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Abstract
Articular cartilage is the load bearing soft tissue that covers the contacting surfaces of long bones
in articulating joints. Healthy cartilage allows for smooth joint motion, while damaged cartilage
prohibits normal function in debilitating joint diseases such as osteoarthritis. Knowledge of
cartilage mechanical function through the progression of osteoarthritis, and in response to
innovative regeneration treatments, requires a comprehensive understanding of the molecular
nature of interacting extracellular matrix constituents and interstitial fluid. The objectives of this
study were therefore to (1) examine the timescale of cartilage stress-relaxation using different
mechanistic models and (2) develop and apply a novel (termed “sticky”) polymer mechanics
model to cartilage stress-relaxation based on temporary binding of constituent macromolecules.
Using data from calf cartilage samples, we found that different models captured distinct timescales
of cartilage stress-relaxation: monodisperse polymer reptation best described the first second of
relaxation, sticky polymer mechanics best described data from ∼1-100 seconds of relaxation, and a
model of inviscid fluid flow through a porous elastic matrix best described data from 100 seconds
to equilibrium. Further support for the sticky polymer model was observed using experimental
data where cartilage stress-relaxation was measured in either low or high salt concentration. These
data suggest that a complete understanding of cartilage mechanics, especially in the short time
scales immediately following loading, requires appreciation of both fluid flow and the polymeric
behavior of the extracellular matrix.
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Introduction
Articular cartilage is a complex macromolecular biopolymer [1-4]. The tissue constituents
include type II collagen, the aggregating proteoglycan (aggrecan), and numerous other
molecules such as decorin, superficial zone protein, and numerous collagens. Further, the
hydrated tissue has a distinct zonal structure with defined orientations of collagen and
precise localization of proteoglycans. Macroscopically, the cartilage ultrastructure gives rise
to a unique deformable and load-bearing solid with low friction and wear characteristics at
the articular surface. Unfortunately, disruption of the tissue structure during the course of
degenerative diseases, such as osteoarthritis, results in altered mechanics and severe tissue
wear.

Historically, cartilage viscoelasticity has been separated into flow-dependent and flow-
independent contributions [5, 6]. The flow-dependent contribution results from fluid flowing
through a permeable solid matrix and occurs on a long timescale as a result of the low
permeability of cartilage [7]. The flow-independent portion of cartilage relaxation includes
viscoelasticity not resulting from fluid flow and is often modeled phenomenologically using
Fung's quasi-linear viscoelastic model [8, 9]. Previously, we demonstrated that the
relaxation function derived for simple (monodisperse) polymeric solutions (i.e. reptation),
where all polymers are assumed to have the same molecular weight, was able to model the
early stress relaxation of articular cartilage in unconfined compression [10]. Although a
generally-accepted mechanistic explanation of flow-independent viscoelasticity remains to
be determined, this work remains [10] as one candidate mechanism.

While our previous work modeled cartilage stress relaxation by monodisperse reptation, it is
well-known that cartilage macromolecules are polydisperse (e.g. [11]) and likely exhibit
complex molecular interactions. Considering the complex nature of cartilage structure, it is
possible that a polydisperse polymeric solution, where the polymers are assumed to have a
distribution of molecular weights, and thus a more complex set of interactions, provides a
better description of relaxation data. Additionally, the incorporation of fluid flow in the
numerical modeling is essential considering the flow-dependent contributions to
viscoelasticity for the hydrated tissue. However the extent to which any of these mechanistic
models describes the time course of relaxation is unknown. Thus, our knowledge of cartilage
viscoelasticity, especially for timescales immediately following loading, is largely
incomplete.

The purpose of this paper is to investigate the relative contributions of monodisperse and
polydisperse polymeric models, as well as fluid flow, to cartilage viscoelasticity. Herein, we
first compare monodisperse and polydisperse models for short-term stress relaxation, then
combine the polymer model with the well known KLM fluid flow model [5, 12] to separate
relaxation caused by flow-dependent and flow-independent mechanisms. The objectives of
this study were to (1) examine the timescale of cartilage stress-relaxation using different
mechanistic models and (2) develop and apply a novel (termed “sticky”) polymer mechanics
model, based on temporary binding of constituent macromolecules, to cartilage stress-
relaxation. We further tested the sticky polymer model using experimental measurements of
cartilage stress relaxation at both low and high salt concentrations, under the hypothesis that
high salt concentration would screen temporary electrostatic bonds.

Theory
Stress Relaxation in a Monodisperse System by Reptation

Many biological molecules are long relative to their diameters. A large length-to-diameter
ratio is characteristic of structural molecules in connective tissues [13] and many
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engineering polymers [14-17]. Mechanical properties in a monodisperse system, or one
where all polymers are assumed to have the same molecular weight, are governed by
molecules that are long, flexible, and continuously changing conformation [18]. Reptation
describes this constant motion as “every [polymer] chain, at a given instant, is confined
within a ‘tube’ as it cannot intersect the neighboring chains. The chain thus moves inside the
tube like a snake.” [18] (Figure 1). Stress relaxation based on reptation theory assumes that
the stress relaxes with the movement of the polymer chains in their tubes [14]. After creation
of the tube, the chain moves from the original tube by diffusion. For a stress relaxation
experiment it is assumed that the stress is proportional to the fraction of the chain remaining
in the original tube. For a monodisperse, reptating system, the fraction of the chain
remaining in the initial tube (equivalent to the relaxation function) is

Equation 1

where τd is the characteristic disengagement time for the chain to escape from its tube, p is
an odd counting variable and t represents time. The theoretical development of the
relaxation function provides an estimate of the disengagement time τd in terms of measures
of the molecular structure. However this is not relevant to the current study and was
discussed previously [10].

Stress Relaxation of More Complex Polymer Systems
Cartilage is a heterogeneous material made of multiple polydisperse polymers with various
binding interactions [19-21]. Subsequently, we demonstrate how three additional
complexities in a polymer model separately result in a stretched exponential stress relaxation

function: . The stretching parameter (β) depends on the
polymer mechanism being modeled and may provide insight into active polymer
mechanisms in articular cartilage.

Reptation and stress relaxation in a polydisperse polymer system—The
polymer relaxation function (Equation 1) was derived assuming that all of the molecules are
linear and of the same length (i.e. a monodisperse system). In a natural system such as
cartilage there are different-sized biopolymers interacting to result in macroscale mechanical
properties [22]. The issue of a polydisperse reptating polymer system was examined by de
Gennes who determined the relaxation function for a system with an exponential molecular
weight distribution [23]

Equation 2

where, f is an average relaxation rate, t is time, and β=x/(x+1) where x>0 is the weight
distribution exponent. De Gennes' derivation was for broad classes of reptating systems and
demonstrated that for exponential weight distributions that a stretched exponential (or
Kolrausch-Williams-Watt, abbreviated KWW) relaxation function is expected for
temperatures above the glass transition temperature. In the original derivation, the exponent
β was predicted to be temperature-independent with a range between 0.25 and 0.33 for the
specific weight distributions considered.

June et al. Page 3

Mater Sci Eng C Mater Biol Appl. Author manuscript; available in PMC 2012 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Stress relaxation under constrained molecular motion, i.e. the “sticky”
polymer model—Stretched exponential behavior also can arise from mechanisms other
than reptation of a polydisperse system. Another source of stretched exponential behavior
occurs when there are barriers to molecular motion (e.g. steric interference or temporary
bonding). For example, Edwards and Vilgis [24] examined the case of long rod molecules
that interfere with each others' motions and demonstrated that stress relaxation behaved as

, where σ0 is the initial stress and τ is a time constant. This is a less-
general stretched exponential expression than derived by de Gennes, but has the same form
with β=0.5.

Motivated by the work of Edwards and Vilgis, we examined the case of a linear polymer
having NT temporary binding sites with probability p of being unbound at any particular
time and spaced such that the length of the free segment is Lm when m consecutive sites are
unbound. This theory was developed because of both the well-known non-covalent
interactions of cartilage matrix molecules [25] and the physical properties of cartilage
proteoglycans, which were originally defined as “mucopolysaccharides” [26] because of
their high viscosity. The expected numbers Nm of free lengths of polymer of length Lm are
(see Electronic Supplement, Appendix 1)

Equation 3

For NT of a reasonable size, there will always be at least some bound sites, and, therefore,
relaxation will not be by simple reptation, depending upon the probability of binding, p.
However, each free section of the polymer is mobile, and relaxation of stress may occur by
motion of the free sections. The characteristic relaxation function for a free segment will be
assumed as: Ψ(t,Lm), and thus the overall relaxation function for the polymer chain is
formed as a weighted sum over the free lengths Lm as

Equation 4

In Equation 3, the number of sites of length Lm is seen to be proportional to the probability
of the sequence “0111…1110” with “m” 1's as would be expected. In Eq. 4 the relaxation
function in the sum is weighted by the probability of the sequence “111…111” with “m” 1's.
Assuming Debye (single exponential) relaxation of stress for each free segment m with a
time constant proportional to Lm as: Ψ(t,Lm) = exp (−at/Lm), with constant a, results in the
following “sticky” relaxation kernel:

Equation 5

This can be fit well by a stretched exponential function with 0.58<β<0.69 for many
combinations of parameters (Electronic Supplement, Appendix 2).
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In summary, the different complex polymer models result in distinct predictions for the
stretched exponential stretching parameter β. The polydispersity model of de Gennes
resulted in a prediction for the stretched exponential exponent of 0.25<β<0.33, the Edwards
and Vilgis “steric interference” model makes the prediction β = 0.5, and our model for
temporary bonding results in the range 0.58<β<0.69. With these disparate results it is
appropriate to test whether experimental cartilage stress relaxation data is consistent with
any of the models.

Stress Relaxation due to Inviscid Fluid Flow
The flow of interstitial fluid in cartilage caused by pressure gradients describes flow-
dependent stress relaxation. For unconfined compression of a linear poroelastic cylinder of
radius r filled with an inviscid fluid, the relaxation kernel is

Equation 6

where the coefficients of the series are An(ν) = ((1-ν)(1-2ν)/(1+ν))(1/[(1-ν)2αn
2-(1-2ν)]), ν =

Poisson's Ratio (between 0 and 0.5), αn = characteristic equation roots (described
subsequently), Ha=Es(((1-ν)/(1+ν)(1-2ν)), Es = equilibrium Young's modulus of the material
after complete relaxation, and k = permeability. The characteristic equation is J1(x)-((1-ν) x
J0(x)/(1-2ν))=0, where J0(x) and J1(x) are Bessel functions and αn are the roots of the
equation. This relaxation kernel is well known as the result of solving the KLM constitutive
model for unconfined compression [12]. Herein, we will use this relaxation kernel in
combination with polymer fluid relaxation kernels to assess the mechanisms that contribute
to the time course of stress relaxation in cartilage explants.

Methods
Benchtop and in silico experiments were performed to investigate the relative contributions
of monodisperse and polydisperse polymeric models, as well as fluid flow, to cartilage
viscoelasticity. Monodisperse and polydisperse (i.e. stretched exponential) models were first
evaluated using short-term stress relaxation data on a timescale (less that 60 seconds) that is
considerably shorter than expected for fluid flow [7, 27]. Second, an elastic-matrix—
inviscid-fluid-flow—stretched-exponential model evaluated full-term stress relaxation data
(to 1800 seconds) to determine (1) the time scales where fluid flow and polymer dynamics
were dominant and (2) whether the stretching parameter (β) of the model was consistent
with any of the specific theoretical polymer mechanisms. Finally, we evaluated the ability of
the sticky polymer model to predict results under either low or high ionic concentration [28].

Cartilage Samples
Five mm diameter osteochondral plugs were aseptically harvested within 6 hours of
slaughter from load bearing regions of the lateral femoral condyles of bovine calf stifle
joints using a cork borer. The subchondral bone was removed, and the cartilage plugs for the
short-time tests were equilibrated at 37° C for 5 days in chemically-defined media composed
of DMEM/F-12 supplemented with 0.1% (v/v) BSA, 100 units/ml penicillin, 100 μg/ml
streptomycin, and 50 μg/ml ascorbate-2-phosphate [29]. On the day of short-time testing,
tissue thickness (4.39±0.0254 mm) was measured with a dial indicator (Harbor Freight,
Camarillo, CA Model 623-0VGA). All samples were the same thickness within the
precision (25.4 microns) of our measuring equipment, which resulted in less than 3% error
in the level of applied strain. Mechanical testing was performed in unconfined compression
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(Enduratec ELF 3200, Bose Electroforce, Eden Prarie, MN) using polished stainless steel
platens. For the long-time experiments, samples were equilibrated under a 5N preload before
application of a 5% nominal compression for 1800 s. For the short-time experiments, a 20%
compression was applied for 1 minute.

Monodisperse and Polydisperse Models: Fitting 0 to 60 Seconds of Stress Relaxation
Stress-relaxation tests were performed in unconfined compression. A 20% nominal
compressive strain was applied with polished stainless steel platens for 1 minute in a media
bath using an Instron 8511 Materials Testing System. Short-time (60 s) stress-relaxation data
were obtained from twelve independent samples taken from twelve separate joints. Strain
was applied in approximately 0.1 seconds, and force was recorded at 200 Hz for 60 seconds
following the application of strain. The relaxation portion of the data (stress data following
the peak stress) was used to determine the applicability of the relaxation models, described
below. Next, data were fit to two different models, a monodisperse relaxation function

Equation 7

where p=1,3… is an odd index counting the terms used to approximate the infinite sum of
the reptation relaxation function, τd is the characteristic disengagement time, and the term S1
is the elastic (long term) portion of the response, and a stretched exponential function

Equation 8

where S0 and S1 are fitting constants (with other terms defined above). Therefore, Equations
7 and 8 approximate the relaxation of cartilage as the combination of an elastic matrix and a
viscoelastic polymer. Models were fit using MATLAB (The Mathworks, Natick, MA) to
minimize the sum-squared-error (SSE) between the measured stress values and those
predicted from the reptation or stretched exponential models. The normalized averaged error
(NAE) was then computed to represent the average error per data point, normalized to the
maximum stress, resulting from failure of the model to accurately represent the actual data.

Relative Contribution of Polymer and Fluid Flow Models: Stress Relaxation from 0 to 1800
Seconds

The 5 mm diameter samples were collected in the same manner as described above and
equilibrated in the same chemically-defined medium for 30 minutes after harvest and prior
to testing. A total of 10 samples were tested in this experiment, coming from the medial and
lateral patellofemoral grooves midway between the proximal and distal boundaries from 5
independent joints. Testing was performed using polished stainless steel platens in
unconfined compression with an Enduratec ELF 3200 electromechanical testing system. The
specimens were submerged in culture medium during the compression. A 5N compressive
preload was applied for 10 minutes after which the initial height of the sample was
measured. Subsequently, a 5% compression was applied at a nominal rate of 5 mm/s (load
was completed in 0.2-0.3 s). Force data were sampled at 200 Hz for the first minute of
relaxation, and 60 Hz for the following 29 minutes. From comparison of the monodisperse
and stretched exponential models it was determined that the latter was better for modeling
the full 60 seconds of relaxation. We therefore decided to determine the relative
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contributions of the stretched exponential, elastic matrix and inviscid fluid flow models to
1800 seconds of relaxation data.

The inviscid fluid-elastic model was composed as the KLM relaxation kernel plus a constant
term:

Equation 9

where, S∞, B, and ν were fitting constants, and the remaining terms were as defined above.
Thus, this is a function that represents elastic-inviscid fluid (i.e. KLM) behavior for
unconfined compression of a homogenous cylinder. This function was fit using a brute-force
algorithm in C++ to perform a grid search for the optimal set of model parameters. One
hundred terms of the series were used in the curve fit. Initial curvefitting of the KLM
function to the entire 1800 seconds of relaxation data found that the KLM function was only
able to fit the latter portion of the data. Therefore, we subsequently fit the function to the
later portion of the data in a sequential fashion (e.g., for one data set we fit the function to
the data from N seconds to 1800 seconds where N=930, 744, 596, 477, …, 33 seconds) until
the average error of the fit increased to more than ten times the error of the best fit. This
process defined the timescale of relaxation that was accurately modeled by the KLM
function. After fitting the KLM function to the data, a stretched exponential was fit to the
portion of the stress that was unexplained by fluid flow or the elastic term as:

Equation 10

where, SKWW > 0, τKWW > 0, and β (0 ≤ β < 1) are fitting terms. Brute-force fitting was
performed using C++ as described above. Together, Equations 9 and 10 model the
relaxation of cartilage as a combination of a linear elastic matrix, inviscid fluid flow, and a
polymer fluid. The fitting approach maximized the contribution of the elastic and inviscid
fluid flow contribution, in order to determine the minimal possible contribution of the
polymer fluid (stretched exponential) model. The mean error of the KLM portion of the fit
(i.e., the fit of Equation 10) was calculated as the root-mean-square error between the data
and the model. The coefficient of determination (COD) for the total fit was calculated from
the force variance of the data (FV) and the residual force variance (RFV) as: COD=1-RFV/
FV. Residual force variance is defined as the variance of the residual error of the total fit.

Sticky Polymer Model and Ionic Strength
The sticky polymer model predicts that stress-relaxation will proceed faster when the
probability of temporary binding is decreased. We sought to validate this model using
cartilage stress-relaxation data obtained in either low or high ionic strength solutions,
assuming that the high ion concentration would minimize temporary bonds associated with
the anionic glycosaminoglycans chains of aggrecan. Cartilage explants were subjected to
repeated stress-relaxation tests [28]. The first test occurred in low-ionic strength solution
(either 0.15M NaCl or 0.075M CaCl2, n=8 samples). The second test occurred after
equilibration in high concentration solution (either 1M NaCl or 0.5M CaCl2).

To fit the temporary binding model to the stress-relaxation data, we used nonlinear
optimization in MATLAB. A cost function was constructed using the squared residuals
between the data and the model of Eq. 14:
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Equation 11

In Eq. 14, p represents the probability that each of the NT binding sites is unbound, i is a
counting variable for the sum, lo represents the monomer length, and So, t, and S∞ have
been defined above. Note that the model time constant in Equation 11 reflects the hypothesis
that aggrecan will temporarily bind to a relatively less mobile component of the cartilage
matrix (e.g. collagen). At each data point, the cost function was weighted by the signal-to-
noise ratio. To fit the data, we used two methods. First, we used an unbiased method in
which all fitting variables (So, S∞, lo, and p) were freely adjustable by the minimization
routine for both the first and second datasets. Second, we used a biased method where the
results of the unbiased method on the first (low-concentration) dataset were used to define
sample-specific lo values, which were then used in a 3-parameter (A, B, and p) fit of each
high ion concentration dataset.

Results
Monodisperse and Polydisperse Models: Fitting 0 to 60 Seconds of Stress Relaxation

Both monodisperse and polydisperse models provided good visual fits to the 60 second data
(Figure 2). However, the polydisperse model had a smaller mean SSE than the monodisperse
model for the entire data range (3.5±1.6 versus 465.5±60.9 MPa2 p<0.05, t-test), indicating
that the stretched exponential is a better model for 60 seconds of relaxation. Sequential
fitting of the sixty seconds of data from the twelve specimens found different results
between the two relaxation functions. Consistent with previous results [10], the reptation
model showed a minimum error when a short period of data was fitted (0.176±0.061 s;
Figure 2B). Additionally, the reptation model had a smaller normalized error than the
stretched exponential for times less than approximately one second. The stretched
exponential did not show a minimum within the sixty seconds of relaxation (Figure 2B).
Therefore, we chose to use the stretched exponential function to test the relative contribution
of polymer mechanics and inviscid fluid flow over long term (1800 s) relaxation experiment.

Relative Contribution of Polymer and Fluid Flow Models: Stress Relaxation from 0 to 1800
Seconds

Rapid loading was sufficiently fast to avoid relaxation during compression, as indicated by
the linear portion of the relaxation test (r2>0.99) (Figure 3). Further, for all start times, the
model (Equation 10) provided good fits to the data (r2>0.975 (Figure 5). However, the KLM
portion of the fit showed a rapidly increasing error for start times shorter than ∼100 seconds
(Figure 4A). Permeability estimated from the KLM portion of the fit (Figure 4D) was
dependent upon the fit start time. For start times ∼100 seconds and longer, the permeability
was similar to literature values [30]. The rapid increase in average error, the presence of an
“optimum” start time of approximately 100 seconds, and the convergence of the fitted
permeability values for start times greater than 100 seconds, indicated that the KLM model
(inviscid fluid—elastic matrix) was able to model the temporal majority (from ∼100-1800 s)
of the relaxation (Figure 4). However, stress relaxation prior to 100 seconds was best fit by
the stretched exponential portion of the fit (Table 1, Figure 5). The average quality of the fit
(Table 1) was excellent for the total model (coefficient of determination 0.9998±0.0002)
with average error for the KLM portion of the same magnitude as the underlying noise in the
load cell (∼30 mN). The average time constant for the KLM portion of the curve was
significantly longer (p>0.05) than that of the polymer component. The average stretching
parameter, β, of the fits (Table 1) was 0.65±0.04, within the range of the sticky model.
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Sticky Polymer Model and Ionic Strength
Curvefitting the temporary binding model found larger fitted values of unbound probability
(p) at higher salt concentrations, providing experimental support for the temporary binding
mechanism represented by the model. For samples tested in 0.15 M NaCl p was smaller than
samples tested in 1M NaCl (for both biased and unbiased methods p<0.02, Figure 6A-C).
For samples tested in 0.075 M CaCl2 p was smaller than samples tested in 0.5M CaCl2
(both p<0.01, Figure 6D-F).

Discussion
Cartilage is composed of heterogeneous polydisperse biopolymers with multiple complex
interactions. To determine the molecular mechanisms of cartilage viscoelasticity, models
must be based on specific molecular interactions. In addition, rapid initial loading is
necessary to capture the fast relaxation modes that occur on timescales shorter than 100
seconds. In this study, we investigated the relative contributions of monodisperse and
polydisperse polymeric models, as well as fluid flow, to cartilage viscoelasticity.
Accordingly, the objectives of this study were to (1) examine the timescale of cartilage
stress-relaxation using different mechanistic models, and (2) develop and apply a novel
(termed “sticky”) polymer mechanics model, based on temporary binding of constituent
macromolecules, to cartilage stress-relaxation. These different models necessarily have
different numbers of free parameters which reflect the differences in the underlying theories
and may result in empirical fitting capabilities that differ between models. More precise
separation of the model timescales may be possible using additional methods such as
Akaike's Information Criterion [31].

Stress relaxation in articular cartilage is determined by distinct mechanisms, each associated
with different time scales and molecular dynamics. At the earliest times (up to ∼0.2 s, Figure
2), the monodisperse reptation polymer model provided the best fit to the data, consistent
with our previous research [10]. Interestingly, it is possible that inclusion of constraint-
release [32] or contour length fluctuation [33] concepts may improve these good fits. This
observation supports the hypothesis that for short times after loading molecular motion of
cartilage constituents is similar to reptation.

The subsequent timescale (∼0.2-100 s) was best described by the stretched exponential
model. Most of the stress dissipates during this regime, and one possible mechanism
underlying the stretched exponential relaxation is the temporary binding of macromolecules
(Equation 11). The finding that curvefits of this model result in larger unbound probabilities
for high-salt stress-relaxation provides experimental support for temporary binding
mechanisms in cartilage viscoelasticity. The mechanism of temporary binding may be ionic
crosslinks between anionic glycosaminoglycans [34] although other salt-induced
phenomenon including osmotic pressure may be relevant. Importantly, this model is
consistent with other polymer mechanics treatments of temporary binding [35, 36], although
further experimental verification, including the possible use of spectroscopic analysis to
quantify temporary binding, would further support the relevance of this mechanism to
cartilage mechanics.

Finally, the slowest timescale of cartilage stress-relaxation accounted for the temporal
majority (∼100-1800 s) and was best described by the fluid-flow model. The results of the
curvefits using a combined polymer and KLM approach (1) fit the data well (average
coefficient of determination 0.9998), (2) provided estimates of the permeability consistent
with literature values, and (3) provided insight about which polymer mechanisms might be
active in the medium term.

June et al. Page 9

Mater Sci Eng C Mater Biol Appl. Author manuscript; available in PMC 2012 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The observation that stress relaxation data separate into a “fluid” and “polymer” regime at
approximately 100 seconds is consistent with the experimental results of Wong et al [37]
who found that for stress relaxation in unconfined compression after rapid loading that
apparent stress was proportional to specimen volume only after ∼60 seconds of relaxation.
Theory for a linear elastic porous material interacting with an inviscid fluid (KLM) finds
that stress is linearly related to the specimen volume for unconfined compression of a
cylinder. Our analysis (Figure 4) demonstrates that KLM becomes less precise when fitting
data prior to 100 seconds of relaxation. In fact, we recapitulate the results of Wong et al (one
minute cutoff point) if we use the optimum total coefficient of determination to define the
beginning of the fluid-flow timescales (Figure 4B). The consistent findings of this study and
Wong et al strongly support the idea that fluid flow occurs on a slow timescale.

The polymer relaxation approach we present here complements other research using finite
element models. For example, the paper of Li et al [38] finds that mesoscopic molecular
structures (e.g., Benninghoff arcade-like structures) in cartilage result in a tension-
compression anisotropy of total relaxation. However, that study uses phenomenological
viscoelasticity theory to describe the behavior of the collagen matrix and was not intended to
address the underlying molecular nature of viscoelasticity. In contrast, our current study
presents candidate mechanisms that, when further studied, could provide additional insight
into the molecular nature of flow-independent viscoelasticity in cartilage.

Conclusion
We found that the time course of stress relaxation after rapid loading in articular cartilage is
dominated by distinct mechanisms. The first regime (∼0-0.2 s) was best fit by a
monodisperse polymer model (reptation). The second regime (∼0.2-100 s) was best
described by a polydisperse polymer model (stretched exponential). One candidate
mechanism underlying this model is temporary binding of macromolecules, and was
presented herein as a “sticky” polymer model. The third regime (∼100-1800 s) accounted for
the temporal majority of the stress-relaxation and was consistent with fluid flow through a
porous elastic matrix. Neither polymer dynamics alone nor fluid flow alone were sufficient;
both models were necessary to describe the experimental data, indicating that both
mechanisms are likely critical in cartilage viscoelasticity.

Supplementary Material
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Figure 1.
A system of polydisperse polymers permits constrained motion of constituent molecules.
Lateral entanglement constraints (due to, for example, molecules shown as dots and oriented
along z) allow polymers to move most easily along their own length, a motion called
“reptation.” The time needed for polymers to escape their current constraints determines the
spectrum of relaxation times of the polydisperse polymer system.
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Figure 2.
Polymer dynamics models describe short-term cartilage stress-relaxation. The monodisperse
reptation model (red) fit the initial (∼0-0.1 s) stress-relaxation best while the stretched
exponential model (blue) fit increasingly well with increasing relaxation time. (A) A
representative fit of both the monodisperse reptation and stretched exponential models.
(Compressive stress presented as positive for illustration purposes.) (B) Normalized Average
Error versus Fit Time for 60 second data. The monodisperse reptation model (red X's) shows
a minimum error. The stretched exponential model (blue circles) fits better as more data is
fit. For time less than one second, the fit to the monodisperse reptation model has smaller
error than the stretched exponential.
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Figure 3.
Rapid loading allows observation of fast stress-relaxation dynamics. Example of load-
displacement data for 1800 seconds of relaxation (all numbers negative by sign convention).
The load application region of the curve is nearly linear because loading is completed (in
approximately 0.2 seconds for this case) before the viscoelastic relaxation processes can
substantially progress.
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Figure 4.
Fluid flow (KLM) model fits long-term cartilage stress-relaxation data. The KLM model can
represent the majority of relaxation data (certainly all relaxation after about 100 seconds) but
cannot accurately fit early relaxation. This observation is consistent with previous reports
(e.g., [39]). Both the average error (A) and coefficient of determination (B) improve as the
KLM model fit is started at later times. (C) The permeability converges on experimentally-
measured values [7] as the model fit is started at later times. (D) Representative fit of the
KLM model to cartilage stress-relaxation data.
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Figure 5.
Polymer models fit short-term and fluid-flow models fit long-term cartilage stress-
relaxation. Example of total curve fit to stress relaxation data. Circles represent data
downsampled by 200, and line represents the total model including both polymer (stretched
exponential) and fluid flow (KLM) terms. The majority of load relaxation occurred in the
first 100 seconds of relaxation and was associated with polymer mechanics models, with the
initial (0-0.2 s) relaxation best fit by monodisperse reptation and the subsequent portion
(0.2-100 s) best fit by the stretched exponential. The temporal majority of the data
(∼100-1700 s) was fit by the fluid-flow model.
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Figure 6.
Sticky model finds higher unbound probability for cartilage stress-relaxation at higher salt
concentrations. These findings provide experimental validation of the mechanisms proposed
by the sticky model. (A) Ensemble average stress-relaxation data in 0.15M (blue) and 1M
(red) NaCl. (B) Representative sticky model curvefits to 0.2-100 s of cartilage stress-
relaxation. (C) For n=8 samples, the sticky model found higher unbound probability in 1M
NaCl compared with 0.15M NaCl (p=0.018). (D) Ensemble average data in 0.075M (blue)
and 0.5M (red) CaCl2. (E) Representative sticky curvefits from 0.2-100 s of stress-
relaxation. (F) For n=8 the sticky model found unbound probability on 0.5M CaCl2
compared with 0.075M (p=0.009).
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