the sampling density. This concept is
realized by exploiting some properties of the fluorescent probes that result in a small subset of
emitters being in a fluorescent state during the acquisition of any single image. Acquired im-
ages that contain different subsets of active emitters can then be analyzed and used to generate
a SR image, providing sufficient sampling density and localization precision. Initial demon-
strations of SM-SR used a variety of probes including quantum dots [6, 7], photo-activatable
proteins[8, 9] and organic dyes [10] and the number of probes that have been demonstrated for
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Fig. 1. Proximity of emitters as a function of emitter density. The probabilities of finding
N=1-5 emitters within a 8cpsr x80opsr square sub-region (opsp = 127 nm) at different
densities were calculated for a uniformly distributed population of emitters and plotted as
afunction of density. Asthe emitter density increases beyond 1 um~2, the fraction of sub-
regions containing single emitters reduces dramatically (red line), emphasizing the need
for fitting algorithms that can accommodate multiple emitters within a single sub-region.

use in SM-SR continues to grow [4, 11].

In the case of 2D imaging, which is the focus of this work, an advantage of SM-SR over
other SR techniques such as STED [12], 4Pi [13], and SSIM [14] isthat it can be implemented
using arelatively simple and conventional microscope such as an objective based Total Internal
Reflectance Fluorescence (TIRF) microscope setup. However, the technique relies heavily on
the analysis of the acquired data, primarily in making estimates of the position of on the order
of 10° emitters. To simplify and speed analysis, conventional analysis approaches only attempt
to localize well separated, single emitter events and data that does not fit this model is rejected.
Experimental conditions must then be optimized to give a single-frame active emitter density
that makes best use of the data and yet minimizes acquisition time [15].

SM-SR fitting routines that disregard events that cannot be fit to a single emitter profile
result in some fraction of data being discarded. The potential loss of information is demon-
strated in Fig. 1, which shows that at an active emitter density of 1 um~2, more than 55% of
8opse x 8opg (opse = 127 nm) sub-regions contain 2 or more active emitters. Such nearby
or overlapping emission patterns could result in a failure of the single emitter model and the
data not being used in the SR image reconstruction. The distribution of the number of emitters
found within these 8opss x 8ops sub-regions (opse = 127 nm) as a function of density is
also shown in Fig. 1 and illustrates that with increasing active emitter density, isolated single-
emitter events become rare and therefore amajority of the position estimates will get discarded
due to an unacceptable fit to a single emitter model. It is clear that a multiple-emitter fitting
approach would enable the analysis of images containing higher single-frame density of active
emitters. Analysis of multiple emitters simultaneously in one sub-region does not necessar-
ily impact the position uncertainties as visually overlapping emitters (around 100 nm between
emitter centers) can be localized with similar uncertainties [16, 17]. In practice, a multi-emitter
fitting model would alow one or more of several important quantities to be improved, which
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would result in a much better localization in cases where single frame active emitter densities
arerelatively high [15].

Here, we describe an analysis method that uses the Maximum Likelihood Estimator (MLE) in
order to perform simultaneous position estimates of multiple emitterswithin asmall sub-region.
In contrast to other techniques that use deflation methods, whereby the best single fluorophore
fit is made to the image and the analysis proceeds with the residuum image that is calculated
by subtracting the single fluorophore fit model [18-21], all emitter positions within the sub-
region are estimated simultaneously. The sub-region datais fit to models assuming N emitters,
where N is varied from N=1, to N = Npax Using a process that we will subsequently refer to
as Multi-emitter Fitting Analysis (MFA). Based on the log-likelihood, a chi sguare distributed
test statistic is used to either choose one model, or reject all fitting models. In this manuscript,
we describe a procedure that allows robust application of the MFA, including model selection
criteria, uncertainty calculations, and other procedures for analyzing a SM-SR data set and
image reconstruction.

2. Theoretical basisfor the multi-emitter fitting algorithm

2.1. Multiple emitter extension to the pixelized single emitter model

The impulse response of a microscope to a point source of light is defined as the point spread
function (PSF) and in the 2D case, can be well approximated by the Gaussian function [22,23]:

—024y%)

PSF(x,y) = e 2% @

2
2rog

where oy represents the standard deviation of the Gaussian.

Given the pixelization that occurs from a CCD based detector system, this continuous dis-
tribution can be modified to represent the expected photon count in pixels on the camera. For
an individual pixel k located at a position {x,y} and assumed to rectangular, the expected num-
ber of photons in that pixel, which are emitted from a point object in focus, can be calculated
by integrating Eq. (1) across the pixel assuming a square shaped pixel. This pixelized single
emitter profileis given as:

,Uk(X, y) = IOAEX(Xa Y)AEy(Xa y) + bO (2)

where (X, y) is the expected photon count for a given pixel 'k’, lg isthe total emitted photon
counts expected, byg is the background and AEx(X,y) and AEy(x,y) are:

_ 1 _yxn— 1

ABK(xY) = %(erf - \/XZPC:(; : e . \/Xiooo 2)) 53
_ 1 vy — L

AEy(x,y) = %(erf 4 \/yé(’;; 2) _ o j;ao 2 (3b)

where xg and yp are emitter positions.

This model can be extended to account for emission from multiple emitters by assuming
each emitter contributes independently to the expected photon counts at a given pixel k. The
expected photon count for pixel k, ux(x,y) generated by N emitters can then be calculated by
summing over the total number of emitters N and is defined as:

N
U(x,y) = Z loAEy, (X, Y)AEy, (X,Y) + bo 4
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2.2.  Maximum likelihood estimator
To estimate the emitter positions, we maximize the likelihood function [24]:

dk Hi(%y)
L(6|D) HM (5)

where the likelihood of the parameters 6 given the data D is modeled as a photon counting
process for each pixel, with the expected counts given by the multi-emitter model uy defined in
Eq. (4) and the observed counts dx. The maximum likelihood estimator (MLE) is used to esti-
mate the emitter posmons {%,¥i }....{xn,yn } @nd the background fluorescence rate by, giving
0= {bo,X1,Y1,---Xn,Yn} . TO ensure robust estimation, we find that it is necessary to confine
theintensity parameter I; = lg in Eq. (4), where | is obtained from independent measurements.

Maximization of Eq. (5) can be performed using the Newton-Raphson method (NR) to it-
eratively maximize the log-likelihood. The iterative step for parameter 6; can be written for a
Poisson noise model as follows [25]:

I o(6)  de PPw(6), d . om(6)® d N
48 % 26 (uk(ei) 1)] lzk: 962 (,uk(ei) b 26 () ©

All derivatives of 1 (6) areidentical in form to those from the single-emitter model and are
given in our previous work [25].

3. Theanalysisprocedure

Our fitting routine operates independently on each image of a time series. First, a series of
image filters are applied to each frame to find points of interests and then each frame is par-
titioned into an array of sub-regions around these points. In each sub-region, the positions of
N proposed emitters in a model of N = 1 to Nimax are found sequentially where the N emitter
model uses position information from the N — 1 emitter model. We generate the p-value from a
test statistic based on the log-likelihood ratio (LLR) to compare fits for each model. The model
with the highest p-value is selected and the associated uncertainties and fits are determined
based on a modified Fisher information matrix. The process is repeated for al frames and a
reconstructed image is generated from the estimates by placing bivariate Gaussian shapes at
the estimated |ocations using estimator uncertainties to build the bi-variate covariance matrix.
Below we outline these steps in further detail.

3.1. Image pre-processing and segmentation

For each data set, all frames are analyzed independently. Experimentally acquired images are
first offset and gain corrected to convert pixel intensity values to photon counts. To aid sub-
region selection, a two step image filtering process is carried out to reduce Poisson noise and
background and to identify potential emitter locations. Thefirst filtering step is calculated from
the original image |, asfollows:

A1 = uniform]l, (20psr +1)] — uniform]l, (2 x (20pgs +1))] (7

where uniform[image, q] representsauniform filter processwith asquare kernel size q operating
on the 2-D matrix image. The uniform filter acts as a smoothing filter by reassigning the value
of each pixel to the average pixel value within the square kernel centered at the pixel position.
The analysis is not strongly dependent on the smoothing filter so the uniform filter is chosen
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for speed. Subtraction means a pixel-wise subtraction between results obtained for each filter
process. The second filtering step is performed on the first filtered image A; asfollows:

Az = max[Aq, (50psr )] (8)

where max[image, g] represents a maximum filter process used to obtain local maximum values
within a square kernel size g. Through this process, all pixelswithin akernel take the maximum
value within the kernel. These two filtered images A; and A, are then compared pixel-wise to
identify regions of interest:

0 if A1 # A

Az = )
1 if A=A

Through this process, pixels with local maximum intensities in the uniformly filtered image
A; are identified in Az. Sub-regions of size 6ops x 60ps that are centered at pixels where
Az = 1 are selected for further analysis.

3.2.  Multi-emitter fitting analysis (MFA)

Each sub-region is analyzed using a Multi-emitter Fitting Analysis as depicted in Fig. 2. The
analysis proceeds sequentially from aN = 1 model to aN = Nyax model. For the N = 1 model,
the center of mass of the sub-region is used as the initial position estimate. For the N # 1,
multi-emitter models, the N — 1 position estimates found in the previous step areused asN — 1
of theinitial position estimates. The remaining initial position estimate is found by calculating
the residuum image generated by a subtraction of the N — 1 model (Eq. (4)) from the datain the
sub-region. If the value of the maximum intensity pixel in the residuum image is low enough
to assume that all emitters in the sub-region have been found, the analysis does not proceed
further. Otherwise, from the residuum image, the last initial estimate is calculated from the
position of the pixel with the maximum count value, giving {Xgef, Ydef } and then is adjusted in
a”Push&Pull” process to {xajj,yadj} = {Xdef * Opsr/2,Yaet + Opse/2}. 1 {Xdet, Yaer } 1S Within
opse Of the edge of the sub-region, that position is likely to correspond an emitter outside of
the region, and the sign of the adjustment is such to move the adjusted position further away
from the center of the sub-region. Otherwise, the sign of the adjustment is such to move the
adjusted position towards the center of mass of the N — 1 position estimates. This compensates
for the effect that in aN — 1 model of an underlying N emitter system, the estimated positions
of N-1 emitters are displaced such that after deflation, the position of the maximum value pixel
is biased away from the actual position of that emitter. This effect isillustrated in Fig. 2(b). We
found that the " Push& Pull” adjustment of only one of the initial position estimates is sufficient
to alow robust convergence. The initial estimates are then updated using a fixed number of
iterations of Eq. (6). After obtaining estimates for each model, models with location estimates
outside the fitting boundary, which is a 8cpse x 8opsr Square region concentric with image
sub-region (red box Fig. 2(b)—2(e)), are discarded. Models with positions estimates within the
fitting boundary but outside the data sub-region (black region between red and yellow box in
Fig. 2(b)—2(e)) are allowed since emitters located in this region will affect the data sub-region.
The position and background estimates, along with their log-likelihood, are saved for each
remaining model for afurther model selection process.

3.3. Moded selection

To compare between models, we used a test statistic based on the log-likelihood ratio (LLR)
as an indicator for the quality of fit. The LLR is shown in Eg. (10) and approximates a chi
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Fig. 2. lllustration of execution steps in the multi-emitter estimation task. (a) Fitting algo-
rithm flowchart. For a given sub-region, MFA is performed sequentially from the N = 1
emitter model to either the Nimax emitter model or is terminated if the maximum pixel
counts in the residuum image is lower than 10 counts. (b) through (€): Demonstration of
the results from each estimation task from the 1 emitter model through the 4 emitter model.
The 5 emitter model fitting is not performed by the algorithm, because of the low photon
counts in the deflated image.
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square distribution with K — (2N + 1) degrees of freedom, where K is the number of pixelsin
the sub-region and N is the number of emittersin the model.

L(6ID)

LLR= —2I
"|L(DD)

(10)

where D represents the sub-region data, 6 are the MLE estimates and L(D|D) gives the upper
limit of likelihood of the data set with Poisson noise (when i = dy). The model is accepted if it
has the maximum chi-square p-value of all models and passes the p-value threshold set by user.
Considering that the variance of intensitiesin real or realistically simulated datawould broaden
the LLR distribution and thus result in a smaller p-value, typically a small p-value of 10~2 to
108 isused as the threshold in our analysis and is still sufficient to reject incorrect models and
the un-converged fit. After obtaining the uncertainty for the position estimates, emitters with es-
timated positions near (within opsr/2) or outside of the sub-region boundary are discarded. The
parameters describing the remaining emitters are passed to the image reconstruction process.

3.4. Precision of the estimated parameters

For unbiased estimators, the Cramer-Rao Lower Bound (CRLB), given asvar(é) >y 1 where

1(6)i) = E[a'”"%e)‘m 9'”Lg“9<je>|D)] is the Fisher information matrix, is often used to calcu-
late the precision of estimated parameters [16, 25, 26]. However, as known from the analy-
sis of Gaussian mixture models [27], the Fisher information matrix is singular at {x,yi} =
{Xj,y;}, and near this singular point, can not be used to correctly calculate estimator pre-
cision. We implemented a phenomenological correction to the Fisher information matrix by
modifying the off diagonal terms that give rise to the singularity. Given our parameter set

0 = {bo, X1, Y1, ...xN,yN}T, the corrections are given by:

251(0)i (i,0dd) & (j,odd) & (i #1,j #1) & (i # |)
F(0)ij=9 21! (0)i] (i.even) & (j,even) & (i # ) (12)
1(0)i other
(6i—65)?]

A isgiven by A= X0 where o; and oj are the intermediate precision calculations ob-

tained from F(6) assuming A= 0. F(8), which we designate the modified Fisher Information
matrix, replaces the original Fisher Information matrix in our precision calculation process, is
non-singular at {x,yi} = {X;,y;} and quickly convergesto | (6) once far from the point of sin-
gularity. Thus it provides reasonable precision estimates in the regions both near and far from
the point of singularity.

3.5. Filtering and SR image reconstruction

After obtaining estimates and their uncertainties, a rejection process is performed to remove
repeated localizations that can occur due to overlapped sub-regions. An emitter estimate is
removed if there is another estimate with a smaller uncertainty within a distance of the previ-
ous emitter’s localization uncertainty coming from the the same image frame but a different
sub-region. Another filtering process is performed to remove the estimates with position uncer-
tainties greater than the resolution threshold and would therefore not contribute to the desired
resolution in the reconstructed image. The SR image is reconstructed by adding bivariate 2-D
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Gaussian shapes to the SR image at the location of the position estimates. The covariance of
the bivariate Gaussian is constructed using the appropriate elements of F(6)~* and indicate the
asymmetry of the position uncertainties that arise from the multi-emitter localization process.

4. Computational and experimental methods
4.1. Hardware and software implementation of analysis routines

Numerical analyses are performed using MATLAB (The Mathworks, USA), the imaging pro-
cessing toolbox, Diplmage [28] and c-language codes that are compiled to MATLAB mex files
and initiated from within the MATLAB environment. GPU code (Nvidia CUDA [29]) are man-
aged through c-language codes that are also compiled to MATLAB mex files and runs within
the MATLAB environment. All CPU based code runs on a single thread.

Image pre-processing and segmentation are implemented in c-code. The array of isolated
sub-regions are passed into the GPU global device memory for the MFA. The MFA for each
sub-region is independently carried out by a single thread on the GPU similar to that is de-
scribed in previous publication [25] using 50 iteration stepsin NR iteration process. The model
selection is performed in the same thread as part of the MFA. The fitted parameters for suc-
cessful models are passed back to the CPU. The generation of F(6) and its inversion, by LU
decomposition with back substitute method [30], are implemented on the GPU executing with
one thread per sub-region. The resulting uncertainties for each parameter are passed back to
the CPU. The filtering of position estimates by sub-region position and their uncertainties is
performed on the CPU. Reconstruction of the SR image is performed in amanner inverseto the
sub-region selection. First, in the GPU, an up-sampled sub-region is generated that corresponds
to each position estimate and its uncertainties. The bivariate Gaussian shapes for the position
estimates are added to the sub-region. All generated up-sampled sub-regions are passed back
to the CPU and assembled into a single up-sampled SR image.

4.2. Estimator precision and algorithm performance testing

In order to demonstrate the performance of the modified Fisher information matrix in calculat-
ing the estimator precision, two types of data sets were generated and analyzed. First, a series
of simulated images of two emitters that had increasing separations between their centers were
generated. For each separation, 1000 identical two-emitter images were generated, corrupted
by Poisson noise and fitted by MFA. Second, images of 1000 configurations of random place-
ments of 1,2,3,4 and 5 emitters were replicated 1000 times, corrupted by Poisson noise and
fitted by MFA. The Performance of the modified Fisher information matrix in providing the
correct precision estimates was demonstrated by comparing the observed standard deviation of
estimates and the precision of the estimator calculated using the modified Fisher information
matrix. Estimator accuracies for each emitter distribution were calculated by taking the ratio
between the mean of the uncertainty estimates and the observed uncertainty.

Algorithm performance was also tested on simulation data where 2D Gaussian shapes were
randomly placed with uniform distribution through the image with their actual position reg-
istered for later calculation. The total expected photon count per emitter was selected from a
normal distribution with u = 800, o = 100. A background count rate of 5 count/pixel was
added to the image, and then the image was corrupted with Poisson noise. After fitting these
images using MFA with atarget resolution of 20 nm or 50 nm, the localization fraction was cal-
culated by taking the ratio between the number of correctly localized emitters which is defined
as having a registered emitter position near the localized emitter within the target resolution
and the total number of emittersin simulation. The error rate of the algorithm was obtained by
calculating the ratio between the number of mis-localized emitters which is defined as having
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Fig. 3. Single fluorophore intensity distribution of the organic fluorophore Alexa Fluor
647 obtained from the data set described in section 4.4.1 taken in TIRF condition. The
distribution is modeled as a normal distribution with u = 800, ¢ = 100.

no actual emitter position near the localized emitter within the target resolution and the total
number of emitters obtained from fitting.

4.3. Synthetic data generation

Synthetic image seriesin aSiemens star pattern with 50 non-empty slice regions were generated
such that the maximum width of each slice (on the outer diameter) equals 213 nm. A fixed
labeling density po=5000 um~2 and off rate kot = 0.8 frame™! were used, with varied ko, to
generate variations in active densities (pacive) according to:

Pactive = PO X ﬁ (12)
A blinking trace was generated for each emitter using the transition rates ko, and Ky for dark
to active, and active to dark transitions respectively and were designed to emulate realistic
photophysical properties. Asin all of our simulations, the active emitters were represented as
a 2D Gaussian shapes, with o = opse = 1.2 pixels (127 nm). To represent the experimentally
observed variation in emitter brightness, for each emitter, the total expected photon count per
frame was selected from a normal distribution with y = 800 ¢ = 100. Shown in Fig. 3 is the
singleframeintensity distribution of AlexaFluor 647 . A background count rate of 5 count/pixel
was added to the image, and then the image was corrupted with Poisson noise. Calculation of
the density of active emitters assumes a pixel size of 106 nm, which is the back-projected pixel
size in the experimental system.

44. SM-SRimaging
4.4.1. Cdll culture

Human epithelial cervical cancer (HelLa) cells were cultured in Minimum Essential Media
(Gibco) supplemented with Fetal Bovine Serum (HyClone), L-Glutamine and Penn-Strep. Five
hours after plating at low confluency onto 8-well Labtek chambers (Nunc), cells were serum
starved approximately 10 hours and fixed using 4% paraformaldehyde in phosphate buffered
saline (PBS). After three washes in PBS, cells were permeabilized (0.5%v/v Triton X-100) at
room temperature for 15 minutes in the presence of 3% BSA to reduce non-specific binding.
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Cells were again washed three times in PBS before addition of Alexa Fluor 647 Phalloidin (In-
vitrogen). Phalloidin was added at four times the recommended concentration (approximately
660 NnM) to ensure dense labeling. Cells were washed five times and imaged in the presence of
an oxygen scavenging system including 50 mM MEA [31] as areducing agent.

4.4.2. Microscopy and data acquisition

Single molecule imaging experiments were performed in an epi-fluorescence microscope setup
consisting of an inverted microscope (1X71, Olympus Americalnc.), 1.45 NA TIRF objective
(U-APO 150x NA 1.45, Olympus America Inc.), 635 nm diode laser (Radius 635, Coherent
Inc.), and an electron multiplying CCD camera Ixon (897, Andor Technologies PLC.) with EM
gain set to ~ 200. The epi-fluorescence filter setup consisted of a dichroic mirror (650 nm,
Semrock) and an emission filter (692/40, Semrock). The sample chamber was mounted in a 3D
piezostage (Nano-LPS, Mad City Labs). 5000 images were taken in a TIRF configuration at 20
frames/second. Drift correction was not implemented, but from independent measurements we
estimate a drift of less than 25 nm over the acquisition time. Frames were 256 x 256 pixels
with apixel size of 0.106 um.

5. Resultsand discussion
5.1. Optimal sub-region size and Nyax

Various sub-region sizes ranging from 4opsr to 8opse Were evaluated in the aspects of both
localization fraction and error rate that are defined in section 4.2. Small sub-regionstend to iso-
lateindividual emitters from one another better compared to larger sub-regions and thus results
in sub-regions containing fewer emitters. However, the smaller area decreased the amount of
information that could be used in fitting and thus the error rate increases compared to larger
sub-regions. Large sub-regions provide more accurate estimates compared to a smaller sub-
region but the probability of introducing more emitters within or near the sub-region increases
quadratically with the width of the square sub-region. We have tested our algorithm perfor-
mance under different sub-region sizes, such as 40psr, 50psE, 60psF, 70psF, 80psk, Various
active emitter densities from 0.1 um~2 to 10 um~2, various emitter intensities from 200 to
5000 and various intensity variance. After comparing these plots (data not shown), we found
that sub-region size of 6opse shows the best compromise of error rates and localization frac-
tion. Nimax Values ranging from 1 to 8 were tested. Large Nimax tend to generate a more complex
likelihood surface and thus the possibility for the estimator being stuck at a local minimum
increases with Nax. The complexity introduced by multi-emitter model resultsin higher error
rates and thus Nimax Was restricted to 5 in our analysis.

5.2.  Uncertainty estimator performance

Using simulations, estimator precision calculations for various emitter configurations were cal-
culated from our modified Fisher information matrix F(0) of Eq. (11) and compared with
observed standard deviations. Singularity of the Fisher Information matrix for the multi-
component Gaussian model when 2 (or more) emitter centers that have a separation less than
100 nm resultsin afailure of the CRLB to correctly estimate the precision of the position esti-
mation. This effect is demonstrated in Fig. 4(a). Figure 4(a) also shows that cal culations based
on F(6) gave a correct estimator precision (compared to the observed standard deviation of
the estimates) in the regions both near and far from the point of singularity of the two emitter
model, with only a small but conservative deviation below 50 nm. We aso show the perfor-
mance of F(6) based precision calculations for random configurations of multiple emitters by
looking at the estimator accuracy, defined as the ratio of the precision calculated using F(6) to
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Fig. 4. Performance of the precision estimate. (a) A comparison between the precision pre-
dicted from the CRLB and from the modified Fisher information matrix. A series of sim-
ulated images of two emitters at varoius separations between their centers were generated.
MFA was performed on these images and the precision estimates cal culated by the modified
Fisher information matrices (F(6) Estimated Std. Dev.) were compared with that obtained
from the CRLB (Estimated Uncertainty CRLB), precisions obtained from the CRLB gener-
ated by emitter’s true position (Theoretical Uncertainty CRLB), and the observed standard
deviation of the estimates (Observed Std. Dev.). (b) The CDF (integral of histogram) of the
uncertainty estimator accuracy obtained using the modified Fisher information matrices for
random placements of multiple emitters.

the observed standard deviation of the estimates. The cumulative distribution (the normalized
integral of the histogram) of the estimator accuracy is shown in Fig. 4(b) and demonstrates that
the estimator accuracy distribution (corresponding to the derivative the CDF) of is narrowly
peaked around 1 for the 1-3 emitter models (ideal) and is conservative (reported precision is
larger than observed standard deviation) on the 4 and 5 emitter models where the estimator
accuracy distribution is peaked around 1.1 and 1.2 respectively.

5.3. Algorithm performance versus density and intensity distribution

We have tested our agorithm on simulated data sets where emitters were randomly placed with
uniform distributionin a64 x 64 image representing an area of 46 ym? in our microscope cam-
era setup. By increasing the number of active emitters within the image, density increased from
0.01 um~2 to 10 um~2. Both single (Nmax = 1) to multi (Nmax = 5) emitter fitting algorithm
were performed on these data sets and localization fraction (defined in 4.2) were calcul ated.

Figure 5 shows the performance of the MFA analysis for various densities and intensity
distributions. The simulations show that the localization fraction improvement from Nmax =
1 t0 Npmex = 5 is most significant at a densities higher than 1 um~2. We note that at high
intensities with narrow intensity distribution (Figs. 5(¢), 5(f)) the localization error improves,
but the localization fraction does not. Thisis attributed to high sensitivity to model mismatches
created by the fixed intensity assumption and emitters outside the fitting window.

5.4. Pattern ssmulation results

Simulated Siemens star pattern images were generated such that the labeled region active emit-
ter density is 1.0 um~2 and 6 um~2. These two sets of data were analyzed using Npex = 1 and
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Fig. 5. Performance versus active emitter density and intensity distribution. Shown are the
results of MFA analysis of images with spatially random distributed emitters with normally
distributed intensities of 300+ 30 (a), (b), 800+ 100 (c), (d), and 5000+ 30 (e), (). Local-
ization error is calculated as the distance from the estimated position to the found position
and in al cases assumes Nmax = 5. The median localization error is where the cumulative
distribution reaches 0.5. Localization fraction is the fraction of emitters that are correctly
localized as determined by being found within either 20 nm or 50 nm from the known
position.

#141878 - $15.00 USD  Received 31 Jan 2011; revised 9 Apr 2011; accepted 14 Apr 2011; published 29 Apr 2011
(C) 2011 OSA 1 May 2011/ Vol. 2, No. 5/ BIOMEDICAL OPTICS EXPRESS 1389



Nmax = 5. Results of the analysis are shown in Fig. 6¢ through Fig. 6f.

At relatively low densities, results from Nyax = 1 and Njmax = 5 are similar. For Npax = 1
shown in Fig. 6(c), 12848 emitters were localized and accepted for usein the SR reconstruction,
and for Nmax = 5 shown in Fig. 6(d), 30354 emitters were accepted and used. In the high
density case, shown in Fig. 6(e) and Fig. 6(f), there was nearly two orders of magnitude (519
versus 33580) more position estimations accepted and used in the reconstruction. As shown
in the projections of the SR images, the Nmax = 1 fitting performs better near the edges of the
structures where the local active emitter density is smaller. It isinteresting to note that at the
low density, Nmax = 5 fitsalmost 3 times more emitters than Nymax = 1 case, and thus the pattern
result shows a better resolved structure near the center and provides better resolution compared
to Nmax = 1 fitting result.

5.5.  Algorithm speed

Algorithm speed was tested under conditionsincluding various active densities and Npax. Tests
were performed on two set of data (data size: 128x128x1000) with densities 1 um~2 and
5 um~—2. Algorithm execution was divided into several major sections and the run times for
each section were recorded. As shown in Table 1, the operation time for MFA Nmax = 5 was
176 s for the 1 um~2 case and 408 s for the 5 um~2 case. When performing single emitter
operation (Nmax = 1), this run time decreased dramatically to 17 s and 30 s respectively. This
dramatic difference is caused by the complexity introduced by fitting multiple emitters, such as
fitting to multiple models, the deflation process, NR iteration on more parameters, the Fisher
information modification and also alarger Fisher information matrix. However, the fraction of
localization also dramatically increased when comparing single fitting results to multi fitting
results as over 100 times more emitters were localized at a density of 5 um~—2 and almost 3
times more at adensity of 1 um—2.

Table 1. Time Consumption and Performance*

Processing Time () Performance
Fitting | Preprocessing | Fitting | Uncertainty | Reconstruction | Total Localized
Routine CPU GPU GPU GPU Time emitters
Low Density: 1 um~?, Total Simulated Emitters: 181222
Nmax = 1 5.69 8.41 2.89 0.65 17.64 62267
Nmax =5 5.72 162.25 6.04 2.62 176.63 168735
High Density: 5 um~2, Total Simulated Emitters: 906127
Nmax = 1 5.59 19.69 5.35 0.09 30.73 3939
Nmax = 5 5.7 378.56 16.0 7.70 408.07 489137

*Images (128x 128x1000) of emitters that were randomly placed with uniform distribution are generated using
two active emitter densities. Both were fitted by Nmax = 1 and Nmax = 5 and the speed for each part of the algo-
rithm was recorded. Total humbers of fitting sub-regions are 146,597 and 336,959 in low and high density case
respectively.

5.6. Imaging of actin structures

Imaging the actin mesh-work within Hel.a cells demonstrates the improvementsin SM-SR fit-
ting made possible by the MFA’s multi emitter analysis (Nmax = 5) compared with single emitter
analysis (Nmax = 1). For samples with high labeling densities, such as those possible when us-
ing small molecule fluorescent probes such as Alexa Fluor 647 phalloidin, regions of interest
that could be seen using conventional microscopy (Fig. 7(b)), may appear to be discontinuous
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Fig. 6. (@) The emitter position histogram used in generating synthetic data. (b) Sum pro-
jection of the generated image. (c) Single emitter fitting result at a density of 1 um~2 with
Nmax = 1. (d) Multiple emitter fitting result at a density of 1 um—2 with Nmax = 5. (€)
Single emitter fitting result at a density of 6 um=2 with Nmax = 1. (f) Multiple emitter
fitting result at a density of 6 um—2 with Nmax = 5. At 1 um~2 case, Nmax = 1 resulted in
12848 emitters localized while Nmax = 5 localized 30354 emitters. Whilein 6 ;1m*2 case,
Nmax = 1 resulted in 519 emitters localized while Nmax = 5 localized 33580 emitters. The
contrast of images (c) to (f) were globally adjusted across al images for optimal display.
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Fig. 7. Comparison of SM-SR fitting routines for imaging the actin mesh-work within a
HelLa cell labeled with Alexa 647 phalloidin. Conventional TIRF microscopy, (a) and (b),
compared with SM-SR images generated using both aNmax = 1, (¢) and (d), and Njmax = 5,
(e) and (f). Actinrich regions, seenin top right of (b),(d),(f) are missing using single emitter
routines (Nmax = 1) (d), but successfully fit using the MFA (Nmax = 5) (f). Theincreasein
molecular density found using the MFA (Nmax = 5) routine also reveals a more complete
depiction of the underlying actin structure, outlining possible actin corrals seen in the center
of (f). Scales barsrepresent 5 umin (a), (c), (e) and 1 umin (b), (d), (f).
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when analyzed using Nmax = 1 that can not process high active densities (Fig. 7(d)). By ana-
lyzing these data sets using MFA (Nmax = 5), less events were discarded. The reconstructed SR
image from Nmax = 5 showed more continuous structures and ultimately, enabled finer detail
of the underlying protein distributions to be revealed (Fig. 7(€)). It is shown in Fig. 7(c) that
although the branching structures were resolved nicely using Nmax = 1, structures toward the
middle backbone can’t be resolved, because the backbone structure are composed of intercross-
ing actin fibers and thus possessed a higher local emitter density than isolated line structures.
Asshown in Fig. 7(e), MFA (Nmax = 5) achieved to resolve the backbone structure better than
single emitter fitting algorithm (Nmax = 1).

6. Conclusion

The MFA method we have devel oped allows the analysis of images with average active emitter
densities up to 10 um~2. This capability relaxes an important constraint in SM-SR, allowing
an order of magnitude improvement in the speed of acquisition and/or the maximum supported
duty cycle of the emitters. Although our approach is based on a maximum likelihood estimate,
robust estimation of multiple emitter positions also requires strategies such as making good
initial estimates, making accurate uncertainty estimates and the model selection and rejection
algorithm. Higher density imaging allows shorter acquisition times, but results in more com-
putational complexity in analysis. By implementing key analysis steps in GPU hardware, we
show the MFA method can compl ete the analysis of real data sets on the time scale of minutes.
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