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Abstract

Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and
chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only
deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test
for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical
defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina
cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the
jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was
evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of
rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-
induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative
indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to
be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and
resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive
expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed
chemical defence suggests that they may be ubiquitous in higher plants.
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Copyright: � 2011 Röder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was financed by Swiss National Science Foundation (grant 31-64864.01). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: russell.naisbit@gmail.com

Introduction

Plants are under constant threat of attack by herbivores and

pathogens [1]. As these organisms often share the same individual

plant, particularly when insects act as vectors or their feeding wounds

allow establishment of pathogens, there are many opportunities for

direct interactions to affect the fitness and ecology of all protagonists

[2,3]. Furthermore, plants themselves are not simply passive hosts.

They participate truly in these three-way interactions, with indirect

defences against herbivores, whereby damaged plants emit volatile

compounds that attract the enemies of their enemies [4], and direct

defences against both insects and pathogens, in which morphological

structures or chemical substances are used to inhibit attack [5].

In recent decades, plant defences have grown into a vast field of

investigation following the demonstration that many of these traits

are only activated upon attack [6]. Two major signalling pathways

are involved: infestation by biotrophic pathogens or attack by

sucking insects typically activates the salicylic acid (SA) pathway

and results in systemic acquired resistance (SAR) against plant

diseases, while attack by herbivores or necrotrophic pathogens

usually triggers the jasmonic acid (JA) pathway [7–10]. However,

the story is more complex than this simple dichotomy, for some

arthropods and pathogens induce both pathways, and cross-talk

between signalling pathways is also commonly observed, typically

involving reciprocal down-regulation [10–12]. The pathways

have often been studied with a view to their exploitation in crop

protection, so the majority of research has been carried out in

agricultural systems [13,14], with relatively little work on plants in

their natural environment. Furthermore, few studies have been

carried out on the response to induced direct defences by spe-

cialized herbivores that are able to surmount the constitutive

chemical defences of their host, as in tobacco plants, where attack

by the tobacco hornworm (Manduca sexta) induces increased

endogenous JA levels, but decreased nicotine accumulation [15].

In some cases these specialists are also undeterred by induced

defences [16].

As a result of these induced defences, competition mediated by

changes in plant chemistry may structure diverse communities of

herbivores and pathogens [3,17]. In this study, we investigate

whether induced responses of an alpine plant may mediate the

interactions between its herbivores and phytopathogens. We test

for induced direct defences in wild populations of the alpine plant

Adenostyles alliariae, a species that possesses constitutive chemical

defence (pyrrolizidine alkaloids) and specialist natural enemies (two

species of leaf beetle, Oreina elongata and Oreina cacaliae, and the

phytopathogenic rust Uromyces cacaliae). The host plant suffers a
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high proportion of leaves consumed by leaf beetles, and infection

by the phytopathogenic rust in mid summer seems associated with

rapid senescence of the plant. Beetle larvae grow more slowly on

rust-infected plants, and both adults and larvae avoid such plants

[18]. Here we test if this avoidance is a result of plant defences

induced by the rust. By using reciprocal induction treatments we

also investigate the potential for indirect positive or negative effects

of the beetles on the rust. Artificial induction with chemical

elicitors of the JA and SA pathways in natural populations was

used to ask:

Do Adenostyles alliariae plants show induced responses?

Does artificial induction of resistance change the probability

and timing of attack by Oreina beetles and infection by the rust?

The answers to these questions are used to examine whether the

ecological interactions between Oreina leaf beetles and Uromyces

rusts may be mediated by plant induced-responses.

Materials and Methods

Study Organisms
Adenostyles alliariae (Asterales: Asteraceae) is a common, peren-

nial, subalpine and alpine plant found on damp soils near the tree-

line and up to an altitude of 2800 m. Plants constitutively produce

pyrrolizidine alkaloids (PAs, mainly seneciphylline and senecio-

nine) at around 3% of dry weight [19]. These compounds are liver

and lung toxins in mammalian herbivores [20], are feeding

deterrents for most generalist insects [21] and also reduce attack

by some fungi [22]. The herbivores Oreina cacaliae and O. elongata

(Coleoptera: Chrysomelidae) are small (length 6.5 to 11.5 mm),

typically metallic blue or green leaf beetles found in isolated

populations throughout the Alps and Apennines, with the range of

O. cacaliae also extending as far as the Pyrenees and Carpathians

[23–25]. In the studied populations, O. cacaliae spends the entire

reproductive season on A. alliariae, whereas O. elongata also feeds on

Cirsium spinosissimum [18,26]. The beetles are not deterred by the

PAs in their host, and in fact can sequester them for their own

defence [27,28]. Uromyces cacaliae (Uredinales: Pucciniaceae) is a

specialist microform rust of A. alliariae. It produces only

teleutospores (teliospores), individually formed on short stems.

From mid summer, the underside of infected leaves show 0.5 mm

diameter brown teleutosori (telia), first covered by epidermis then

free and dust-covered, forming dense groups (of 0.5 cm diameter)

surrounded by a ring of yellow tissue [29,30]. The interactions

between these species are intensified by the extreme brevity of the

alpine summer, with only two to three months during which they

can grow and reproduce while the habitat is free of snow [31].

Field Experiment and Treatments
Experiments were carried out at Emosson (Swiss Alps, Valais,

altitude 1949 m) and La Fouly (Swiss Alps, Valais, 1587 m),

inhabited by O. elongata and O. cacaliae respectively, and both

showing A. alliariae populations infected with the rust Uromyces

cacaliae. The two populations were studied for one season each in

consecutive years. Experiments began on 27 May at La Fouly, and

on 28 June at Emosson, due to the higher altitude of this site. In

each population, 80 plants of A. alliariae were chosen at random.

All were newly emerged, healthy plants with their two first leaves

and no flowers. After measuring their initial heights, they were

randomly assigned to one of seven treatments, mixed throughout a

single patch.

(1) 20 plants were treated with acibenzolar-S-methyl (benzothia-

diazole, BTH), provided as Bion solution (60 mg/l) with 50%

active ingredient (Syngenta). The effect of this compound on the

plant is similar to that of salicylic acid, used to induce systemic

acquired resistance [13,32]. The plants were individually sprayed

four times with 0.5 ml of solution on the first day of the

experiment and one week later, as suggested by the manufacturer.

(2) 20 plants were treated with methyl jasmonate, a derivative of

jasmonic acid [33]. The compound is volatile, so to minimize

evaporation it was mixed in pure lanolin (Riedel-de Haën) and a

syringe used to produce 20 ml droplets of lanolin containing

150 mg of methyl jasmonate (Aldrich) [34]. The lowest leaf of each

plant was treated, applying half of one droplet to the upper surface

and half to the lower by gently spreading with a spatula. This

covered an area of around 4 cm2 overall, representing about 2%

of the leaf surface.

(3) 20 plants were treated with both compounds. The lano-

lin droplets were applied first, immediately followed by the Bion

spray.

Control plants were split among the final four treatments: (4)

five were sprayed with water, the carrier substance for BTH; (5)

five were treated with one droplet of pure lanolin, the carrier for

methyl jasmonate; (6) five were treated with both carriers; and

finally, (7) five were left with no treatment.

Over a period of one month, the plants were monitored weekly,

recording whether they showed signs of beetle attack (in the form

of holes due to adult or larval feeding) and rust symptoms (easily

recognizable on the upper side of leaves as a 2–3 mm diameter

discoloured area with a pale yellow spot in the centre). Their

height and presence of new leaves or flowers was also noted.

Statistical Analyses
Frequencies of attack by beetles and rust at the end of the

experiment were analysed in separate logistic regressions on the

binomial presence/absence data. The models included terms for

population (two levels), treatment (seven levels) and their in-

teraction. It should be noted that in all analyses, the population

term confounds any effects of year and beetle species, as well as

plant population and geographical site. It is included in order to

control for these influences while testing for treatment effects,

rather than to be interpreted in itself. There were significant effects

of treatment on both attack and infection rates, so the three

treatments were then compared in a pairwise manner with their

respective controls, by repeating the analyses with all other data

excluded.

The proportions of plants remaining non-attacked at each

survey were analysed using parametric survival analysis, treating

the act of being attacked as ‘‘mortality’’. The censorReg function

was used in S-PLUS 7.0 [35], coding plants that remained without

attack for the full month as right-censored and all others as

interval-censored (because their infestation times could only be

estimated to within roughly one-week intervals). A value of 0.001

was added to data with a lower bound of zero to allow log terms to

be treated. Beetle and rust attack were analysed separately in

models with terms for population (Emosson and La Fouly),

treatment (1 to 7), and the population by treatment interaction,

entered as factors (introducing variables as strata did not sig-

nificantly improve the fit). Models were compared using like-

lihood ratio tests. The order in which terms were added had little

effect on their significance. S-PLUS offers 10 possible distribution

families, but all gave similar p values and only the analyses using a

Weibull distribution are presented. This distribution was suggested

by the approximately linear relationship between ln(t) and lnln(1/

S(t)), where S(t) is the proportion of plants that remain healthy at

time t [36].

Growth of the plants was calculated as a daily growth rate (in

cm/day), by regressing height against time in days individually for

each plant (these linear regressions gave a close approximation to
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the growth process, with r2 values of between 0.61 and 0.99). After

square root transformation, the data were analysed in an ANOVA

with terms for population, treatment, and their interaction.

The numbers of leaves on plants at the end of the experiment

were compared using quasi-likelihood analysis based on a Poisson

distribution, which takes into account the under-dispersion of the

data (mean.variance). The model included population, treat-

ment, and interaction terms.

The probability and timing of flower production were analysed

using the same methods as the beetle and rust attack, using logistic

regression and survival analysis.

ANOVAs were performed using JMP 6.0 (SAS Institute, USA)

while other analyses were carried out using S-PLUS 7.0 [35].

Results

Frequency and Timing of Attack by Beetles and Rust
There were high overall rates of attack in both populations

during the month of the experiment, with 74% of plants attacked

by leaf beetles and 39% by the rust. Induction of the defence

signalling pathways had clear effects on both natural enemies.

The probability of attack by Oreina beetles was similar in the

two populations but differed according to treatment (Table 1 and

Figure 1). Plants treated with methyl jasmonate or with both

compounds were less likely to be attacked by beetles than were

their controls, while those treated with BTH suffered a higher rate

of attack than the controls.

The proportion of plants infected by the rust U. cacaliae differed

between the populations (with higher overall rates at Emosson) but

there were consistent significant differences between the treatments at

the two sites (Table 1 and Figure 1). Infection rates were significantly

lower in all induced plants than in their respective controls.

Table 1. Logistic regressions on the probability of attack by
Oreina leaf beetles and infection by the rust U. cacaliae.

Source DF Deviance Resid. DF Resid. Dev. P (Chi)

leaf beetle

null 159 184.21

population 1 2.076 158 182.13 0.150

treatment 6 16.404 152 165.73 0.012

pop*treatment 6 3.926 146 161.80 0.687

rust

null 159 213.64

population 1 12.960 158 200.68 ,0.001

treatment 6 48.048 152 160.63 ,0.001

pop*treatment 6 8.985 146 151.64 0.174

doi:10.1371/journal.pone.0019571.t001

Figure 1. Proportions of A. alliariae plants attacked by Oreina leaf beetles and by the rust U. cacaliae. Graphs show data from two sites:
Emosson (A and C) and La Fouly (B and D). Three groups were treated with single or combined chemical inducers of plant defences (n = 20 in each
case), three others were used as their respective controls (the treatments and corresponding controls are shown in the same colour, n = 5), and finally
one group was left with no manipulation (free control in white, n = 5).
doi:10.1371/journal.pone.0019571.g001
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The treatments also had significant effects on the timing of

beetle and rust attack in both populations (Table 2). Methyl

jasmonate and doubly treated plants were attacked later by bee-

tles, whilst the BTH treated plants were attacked more rapidly

than the controls (Figure 2). For rust infection, the plants treated

with the chemical inducers alone or in combination showed later

signs of disease than the controls (Figure 2).

Are Induced Plants More Successful in Growth and
Reproduction?

The growth rate of plants did not differ significantly among

treatments (Table S1 and Figure S1) and neither did the number

of leaves at the end of the experiment (Table S2). There was also

no effect of treatment on the probability of flowering during the

experiment (Table S3 and Figure S2), or on the timing of flowering

(Table S4 and Figure S3), although plants at Emosson were more

likely to flower and did so more rapidly.

Discussion

Our results demonstrate induced resistance in A. alliariae, with

effects on the leaf beetles O. elongata and O. cacaliae and on the rust

U. cacaliae. In the field, plants artificially induced with chemical

signalling compounds were less likely to be attacked and were

attacked later in the season. This induced resistance represents an

additional defence independent of the constitutively expressed

pyrrolizidine alkaloids, since the concentration of these com-

pounds is not altered following beetle attack or rust infection [37].

Deterrence of natural populations of herbivores has only rarely

been observed in previous studies, because most have used captive

trials and tested for reduced herbivore performance as the measure

of induction, sometimes finding no effect on specialists [16]. The

effects on the timing of attack are particularly relevant in the

alpine environment, allowing the plants to benefit from part of the

short summer season without the challenges posed by the two

antagonists.

There was also evidence for interactions between the two sig-

nalling pathways. Treatment with methyl jasmonate inhibited

attack by both beetles and rust. In contrast, whilst BTH inhibited

rust infection, it promoted beetle attack. This suggests that there

may be asymmetric cross-talk between defences in this system

and no simple mapping of jasmonic acid and salicylic acid

defence pathways onto herbivore and pathogen attack, respec-

tively [10].

The experiment revealed an ecological cost of SA induction,

since it made plants more attractive to insect herbivores. Under

natural conditions this cost would not be expressed, for although

rust infection would normally induce the SA pathway, it also

directly reduces food quality and renders plants less attractive to

Oreina beetles [18]. This side effect of artificial induction does,

however, have obvious implications for the preventive applica-

tion of chemical inducers for pest control in other systems. If this

were a common feature, pre-emptive induction against plant

diseases would simply open the door to herbivore attack. JA

induction appears to be a better candidate, since it yielded

protection against both enemies. The interactions between the

two signalling pathways are therefore not necessarily antagonistic

as they are in many examples [9,10,12], but they may need to be

investigated on a case by case basis before they can be exploited

in practical applications. This asymmetry also raises evolutionary

questions about the optimal deployment of defences and why the

SA pathway is maintained, but complete answers would require

a full investigation of the costs and specificity of the two

pathways.

These induced responses have the potential to lead to indirect

interactions between the beetles and the rust. Prior attack by

beetles would be expected to induce the JA-dependent pathway

and hence lead to negative effects on the rust. Since damage by

beetles is not necessary for the rust to become established and

nor are they implicated as vectors, the overall effect of the

beetles for the rust is therefore antagonistic. In contrast, prior

rust infection should induce SA-dependent pathways and

increase the attractiveness of the plant to beetles. Despite this,

beetles avoid infected plants in the field and larvae reared on

such plants show reduced growth rates [18]. Given the results

seen here, both these effects appear to be direct influences of

the rust, either due to death of plant tissue or release of fung-

al metabolites, rather than an indirect product of the plant

response. The role of induced responses in the ecological in-

teraction is therefore asymmetric, leading to negative effects of

one participant on the other, but playing no part in the reci-

procal interaction.

In summary, our results show that Adenostyles alliariae possesses

inducible resistance involving the jasmonic acid and salicylic acid

pathways that is capable of reducing the rate of beetle and rust

attack in the field. This provides some respite from these specialist

enemies that are undeterred by the pyrrolizidine alkaloids

produced by the plant. Similar tests have been made in only a

limited number of systems, but given that induced defence is found

even in this species that possesses constitutively expressed chemical

defence, it may well be a ubiquitous feature of higher plants.

Perhaps because of the short duration of the experiment, we were

unable to demonstrate a concrete fitness benefit. However, the

defences might be critical in repelling enemies for long enough to

allow reproduction under the time stress of the alpine environ-

ment. Finally, our finding of cross effects between the pathways

serves to highlight the complexity of plant responses to their

enemies. More research is clearly necessary before we fully

understand their role in indirect interactions between herbivores

and phytopathogens and can exploit their potential for crop

protection.

Table 2. Parametric survival analysis of the timing of leaf
beetle and rust attack.

Parameters
226
LogLik

Likelihood
ratio DF P (Chi)

leaf beetle

null 2 488.77

population 3 488.77 ,0.01 1 0.985

treatment 9 456.70 32.07 6 ,0.001

pop*treatment 15 450.66 6.03 6 0.419

rust

null 2 384.95

population 3 382.34 2.61 1 0.106

treatment 9 330.09 52.25 6 ,0.001

pop*treatment 15 320.07 10.02 6 0.124

Beetle and rust data were analysed separately, with attack treated as
‘‘mortality’’. The lines show the null model (with a single distribution location
and scale parameter) and the change in log likelihood as terms for population
(Emosson or La Fouly), treatment (seven levels), and the population by
treatment interaction were sequentially added. The final three columns provide
likelihood ratio tests of the significance of each term.
doi:10.1371/journal.pone.0019571.t002
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Supporting Information

Figure S1 Growth rate of plants under the seven
treatments at (A) Emosson and (B) La Fouly. Graphs show

mean growth rates (in cm/day) with standard errors.

(TIF)

Figure S2 Proportions of A. alliariae plants from (A)
Emosson and (B) La Fouly producing flowers. Three

groups were treated with single or combined chemical inducers of

plant defences, three others were used as their respective controls

(the treatments and corresponding control are shown in the same

colours), and finally one group was left with no manipulation (free

control in white).

(TIF)

Figure S3 Proportions of plants yet to flower over
time, at (A) Emosson and (B) La Fouly. The time axes

start on the first day of experiments (day 0) and continue linearly

to show the timing of flowering. The three induced groups of

plants are shown with dark colours, while their control groups

are paler.

(TIF)

Table S1 ANOVA on the growth rate (in cm/day) of A. alliariae

plants in two populations under the seven treatments.

(DOC)

Table S2 Quasi-likelihood analysis based on Poisson regression

of the number of leaves on plants in two populations under the

seven treatments.

(DOC)

Table S3 Logistic regression on the proportion of plants

flowering during the month of the experiment in the two

populations and under seven treatments.

(DOC)

Table S4 Parametric survival analysis of the timing of flowering.

(DOC)
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