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ABSTRACT

Motivation: Network-centered studies in systems biology attempt
to integrate the topological properties of biological networks with
experimental data in order to make predictions and posit hypotheses.
For any topology-based prediction, it is necessary to first assess
the significance of the analyzed property in a biologically meaningful
context. Therefore, devising network null models, carefully tailored to
the topological and biochemical constraints imposed on the network,
remains an important computational problem.
Results: We first review the shortcomings of the existing
generic sampling scheme—switch randomization—and explain its
unsuitability for application to metabolic networks. We then devise a
novel polynomial-time algorithm for randomizing metabolic networks
under the (bio)chemical constraint of mass balance. The tractability
of our method follows from the concept of mass equivalence classes,
defined on the representation of compounds in the vector space
over chemical elements. We finally demonstrate the uniformity of
the proposed method on seven genome-scale metabolic networks,
and empirically validate the theoretical findings. The proposed
method allows a biologically meaningful estimation of significance
for metabolic network properties.
Contact: basler@mpimp-golm.mpg.de; nikoloski@mpimp-golm.mpg.de
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The advances in omics technologies and algorithmic techniques
for analysis of high-throughput data have placed network-based
integrative studies in the focus of systems biology (Albert, 2005;
Yamada and Bork, 2009). The promise of network analyses lies in
the possibility to devise genome-scale representations of biological
systems for predictive analyses. However, the statistical significance
of any prediction must be validated in a biologically meaningful
context using an appropriate null model.

The seminal work of (Barabási and Albert, 1999) directed
complex networks research toward revealing the unifying properties
of biological networks, starting from metabolic (Jeong et al.,
2000) to gene regulatory (Shen-Orr et al., 2002) to protein–protein
networks (Maslov and Sneppen, 2002) and their integrated variants
(Yamada and Bork, 2009). Despite the identification of simple
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mechanisms by which these networks may arise and evolve, such
as the preferential attachment of newly added nodes (representing
genes, proteins, reactions or metabolites) to already highly
connected ones, the advantage of such approaches to answering
biological questions remains debatable.

Nevertheless, this direction in network research has resulted in the
discovery of salient properties of biological networks, i.e. properties
which show similar trends for a wide variety of networks from
different cells, tissues and species. Some of these properties include:
scale-free (i.e. power-law) degree distribution, large clustering
coefficient, small average path length, degree–degree correlation,
different behavior of various centrality measures and the distribution
and overrepresentation of subnetworks, known as motifs (Barabási
and Oltvai, 2004; Milo et al., 2002).

The studies following the work of Barabási and Albert have
attempted to relate the salient properties of biological networks to
their functionality (Albert and Albert, 2004; Jeong et al., 2001; Ma
and Zeng, 2003; Marr et al., 2007; Papin et al., 2005; Stuart et al.,
2003). However, it is often the case that the detection of novel salient
properties of complex biological networks and determination of their
statistical significance is based on a generic null model, which may
result in misleading conclusions and, consequently, in inappropriate
biological reasoning (Artzy-Randrup et al., 2004; Bernhardsson and
Minnhagen, 2010).

Network null models are essential for establishing the significance
of any prediction obtained from a network representation of a
biological system. A randomization procedure allows for sampling
from the (usually large) space of networks from a null model, and
for estimating the statistical significance empirically. A P-value
of a given property is usually calculated based on the following
procedure: (i) determine the chosen property from an investigated
biological network, (ii) sample a large number of random networks
which have a similar structure to that of the analyzed network
and (iii) estimate the mean and variance of the property from
the simulated networks to calculate a z-score and P-value under
the assumption of normal distribution. Without this assumption, in
principle, step (iii) requires determining the distribution of values
for the property under the considered network null model.

Clearly, the P-value of a property strongly depends on the
sampling procedure and structure of the network null model.
Therefore, any network-based analysis is prone to detecting
statistically significant properties due to an ill-posed null model
(Artzy-Randrup et al., 2004).

Finally, a null model strongly and ultimately depends on the
type of analyzed network. For instance, gene regulatory networks
include directionality, while protein–protein interaction networks
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are undirected; signal transduction and metabolic networks are
directed hypergraphs (representable as bipartite graphs) (Klamt
et al., 2009), whereas metabolic networks include stoichiometry
and biologically meaningful node labels (representing chemical
structure). Thus, a common randomization procedure, which
samples from a generic network null model, is unlikely to resolve the
problem of relating the properties of different classes of networks
to their biological function.

Despite these observations, many network-based studies e.g.
(Guimera et al., 2006; Maslov and Sneppen, 2002; Milo et al., 2002;
Sales-Pardo et al., 2007) do rely on a common reference frame for
all biological networks, called switch randomization. According to
switch randomization, a randomized network is obtained from a
given network by shuffling its edges while ensuring that the number
of (incoming and outgoing) edges of every node remains unchanged.
This can be achieved by the switch operation, whereby a randomly
chosen pair of edges, (u,v) and (x,y), is replaced by two other
edges, (u,y) and (x,v), provided that they do not already exist in the
network. Switch randomization ensures that the probability of two
nodes being connected is effectively independent of their distance in
the original network. However, there are contradicting results with
regard to whether the generated networks are sampled uniformly
from the ensemble of networks with preserved degree distribution
(Artzy-Randrup and Stone, 2005; Milo et al., 2003; Picard et al.,
2008).

The underlying assumption of switch randomization is that
the distribution of incoming and outgoing edges sufficiently
characterizes the constraints under which networks of the analyzed
type evolve. While this assumption may be valid on, e.g. gene
regulatory networks, where the number of regulatory targets of
a gene is a principle constraint, completely different constraints
permeate the evolution of metabolic networks. For illustration,
consider the following two metabolic reactions: glucose isomerase
(glucose → fructose) and maleate isomerase (maleate → fumarate).
After applying switch randomization, we may obtain: glucose →
fumarate and maleate → fructose, which is chemically infeasible due
to the violation of the preservation of mass, since the corresponding
chemical equations are C6H12O6 →C4H2O4 and C4H2O4 →
C6H12O6. In the metabolic networks we analyzed, 99.8% of the
reactions are unbalanced after applying switch randomization. By
disregarding this fundamental principle, the generated networks are
able to consume and produce matter out of nothing, yielding them
incomparable to metabolic networks.

Establishing the statistical significance of a network property,
mediated through a common, yet inappropriate reference frame, may
result in the erroneous detection of significant properties, leading
to questionable biological hypotheses. Therefore, the techniques
for establishing suitable null models and randomization procedures
need to be developed further, before making any statements about
their biological importance. Recent work of (Picard et al., 2008) on
estimating the overrepresentation of motifs is a first step toward
a network null model tailored to a particular set of real-world
biological networks (therein, protein–protein interaction networks).

Motivated by the shortcomings of the switch randomization
and the lack of a network null model for metabolic networks
which includes directionality, topological salient properties and
biochemical constraints (e.g. reaction degrees and preservation of
mass in biochemical reactions), here we present a method for
randomizing metabolic networks. Our randomization procedure is

based on the notion of mass equivalence classes for compounds
and can be used to estimate the significance of a given topological
property with respect to its importance in chemically constrained
biological systems. Moreover, we show that our procedure samples
a randomized network uniformly at random, which is another
important requirement for any network sampling scheme. For the
empirical validation of our results, we use the metabolic networks
of seven organisms from all kingdoms of life: (i) Bacillus subtilis
(Oh et al., 2007), (ii) Saccharomyces cerevisiae (Herrgård et al.,
2008), (iii) Escherichia coli from iAF1260 (Feist et al., 2007) and
(iv) EcoCyc (Keseler et al., 2009), (v) Chlamydomonas reinhardtii
(May et al., 2008), (vi) Arabidopsis thaliana (Swarbreck et al., 2008)
and (vii) Homo sapiens (Ma et al., 2007) (network properties are
shown in Supplementary Table S1).

2 APPROACH
A metabolic network is represented as a directed bipartite graph
G= (Vc ∪Vr ,E), where Vc is the set of compound nodes, Vr the
set of reaction nodes and E ⊆ (Vc ×Vr )∪(Vr ×Vc) is the set of
directed edges denoting substrate–reaction and product–reaction
relationships. For a compound c∈Vc, we denote by mc ∈N

n its mass
vector, i.e. the vector representation of c over n chemical elements.
For instance, one may consider only the six most abundant elements
in biological systems (Dobson, 2004): carbon (C), hydrogen (H),
nitrogen (N), oxygen (O), phosphorus (P) and sulfur (S). The mass
vector of water is then mH2O = (0,2,0,1,0,0)·(C,H,N,O,P,S)T .
For a given reaction r, rin ={c∈Vc | (c,r)∈E} denotes the set of
substrates, and rout ={c∈Vc | (r,c)∈E}, the set of products. We
abbreviate the expression c∈rin ∪rout by c∈r, and write d(r)=
|rin|+|rout| for the degree of r (we omit the definition of compound
degree, as it is not required for our purpose). Reversible reactions
are represented by one reaction node for each direction: r+ and r−,
where r+

in =r−
out and r+

out =r−
in . Furthermore, let sc,r ∈N

+ be the
stoichiometric coefficient of a substrate (product) c of reaction r.
A reaction is mass balanced, i.e. chemically feasible with respect
to the conservation of mass, if and only if the sum of its substrate
atoms equals the sum of its product atoms:∑

c∈rin

sc,r ·mc =
∑

k∈rout

sk,r ·mk . (1)

In order to uniformly randomize a network while preserving mass
balance, each possible mass-balanced network has to be generated
with equal probability. This requires enumeration of all possible
sets of substrates and products, for which Equation (1) is satisfied.
A special case of this problem is to find all possible partitions of
a set of integers, which sum up to 0 (which, in turn, is a special
case of the Knapsack problem, see (Horowitz and Sahni, 1974). As
a consequence, the number of possible mass-balanced networks is
at least exponential in the number of compounds.

We approach the complexity of the general problem by restricting
the set of possible solutions to Equation (1) 2-fold: (i) the in-
and out-degrees of reactions are preserved and (ii) the substitution
of compounds is limited to certain subsets, as detailed below,
which allows to easily find a solution for Equation (1). The first
restriction is in line with the observation that reaction degrees are
biochemically constrained by the number of interacting compounds.
The second allows to divide the randomization procedure into a
precalculation step and an actual randomization. As a result, the
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Table 1. Example of a mass equivalence class for individual compounds
and their mass vectors

Compound C H N O P S

Allose 6 12 0 6 0 0
Alpha-d-galactose 6 12 0 6 0 0
Alpha-glucose 6 12 0 6 0 0
Arabinose 5 10 0 5 0 0
Cpc-10774 5 10 0 5 0 0
Cpd0-1108 5 10 0 5 0 0
Cpd0-1110 5 10 0 5 0 0
D-arabinose 5 10 0 5 0 0
D-ribulose 5 10 0 5 0 0
D-xylulose 5 10 0 5 0 0
Dihydroxyacetone 3 6 0 3 0 0
Formaldehyde 1 2 0 1 0 0
Galactose 6 12 0 6 0 0
Glc 6 12 0 6 0 0
Glycolaldehyde 2 4 0 2 0 0
L-lyxose 5 10 0 5 0 0
L-ribulose 5 10 0 5 0 0
L-xylulose 5 10 0 5 0 0
Mannose 6 12 0 6 0 0
Myo-inositol 6 12 0 6 0 0
Xylose 5 10 0 5 0 0

Each mass vector is a multiple of a scalar and the basis vector (1,2,0,1,0,0).

generation of a large set of mass-balanced randomized networks
becomes computationally feasible.

We now move to the description of our randomization procedure
including the above-mentioned restrictions. Our procedure depends
on determining the classes of linearly dependent mass vectors. Two
compounds c,k ∈Vc will be called mass equivalent if and only if
their respective mass vectors mc and mk are linearly dependent.
Moreover, two pairs of compounds, denoted by (c,k) and (c′,k′),
will be called mass equivalent if and only if the corresponding sums
of mass vectors mc +mk and mc′ +mk′ are linearly dependent. Note
that mass equivalence is an equivalence relation, which follows from
the reflexivity, symmetry and transitivity of linear dependence for
vectors in N

n. As a result, the mass equivalence relation partitions
the set of compounds and pairs of compounds (see Tables 1
and 2 for examples, and Supplementary Fig. S2 for the class size
distributions).

The inclusion of linear-dependent triplets of mass vectors
is straightforward and may further increase the sample space.
However, due to the computational restrictions imposed by the size
of genome-scale metabolic networks, we rely only on substitutions
of individual and pairs of compounds. Finally, our approach is in
line with the observations that some fundamental properties should
be fixed while carrying out the randomization—here, these are the
degrees of the reaction nodes and mass balance.

3 METHODS
In this section, we present the details of the proposed algorithm for
randomizing metabolic networks together with its computational complexity,
and show the main result about the uniformity of the method for network
randomization.

Table 2. Example of a mass equivalence class for pairs of compounds and
their mass vectors

Compound pair C H N O P S

2-Ketoglutarate 5 4 0 5 0 0
D-beta-D-heptose-17-diphosphate 7 12 0 13 2 0

2-pg 3 4 0 7 1 0
Methyl-glyoxal 3 4 0 2 0 0

3-p-hydroxypyruvate 3 2 0 7 1 0
Acetol 3 6 0 2 0 0

3-p-hydroxypyruvate 3 2 0 7 1 0
Hydroxypropanal 3 6 0 2 0 0

3-p-hydroxypyruvate 3 2 0 7 1 0
Lactald 3 6 0 2 0 0

3OH-4P-OH-alpha-ketobutyrate 4 4 0 8 1 0
Acetald 2 4 0 1 0 0

Ascorbate 6 6 0 6 0 0
Fructose-16-diphosphate 6 10 0 12 2 0

Ascorbate 6 6 0 6 0 0
Tagatose-1-6-diphosphate 6 10 0 12 2 0

Cpd0-1063 9 14 0 12 1 0
Phospho-enol-pyruvate 3 2 0 6 1 0

Formate 1 1 0 2 0 0
Cpd-10551 5 7 0 7 1 0

Dihydroxy-butanone-p 4 7 0 6 1 0
Glyox 2 1 0 3 0 0

Dihydroxyacetone 3 6 0 3 0 0
Phospho-enol-pyruvate 3 2 0 6 1 0

Dihydroxy-acetone-phosphate 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0

Gap 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0

G3P 3 4 0 7 1 0
Methyl-glyoxal 3 4 0 2 0 0

Hydrogen-molecule 0 2 0 0 0 0
L-ascorbate-6-phosphate 6 6 0 9 1 0

L-glyceraldehyde-3-phosphate 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0

OH-pyr 3 3 0 4 0 0
Propionyl-P 3 5 0 5 1 0

Propionyl-P 3 5 0 5 1 0
Tartronate-S-ald 3 3 0 4 0 0

The sum of mass vectors for each pair is a multiple of a scalar and the basis vector
(6,8,0,9,1,0).
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3.1 Randomization algorithm
The algorithm consists of two steps: in the first step, for a given metabolic
network G, the mass equivalence classes are generated from the set of
compounds Vc(G). This step is to be executed only once for all subsequent
randomizations of the same network. In the second step, the reactions
of G are randomized while preserving mass balance. To randomize a
reaction, chosen uniformly at random from Vr (G), substrates and products
are replaced by randomly chosen substitutes from their corresponding mass
equivalence classes. In addition, this substitution entails recalculation of the
stoichiometric coefficients to guarantee the preservation of mass balance. The
output from this step is a network in which stoichiometric coefficients are
changed, edges are replaced and, consequently, the degrees of the compounds
are altered, while the reaction degrees and mass balance of all reactions are
preserved (see Supplementary Fig. S1 for an overview and comparison to
switch randomization).

Let σ(c) denote the mass equivalence class of a compound c and σ(c,k),
the mass equivalence class of a pair of compounds (c,k). Given a reaction r,
a substrate (product) c of r will be called substitutable in r by a compound
c′ ∈Vc, denoted by c∼r c′, if and only if the following two conditions are
satisfied:

• (S1) the compounds are mass equivalent, i.e. c′ ∈σ(c) and

• (S2) the substitute c′ is not already a substrate (product) of r.

Similarly, we define a pair of substrates (products) (c,k)∈ (rin ×rin)∪
(rout ×rout), c �=k, to be substitutable in r by a pair of compounds (c′,k′),
c′ �=k′, denoted by (c,k)∼r (c′,k′), if and only if the following three
conditions hold:

• (P1) (c,k) is mass equivalent to (c′,k′), i.e. (c′,k′)∈σ(c,k),

• (P2) neither c′ nor k′ is already a substrate (product) of r and

• (P3) there are stoichiometric coefficients sl,r′ ∈N
+,l∈r′ for the new

reaction r′, such that Equation (1) is satisfied.

Note that substitutability, in contrast to mass equivalence, is defined over
substrates and products of a reaction, such that a substitution only affects
either the substrates or the products of one reaction. In addition, conditions
(S2) and (P2) imply c′ �=c, such that each substitution results in a reaction
r′ �=r (i.e. substitutability is irreflexive).

In order to choose a particular substitution for a given reaction r uniformly
at random, the set of all possible substitutions for r has to be determined. Let
the set of substitutions of individual compounds be denoted by �s(r), and the
set of substitutions of pairs of compounds be denoted by �p(r). According
to the above definitions, these sets are then given by

�s(r)={(c,c′) |c∼r c′, c∈r}, (2)

�p(r)={(c,k,c′,k′) | (c,k)∼r (c′,k′),

(c,k)∈ (rin ×rin)∪(rout ×rout)},
where c,k,c′,k′ ∈Vc. The combined set of all possible substitutions for r is
then given by �(r)=�s(r)∪�p(r). Note that substitutability is symmetric,
i.e. any substitution can be reversed, as we can always replace the substitutes
and their stoichiometric coefficients by those of the original reaction.

Proposition 3.1. For a given reaction r, each substitution results in a unique
reaction.

Proof. Suppose the substitutions of individual compounds (c,c′) and
(k,k′) in r both result in the same reaction r′. Then, c′ ∈r′ and k′ ∈r′ imply
that c′ ∈r and k′ ∈r, which contradicts condition (S2). By condition (P2),
this holds analogously for the substitution of pairs of compounds. Suppose
the substitution of individual compounds (c,c′) results in the same reaction
r′ as the substitution of a pair of compounds (k,l,k′,l′). Then, either k′ ∈r
or l′ ∈r, both contradicting condition (P2).

In the following, we analyze the algorithm for randomizing metabolic
networks: For a reaction r, chosen uniformly at random, the set of possible

substitutions for all substrates, products and pairs of substrates or products
in r is generated, in order to then choose one substitution uniformly at
random (see Algorithm). The stoichiometric coefficients in r are recalculated
(line 6) by finding positive integers sl,r ∈N

+,l∈r satisfying Equation (1).
For the substitution of an individual compound (c,c′), such coefficients can
always be found, due to the linear dependence of the mass vectors: sc′,r is
obtained as 1

mc′
·sc,rmc. If sc′,r is a non-integer a/b, then all coefficients of

r are multiplied by b. Recalculation of the stoichiometric coefficients for
the substitution of pairs of compounds requires solving a system of n linear
equations with two unknowns. In case there is no solution, the substitution
is not carried out. Table 3 shows examples of possible substitutions (details
of the algorithms can be found in the Supplementary Material).

Algorithm: Mass-balanced randomization of metabolic networks

Input:
Mass-balanced metabolic network, G= (Vc ∪Vr ,E),
Mass equivalence classes, σ =σ(c)∪σ(c,k), (c,k)∈Vc ×Vc, c �=k,
Number of iterations, t ∈N

+
Output:
Randomized mass balanced network
Repeat t times:

1 Choose a reaction r ∈Vr uniformly at random
2 Determine the set of possible substitutions �(r) from σ

3 Choose a substitution d ∈�(r) with probability 1/|�(r)|
4 if d is an individual substitution (c,c′) then

if c is a substrate of r then
replace the edge (c,r) by (c′,r)

else
replace the edge (r,c) by (r,c′)

5 else if d is a pair substitution (c,k,c′,k′) then
if c,k are substrates of r then

replace the edges (c,r) and (k,r) by (c′,r) and (k′,r)

else
replace the edges (r,c) and (r,k) by (r,c′) and (r,k′)

6 Recalculate the stoichiometric coefficient(s) in r

Note that the number of reactions in G as well as the in- and out-degrees of
perturbed reactions are not changed by the algorithm. Since both directions
of a reversible reaction are considered independently, reversibilities can
optionally easily be preserved by choosing only forward reactions in line 1,
and updating the reversed reaction accordingly after line 6.

Due to the consideration of all pairs of compounds, the time complexity
for precalculating the mass equivalence classes is in O(|Vc|2). However, this
step is executed only once for any (usually large) number of subsequent
randomizations of the same network.

For the randomization procedure, choosing a reaction and a substitution
uniformly at random (lines 1 and 3) and replacing edges (lines 4 and 5) can
be performed in constant time. Determining all possible substitutions for a
reaction r (line 2) requires retrieving the precalculated mass equivalence class
of each substrate, product and each pair of substrates or products, which is in
O(d(r)2). Then, for each mass equivalent compound or pair of compounds,
one has to determine whether they are already substrates or products in r,
and whether there exist stoichiometric coefficients satisfying Equation (1), in
order to obtain �(r). The latter requires solving a system of n linear equations
with two unknowns, which is in O(n), such that the solution can be used in
line 6. Hence, line 2 is in O(d(r)2 ·σmax ·n), where σmax is the size of the
largest mass equivalence class, and line 6 can be executed in constant time.
Therefore, the algorithm has time complexity in O(t ·(�2 ·σmax ·n)), where
� is the maximum reaction degree of G. Note that � and n are bounded by
small constants: �≤17, n≤23 and σmax ≤780 in the investigated networks.

3.2 Uniformity of sampling
Any algorithm for randomizing a combinatorial structure should guarantee
that every random instance is generated with equal probability. In other
words, the probability distribution over the space of possible combinatorial
structures must converge to the uniform probability distribution. Otherwise,
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Table 3. Phosphoenolpyruvate-glycerone phosphotransferase reaction in E.coli (EcoCyc) (row 1) and examples of possible substitutions for individual
substrates (rows 2 and 3) and pairs of substrates (rows 4 and 5)

Dihydroxyacetone + Phospho-enol-pyruvate → Dihydroxy-acetone-phosphate + Pyruvate
C3 H6 O3 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3

3 Formaldehyde + Phospho-enol-pyruvate → Dihydroxy-acetone-phosphate + Pyruvate
C1 H2 O1 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3

3 Glycolaldehyde + 2 Phospho-enol-pyruvate → 2 Dihydroxy-acetone-phosphate + 2 Pyruvate
C2 H4 O2 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3

G3P + Methyl-glyoxal → Dihydroxy-acetone-phosphate + Pyruvate
C3 H4 O7 P1 C3 H4 O2 C3 H5 O6 P1 C3 H3 O3

Ascorbate + Fructose-16-diphosphate → 2 Dihydroxy-acetone-phosphate + 2 Pyruvate
C6 H6 O6 C6 H10 O12 P2 C3 H5 O6 P1 C3 H3 O3

The mass vectors are given below the compound names, modified stoichiometric coefficients and compounds are shown in bold.

the properties of the sample space would be biased toward those of more
frequently generated networks, and, consequently, the significance assigned
to any property would be questionable. Here, we show that our proposed
algorithm for randomizing metabolic networks indeed has this property
on the class of metabolic networks randomized via substitutions of single
compounds and pairs of compounds (with mild assumption for the latter).

To establish this result, we rely on a transition graph �G, in which a
node represents a network that can be generated by our algorithm, and two
nodes are connected by an edge (u,v), if there exists a substitution in u
generating v. The given metabolic network to be randomized is denoted by
G0 ∈V (�G). The set of networks obtained after applying t substitutions to G0

is denoted by �t ={Gt
i | i=1,...m,m∈N

+}. Note that, due to the symmetry of
the substitutability relation, �G is undirected (i.e. each edge corresponding to
a substitution can be traversed in both directions). Moreover, since each node
in the transition graph �G corresponds to a network obtained after applying
t substitutions starting from G0, the transition graph �G is connected.

Applying the randomization algorithm is equivalent to a random walk on
�G, starting at G0. Therefore, we use the existing results from the theory of
random walks on graphs. The classical theorem for uniformity of random
walks on graphs (see (Lovasz, 1993)) states that, for any non-bipartite regular
transition graph �G, a random walk using transition probabilities, 1/d(u),
u∈V (�G), is stationary, i.e. the probabilities for stopping the random walk at
a node after any number t of transitions do not change with t →∞. Therefore,
to prove the uniformity, we show that �G is (almost) regular, i.e. the degree
distribution of �G is (almost) uniform.

We first show the uniformity of our method if only individual compounds
are allowed to be substituted. Given a metabolic network G0, for any reaction
r ∈Vr the number of possible substitutions of individual compounds in r
is |�s(r)| [see Equation (2)]. From Proposition 3.1, it follows that each
substitution corresponds to a unique edge in �G. Therefore, the degree of
G0 in the transition graph is

ds(G0)=
∑

r∈Vr (G0)

|�s(r)|. (3)

Theorem 1. If only individual compounds are allowed to be substituted,
then �G is regular.

Proof. To establish the claim, we need to show that d(G0)=d(G),G∈�t ,
for any number of substitutions t ∈N. Note that the number of reactions
|Vr | and their degrees remain unchanged. Therefore, it suffices to show that
the number of possible substitutions for a reaction r does not change after
substituting a compound.

Let x be a substrate (product) of a reaction r and let x∼r y, i.e. y∈σ(x) and
y is not already a substrate (product) of r. The symmetry of mass equivalence
implies x∈σ(y). The possible substitutions for x are then the same as the
possible substitutions for y after replacing x in r by y, except that x∼r y is
replaced by y∼r′ x in the new reaction r′. For any substrate (product) z �=x,

if z∈σ(x), then the transitivity of mass equivalence implies z∈σ(y). Thus,
the substitutions for z do not change, except that z∼r y is replaced by z∼r′ x
[as y is a substrate (product) of the new reaction r′]. On the other hand, if
z /∈σ(x), then z /∈σ(y) implies that the substitutions for z do not change after
substituting x in r by y. Thus, we have d(G0)=d(G), and the sampling is
uniform.

The more general case, on which our algorithm is based, considers
substitutions of both individual compounds and pairs of compounds. In
this case, due to changes after applying a substitution, �G may not be
regular. To illustrate this point, for a reaction r, if a substrate c is substituted
by a compound x, we may subsequently substitute the pair of substrates
(x,k), where k is any other substrate of r. The possible substitutions
for (c,k) in r, {(c,k,c′,k′) | (c,k)∼r (c′,k′)}, may be different from the
possible substitutions for (x,k) in the new reaction r′, {(x,k,x′,k′′) | (x,k)∼r′
(x′,k′′)}. Similarly, the possible substitutions for individual compounds may
change after substituting a pair of compounds. Consequently, the sizes of
substitutability classes �s(r) and �p(r) may differ from the sizes of �s(r′)
and �p(r′), so that two nodes in �G may have different degrees.

In the following, we analyze the probability that the algorithm samples
nodes from �G almost uniformly at random. Let us consider a random walk
{G0,G1,...,Gt} on �G, starting at node G0. Let Yi be the non-negative
random variable whose value is the absolute value of difference of degrees
between two neighbors Gi and Gi+1 on the walk, i.e. Yi =|d(Gi)−d(Gi+1)|,
0≤ i< t. We assume that all Yi are independent and identically distributed
variables, with probability density function P(Yi =k)=P(Y =k)=Ck−γ for
a positive constant C. Since all networks and the number of possible
substitutions are finite, this distribution exhibits a finite mean.

A sequence of random variables X0,X1,...,Xt , where the expected value
of Xt is determined by Xt−1, is called a martingale (Williams, 1991). Then,
the sequence Xj =∑j−1

k=0 Yk +∑t−1
k=j E [Yk], 0≤ j≤ t, forms a martingale, and,

in particular, X0 =E
[∑t−1

k=0 Yk

]
and Xt =Y0 +Y1 + ...Yt−1 (Chung and Lu,

2006). Furthermore, let Bj denote the event that |Xj −Xj+1|>cj , cj >0,
0≤ j< t; then, P(Bj)=P(|E[Yj]−Yj|>cj) is the probability that the absolute
difference between expected and actual degree changes in step j of the
random walk on �G exceeds some cj >0. By a result of (Chung and Lu,
2003) (Theorem 8.3), the following generalized Azuma inequality holds for
the probability that degree changes differ at least by λ from the expected
degree changes after t steps:

P
(|Xt −X0|≥λ

)≤exp

(
−λ2

2
∑t

j=1 c2
j

)
+P(B), (4)

where B=Bt .
Let δ denote the expected degree difference of adjacent nodes, i.e.

δ=E[Y ]=E
[ |d(Gi)−d(Gi+1)|], 0≤ i< t. Given that P(Y =k)=Ck−γ , the

cumulative probability distribution is given by P(Y >k)=C′k1−γ (Li
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Fig. 1. (A) Distribution of absolute differences in degrees between neighbors, sampled by a random walk on the transition graph of E.coli (EcoCyc). The
dashed line shows the power-law fit with a scaling coefficient of γ ≈1.87. The mean difference is δ≈7.14 (see Supplementary Fig. S3 for the remaining
organisms). (B) Sojourn frequencies of a random walk on the transition graph of the TCA cycle (equivalent to a randomization of the TCA cycle). For 105

steps, the SD of sojourn frequencies is σ ≈10.8, yielding a coefficient of variation of 0.113 (grey line); after 106 steps, we have σ ≈34.6 and a coefficient of
variation of 0.038 (black line), confirming that the probability distribution over the 1024 networks converges toward the uniform distribution.

et al., 2005). Therefore, the probability that the degree difference between
neighbors is larger than the expected difference can be expressed as P(B)=
P(Y >δ)∼δ1−γ . We then have the following claim:

Theorem 2. If the distribution of differences in degrees between neighboring
nodes follows a power-law P(Y =k)∼k−γ and P

(|Xj −Xj+1|>δ
)∼δ1−γ ,

δ=E[Y ], then the probability that the accumulated degree difference between
any two nodes, sampled by a random walk, exceeds the number of steps t is
bounded by:

P
(|Xt −X0|≥ t

)≤exp

( −t

2δ2

)
+δ1−γ .

Proof. By invoking Equation (4) with cj =δ, 2
∑t

j=1 c2
j =2t ·δ2, we get the

probability that, after t steps, the accumulated difference between expected
and actual degree differences is at least t:

P
(|Xt −X0|≥ t

)≤exp

( −t2

2t ·δ2

)
+δ1−γ .

As Xt and X0 are the sums of absolute differences in degrees, the above
expression represents the maximum difference in degrees between any two
nodes reachable within t steps, i.e. |Xt −X0|≥|d(Gt)−d(G0)|.

The proof relies on the assumption that the distribution of differences in
degrees of neighboring nodes in �G follows a power-law distribution. This
is confirmed in Figure 1A for E.coli (see Supplementary Fig. S3 for the
remaining organisms).

Let d(�G) denote the average degree of �G. We call �G almost regular
if, for any two nodes G,H ∈V (�G), the following holds:

|d(G)−d(H)|
d(�G)

≤1.

We then have the following corollary.

Corollary. The probability that the algorithm samples nodes from �G

almost uniformly at random is bounded by:

P

( |Xt −X0|
d(�G)

<1

)
≥1−exp

(
−d(�G)2

2t ·δ2

)
−δ1−γ .

Proof. Since |Xj −Xj+1|=|E[Yj]−Yj|≤|d(Gj)−d(Gj+1)|+
E
[|d(Gj)−d(Gj+1)|], from Equation (4) we can establish the probability

that |Xt −X0|≥λ with λ=d(�G), as in the proof of Theorem 2. We then

have P
(|Xt −X0|≥d(�G)

)≤e
−d(�G )2

2t·δ2 +δ1−γ , which is equivalent to

1−P

( |Xt −X0|
d(�G)

<1

)
≤exp

(
−d(�G)2

2t ·δ2

)
+δ1−γ .

As an example of the corollary, for the case of E.coli, we obtain
P(�=k)∼k−1.87, δ≈7.14 and d(�G)≈19490 from sampling 104 random
walks. Then the probability, that the algorithm samples nodes from �G

uniformly at random within t =106 steps is bounded by:

P

( |d(Gt)−d(G0)|
d(�G)

<1

)
≥1−e

−194902

2·106 ·7.142 −7.141−1.87 ≈0.80

(Supplementary Table S2 shows the results for the remaining organisms).
Note that these probabilities represent a rare worst case, since all Xj are the
sums of absolute differences in degrees. In practice, the cumulative degree
changes of sampled nodes are likely to be smaller due to positive and negative
changes in degree.

Finally, we briefly analyze some practical implications of these findings.
First, we determine the size of the sample space, i.e. the number of distinct
randomized networks which can be generated from a given metabolic
network G, if only individual compounds are substituted. Let 	s(r) denote
the set of all mass equivalence classes, which contain a substrate or product
of r. From each such equivalence class es ∈	s(r), we may choose any subset
with the size of the number of substrates (products) of r contained in 	s(r);
let φ denote this number. Then, there are

(|e|
φ

)
possible reactions for each

mass equivalence class es, where the original reaction may be obtained
by reversing any previous substitutions. Therefore, the number of distinct
networks which can be generated from G by substituting only individual
compounds is

�G,s =
∏

r∈Vr (G)

∏
e∈	s(r)

(|e|
φ

)
.

For the model organism E.coli, the size of the sample space is
�s ≈2.97·10957 (see Supplementary Table S2 for the remaining organisms).
The large sample spaces, again, illustrate the importance of uniform
sampling.

As shown before, the number of distinct networks which can be generated
by substituting pairs of compounds does not merely depend on the reactions
in the original network, as the number of possible substitutions may change
after applying substitutions. Therefore, we are unable to give a precise
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expression for the sample size in this case. Nevertheless, it is clear that,
for the case of substituting individual compounds and pairs of compounds,
the sample space is at least as large as �G,s.

In order to confirm the result of uniformity empirically, we analyze a
random walk on the transition graph of the TCA cycle, a central respiratory
metabolic pathway consisting of only 8 reactions and 20 compounds. For
this network, the sample spaces are �TCA,s =256, �TCA,p =1024, with a
combined total of 1024 possible randomized networks (i.e. all networks
generated by a sequence of individual compound substitutions can also be
generated by pair substitutions). We observe that the sojourn frequencies,
i.e. the number of times each network is visited by the random walk, indeed
converge toward the uniform distribution (see Fig. 1B), confirming our
theoretical claims.

4 CONCLUSION
The advances in high-throughput omics technologies require
developing algorithmic techniques for the analysis of large-scale
biological networks. However, the significance of any network-
based prediction must be validated using a realistic null model.
While the method based on switch randomization has been
extensively used to study the significance of topological properties
in many different types of networks, we argued that it is unsuitable
for the analysis of metabolic networks.

We presented a new method for randomizing metabolic networks
under the constraint of mass balance. We observed that a null
model should satisfy two important requirements: preservation of
ubiquitous constraints characterizing the class of analyzed networks
and uniformity of the sampling procedure. We demonstrated the
uniformity of the proposed method theoretically and empirically on
seven metabolic networks from all kingdoms of life.

By integrating the (bio)chemical constraint of mass balance into a
network null model, our method allows for a more realistic measure
of significance. In addition, the proposed approach can be used
for identifying network properties which are independent of mass
balance constraints, and thus are likely to relate to the evolutionary
history of metabolic networks. For instance, in a recent study,
we applied the method to assess the evolutionary significance of
thermodynamic favorability of metabolic reactions (Basler et al.,
2010). We believe that the integration of mass balance constraints
is a necessary first step toward extracting biologically meaningful
properties of genome-scale metabolic networks.
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