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Summary

We were interested in the question of whether the congenital lack of B cells
actually had any influence on the development of the T cell compartment in
patients with agammaglobulinaemia. Sixteen patients with X-linked agamma-
globulinaemia (XLA) due to mutations in Btk, nine patients affected by
common variable immune deficiency (CVID) with <2% of peripheral B cells
and 20 healthy volunteers were enrolled. The T cell phenotype was deter-
mined with FACSCalibur and CellQuest Pro software. Mann–Whitney two-
tailed analysis was used for statistical analysis. The CD4 T cell memory
compartment was reduced in patients with XLA of all ages. This T cell subset
encompasses both CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cells and both
subsets were decreased significantly when compared to healthy controls:
P = 0·001 and P < 0·0001, respectively. This observation was confirmed in
patients with CVID who had <2% B cells, suggesting that not the lack of
Bruton’s tyrosine kinase but the lack of B cells is most probably the cause of
the impaired CD4 T cell maturation. We postulate that this defect is a corre-
late of the observed paucity of germinal centres in XLA. Our results support
the importance of the interplay between B and T cells in the germinal centre
for the activation of CD4 T cells in humans.
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Introduction

It has been widely accepted that CD4 T cell help is required
for B cells to produce high-affinity antibodies to protein
antigens and mature into memory cells (T cell-dependent
immune response) [1,2]. Conversely, many studies in mice
[3–6] have demonstrated that B cells play a critical role in
presenting antigen to T cells during the priming phase in
lymph nodes (LN). This interaction in the germinal centre is
mediated by co-stimulatory molecules such as B7/CD28,
CD40/CD40 ligand, OX40 ligand/OX40 and inducible
co-stimulator ligand (ICOS)/ICOS ligand [7–12].

Many studies on B cell-depleted mice (mMT mice) dem-
onstrated that both dendritic cells (DC) and B cells are
involved in CD4+ T cell activation [13–15]. In mMT mice,
where the B cell development is blocked after the pre-B cell
stage, the absence of a mature B cell compartment also
affected other parts of the immune system, such as a remark-
able reduction in thymocyte numbers and diversity [16,17],
defects within splenic DC and T cell compartments [18,19]
and the absence of Peyer’s patches [20].

Recent studies, depleting B cells from normal adult mice,
demonstrated that B cells are essential for optimal CD4+ T
cell activation, sharing this function with DC. The role of DC
is crucial when antigen levels are low, while B cells are not
required for CD8 T cell activation [21,22].

X-linked agammaglobulinaemia (XLA) is one of the most
frequent monogenetic immunodeficiency diseases in man
and is characterized by an almost complete arrest of B cell
differentiation in the bone marrow at the pre-B cell stage.
The gene defective in XLA encodes the cytoplasmic signal-
ling molecule Bruton’s tyrosin kinase (BTK) in B cells. XLA
is characterized by a marked reduction of serum immuno-
globulins of all subclasses and inability to generate specific
antibody responses. Patients have very low B cell numbers in
peripheral blood which exhibit an immature IgM pheno-
type, and an absence of B cell-dependent lymphoid tissue
[23,24]. As XLA patients lack almost all B cells in blood, this
condition represents a valuable human model of T cell evo-
lution in the absence of B cells.

We were interested in the question of whether the con-
genital lack of B cells in the periphery actually had any
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influence on the development of the T cell compartment in
patients with XLA as observed in mice. Currently there are
few and contrasting data about the role of B cells in main-
taining long-term T cell memory in humans [25–28].

Materials and methods

Patients and healthy controls

Human peripheral blood samples were taken from 13 adults
with XLA (age range 19–58 years, median age 40·3), three
children with XLA (aged 8, 11 and 11 years, respectively) and
nine subjects with common variable immune deficiency
(CVID) and B cells <2% of total lymphocyte count (five
females and four males, age range 17–61 years, median age
44·1) (Table 1). Within those nine CVID patients, one had a
mutation in transmembrane activator and CAML interactor
(TACI) (C193X), two had polymorphisms in the B cell acti-
vating receptor (BAFF) and one had a polymorphism in B
lymphocyte-induced maturation protein (BLIMP)-1. Btk
mutations were excluded in all males with CVID. All patients
were free of infection (C-reactive protein level was taken as
surrogate marker) when T cell analysis was performed.

Twenty healthy volunteers (nine females and 11 males)
were used as control subjects (age range 25–59 years, median
age 36). Healthy controls were tested repeatedly and results
were stable over time. However, repeat data on the same
subject were not included in the statistical analysis.

Informed consent was obtained from all contributing
individuals according to the declaration of Helsinki.

Antibodies and flow cytometry

Peripheral blood samples were prepared using a ‘whole
blood lyse no wash’ method with OptiLyse B lysing solution
(Beckman Coulter, Brea, CA, USA). Whole blood was cell
surface-stained with mixtures of the following antibodies at
optimal concentrations: fluorescein isothiocyanate (FITC)-
conjugated anti-CD4 and anti-CD27, phycoerythrin (PE)-
conjugated anti-CD28, anti-CD31, anti-CD25 and anti-T
cell receptor (TCR)ab, phycoerythrin cyanin 5 (PE-Cy5)-
conjugated anti-CD3, peridinin chlorophyll protein
(PerCP)-conjugated anti-CD4, allophycocyanin (APC)-
conjugated anti-CD8, anti-CD45RO and anti-CD45RA (all
obtained from Becton Dickinson, Oxford, UK), FITC-
conjugated anti-CD127 (eBioscience, San Diego, CA, USA)
and PE-conjugated anti-CXCR5 (R&D Systems, Minneapo-
lis, MN, USA). Cells were processed using four-colour acqui-
sition on a FACSCalibur (Becton Dickinson) and data
analysed using CellQuest Pro software (Becton Dickinson).

Analysis was performed by forward versus side-scatter
gating on lymphocytes in combination with gating on
CD3+ cells and was used to identify the following popula-
tions in both patients and healthy controls: CD3+ T cells,
CD3+CD4+ T helper cells, CD3+CD8+ cytotoxic T cells,

CD4+CD45RO+ memory cells, CD4+CD45RO+CXCR5+

circulating CXCR5+ memory T cells, CD4+CD45RA+ naive
cells, CD4+CD45RA+CD31+ recent thymic emigrants,
CD8+CD27+CD28- effector and CD8+CD27-CD28- late
effector cells, CD3+TCRab+CD4/8- double-negative T cells
and CD4+CD45RO+CD127lowCD25+ regulatory T cells.

Statistical analysis

Comparison between healthy volunteers and XLA or CVID
subjects, as well as between XLA and CVID patients, were
analysed using Mann–Whitney two-tailed analysis with
GraphPad Prism software. A P-value less than or equal to
0·05 was considered to be statistically significant.

Results

Most interestingly, within the CD4 T cell compartment, only
the CD4 T memory cells were reduced in patients with XLA
(Fig. 1a–d). This T cell subset encompasses both
CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cells and both
subsets obtained a significant P-value when compared
to healthy controls: P = 0·01 (Fig. 1d) and P < 0·0001
(Fig. 2c), respectively.

Despite a degree of variability within the CD3+ T cells count
(CD3 range from 464 to 3351 cells/mcl, median value 1618
cells/mcl in XLA), other subsets of the T cell compartment
were, however, generally comparable to controls; in fact, we
found no additional significant difference between XLA
patients and controls while analysing CD4+ and CD8+ T cells.

Dividing the former population in different subsets, we
found that naive CD4 T cells (CD4+CD45RA+) in XLA
patients were comparable to controls (P > 0·05) (Fig. 1a), as
well as the CD4 recent thymic emigrant numbers (P > 0·05)
(Fig. 1b).

We also analysed the number of regulatory T cells, defined
as CD127lowCD25+ cells, and this was comparable to healthy
controls (P > 0·05) (Fig. 1c).

In the peripheral blood of XLA patients, CD8 T cells were
unaffected by the lack of B cells, as we found comparable
results of total CD8 T cells (P > 0·05) as well as normal
subsets of activated CD8 T cells: CD8 effector cells
(CD8+CD27+CD28-) and late CD8 effector cells
(CD8+CD27-CD28-) (P > 0·05, respectively). Double-
negative T cells (CD3+ CD4-/CD8-) and the subset of
CD4+CD45RO+CXCR5- cells in the peripheral blood also
showed no significant difference (P > 0·05, respectively)
compared to healthy controls.

Considering that XLA is an inborn B cell defect, we asked
whether the CD4 T memory compartment was affected
in adults with XLA as a consequence of a progressive alter-
ation. Therefore we analysed the CD4+CD45RO+ and
CD4+CD45RO+CXCR5+ T cells in three children with XLA.
We found the same profound defect of these subsets com-
pared to age-matched donors (Table 1).
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Moreover, we asked whether the defect observed in the
CD4 T memory subset was due to the lack of B cells only, or
whether it was an effect of the mutation in Btk. To this end,
we analysed the T cell subsets in nine patients with CVID
who had <2% B cells (B cell count ranged from 0 to 41
cells/mcl). We found reduced numbers of CD4 T memory
cells (P = 0·01) and CD4+CD45RO+CXCR5+ (P = 0·002) in
all nine CVID subjects compared to controls (Fig. 3a,b). As

expected, no significant statistical difference was observed
between the T subsets of patients with XLA and those with
CVID, despite a considerable degree of variability within the
CD3+ T cell counts (CD3 range from 464 to 3351 cells/mcl,
with a median value of 1618 cells/mcl in XLA, and CD3
range from 397 to 5242 cells/mcl with a median value
of 1335 in CVID). Therefore, we concluded that
CD4+CD45RO+ and CD4+CD45RO+CXCR5+ cell numbers

Fig. 1. CD4 T cell subsets in X-linked

agammaglobulinaemia (XLA). (a) Naive

CD4 T cell numbers in XLA patients

(CD4+CD45RA+) and (b) the CD4 recent

thymic emigrant numbers were comparable to

healthy controls (P > 0·05). We also analysed (c)

the number of regulatory T cells, defined as

CD127lowCD25+ cells, and obtained comparable

results between cohorts (P > 0·05). Conversely,

the CD4 T memory compartment

(CD4+CD45RO+) was reduced significantly

(P = 0·001) (d).
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were comparable in XLA and CVID (P > 0·05) (Fig. 3c,d),
even though the percentages of these subsets were much
reduced in XLA (P = 0·02 and P = 0·001, respectively).

Discussion

While DC prime naive CD4+ T cells, B cells are thought to
control CD4+ T cell expansion after their initial activation by
DC [29]. However, many studies on mice with a congenital
lack of B cells at birth (mMT mice), as well as studies deplet-
ing B cells from normal adult mice, demonstrated that B cells
are essential for optimal CD4+ T cell activation. They share
this function with DC, and their role is crucial when antigen
levels are low, while B cells are not required for CD8 T cell
activation [13–16].

A human model to study T cell development in the
absence of B cells is represented by recent studies on patients
after treatment with the anti-CD20 antibody rituximab,
showing some effects on the T cell compartment. In particu-
lar, a change in the T helper type 1 (Th1)/Th2 balance of
CD4+ T cells skewing towards Th1 [30,31], but without sig-
nificant changes in CD4+CD45RA and CD4+CD45RO
subsets [31], and an increase of CD4+CD25+ and CD25bright T
cells [32] were found in several autoimmune diseases treated
with the anti-CD20 monoclonal antibody rituximab.
However, this transient B cell depletion might not effect T
cell development profoundly.

Bruton’s agammaglobulinaemia (X-linked agamma-
globulinaemia, XLA) is another model to study T cell
development in the absence of B cells, as its genetic cause,
the mutation in Bruton’s tyrosine kinase (Btk), blocks
the maturation of B cells at the pre-B stage leading to

peripheral B cell numbers of <1% and a consecutive
agammaglobulinaemia.

In addition to the B cell lineage, Btk is also expressed in the
myeloid lineage [33,34]. In recent years, several lines of evi-
dence in mice have indicated that Btk plays a significant role
at multiple points in the development and function of both
macrophages and neutrophils, and that its absence results in
compromised inflammatory responses in vivo [35–37].
Moreover, mast cell activation through immunoglobulin E
receptors appears to be dependent on Btk function [38–40].
Some platelet responses also appear to involve Btk [41,42].

As XLA patients represent an interesting congenital
human model of B cell depletion, we asked whether the
absence of B cells interferes with the CD4 T cell differ-
entiation in humans as described in mice [13–16]. We found
that the T cell compartment was intact, except for
CD4+CD45RO- T cells which were reduced significantly but
not absent in XLA patients.

There are contrasting data on T cell memory in XLA
patients, and the conditions required to maintain this T cell
memory pool are still subject of controversy. On one hand,
Plebani et al. showed normal T cell proliferation in vitro and
cytokine production in response to either mitogens or
tetanus toxoid (TT) in XLA patients up to 6 months after a
TT booster immunization [26]; moreover, a good in vitro T
cell response to HBV was demonstrated in nine XLA patients
up to 24 months after vaccination [27]. On the other hand,
Crockard et al. reported an impaired delayed cutaneous
hypersensitivity reaction in XLA patients [25], and recently
an impaired maintenance of T cell memory to Neisseria men-
ingitidis was shown in patients with XLA and CD40L defi-
ciency [28]. These results in particular confirm that the

Fig. 3. Common variable immune deficiency

(CVID) without B cells: defective CD4 T

memory compartment. Reduced (a)

CD4+CD45RO+ and (b) CD4+CD45RO+CXCR5+

T cell numbers were observed in CVID patients

without B cells when compared to healthy

controls (HC) (P = 0·01 and P = 0·002,

respectively). Conversely, no significant

difference was found between the T cell subsets

of subjects with X-linked

agammaglobulinaemia (XLA) and patients with

CVID without B cells. In particular (c)

CD4+CD45RO+ and (d) CD4+CD45RO+CXCR5+

cell numbers were comparable (P > 0·05).
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mucosa-associated T memory compartment is affected,
showing the importance of the pathogen entrance in the
maintenance of long-term memory. This might explain why
we found a reduction but not a complete lack in the T cell
memory pool.

Moreover, we found a significant depletion of a
CD4+CD45RO+CXCR5+ T cells. This population has been
described as circulating CXCR5+ memory T cells, which
usually represent 5–15% of CD4+CD45RO+ T cells. The
origin of these cells is still debated. It has been suggested that
they derive from germinal centre T follicular helper cells
(TFH) and that they correlate with the presence of germinal
centres [43–45]. TFH are activated CD4 T cells with
up-regulated CXCR5 which attracts them into the
germinal centre, where they provide cognate help for B cells
[46–48].

At this point we asked whether the lack of cognate B–T cell
interaction interferes with the maturation of CD4 T cell
compartment or whether the Btk mutation was the cause of
the described results per se. We analysed the T cell compart-
ment of nine subjects with CVID and fewer than 2% periph-
eral B cells, and we found no significant difference in the
number of CD4+CD45RO+ or CD4+CD45RO+CXCR5+ T
cells when compared to the XLA cohort. Therefore, we con-
cluded that a lack of Btk itself is most probably not the cause
of the impaired CD4 T cell subset maturation.

Moreover, we assume that the severe reduction of circu-
lating CXCR5+ memory T cells described in XLA correlates
with an important decrease of TFH cells and the lack of
germinal centre formation in our patients, as described in
mice [43]. In fact, the lack of germinal centre in lymph nodes
has already been documented in XLA subjects [49,50]. Inter-
estingly, TFH cells were also reduced strongly in ICOS-
deficient and CD40L-deficient patients [44], in whom
germinal centre formation is also impaired severely. This
suggests that circulating CD4+CD45RO+CXCR5+ T cells
depend on the presence of B cells and co-stimulatory signals
via ICOS and CD40. Even though this might occur in ger-
minal centre reaction, the origin of circulating CXCR5+ T
cells remains unknown.

In conclusion, our results support the importance of the
interaction between B and T cells for the differentiation of
memory CD4 T cells in humans, as demonstrated by reduced
peripheral CD4+CD45RO+ T cells and circulating CXCR5+

memory T cells in XLA subjects, and CVID patients without
B cells.
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