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Abstract
We describe a novel approach to nonparametric point and interval estimation of a treatment effect
in the presence of many continuous confounders. We show the problem can be reduced to that of
point and interval estimation of the expected conditional covariance between treatment and
response given the confounders. Our estimators are higher order U-statistics. The approach applies
equally to the regular case where the expected conditional covariance is root-n estimable and to
the irregular case where slower non-parametric rates prevail.
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1. Introduction
We consider perhaps the central problem in biostatistics, epidemiology, and econometrics:
the estimation of a treatment effect in the presence of a high dimensional vector X of
confounding covariates. To this end, for a binary treatment A and a response Y, let τ be the
variance weighted average treatment effect

where a simple calculation establishes the equality in the first line, and γ(x) is the average
treatment effect among subjects with X = x under the assumption of no unmeasured
confounding (ignorable treatment assignment given X).

Our motivation for τ as our functional of interest is as follows. The most common model for
estimation of a causal effect assumes γ (X) = β does not depend on X wp 1, which is unlikely
to hold exactly. Most semiparametric estimators of β, including those of Robinson (1988)
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and Donald and Newey (1994), converge in probability to τ even if the assumption γ (X) = β
is false. An alternative motivation is considered by Crump et al. (2006).

We now show that point and interval estimators for τ can be constructed from point and
interval estimators for the numerator E [cov(Y, A|X)] of τ. As a consequence, until Section 6,
the paper is devoted to constructing point and interval estimators for E [cov(Y, A|X)]. In
Section 6, we translate these estimators into estimators for τ.

For any fixed τ* ∈ R, define Y (τ*) = Y − τ* A and the corresponding functional

τ is the unique solution to ψ(τ*) = 0. Suppose that we can construct point estimators ψ ̂(τ*)
and (1 − α) interval estimators for ψ(τ*). Then τ̂ satisfying ψ ̂ (τ̂) = 0 is an estimator of τ.
Further, a (1 − α) confidence set for τ is the set of τ* for which a (1 − α) interval estimator
for ψ (τ*) contains zero. Until Section 6, we take τ* = 0, and consider inference for the
expected conditional covariance ψ ≡ E [cov {Y, A|X}].

Henceforth, we assume we observe N iid copies of O = (Y, A, X) such that the marginal
distribution FO of X has a Lebesgue density f in Rd that has a compact support. We assume
FO is contained in a nonparametric model M (Θ) = {F(·; θ); θ ∈ Θ}, indexed by the (infinite
dimensional) parameter θ ∈ Θ. In this notation, our parameter of interest is the unique
solution τ (θ) to ψ (τ*, θ) = 0 with ψ(τ*, θ) ≡ Eθ [covθ(Y (τ*), A|X)] and, until Section 6, we
consider inference on

We let b: x ↦ b(x) = E [Y|X = x], p: x ↦ p(x) = E [A|X = x], and f: x ↦ f(x) denote the
components of θ corresponding to the conditional expectations of Y and A given X = x and
the density of the marginal distribution FX of X. Our model M (Θ) places no restrictions on
FO, other than (i) bounds on the Lp norms of these functions to insure all integrals are
bounded and (ii) explicit smoothness bounds that specify that b(x), p(x), and f(x) are in
known Hölder classes βb, βp, and βf. Informally, a function h(x) is in a Hölder class βh if all
partial derivatives of h(·) up to order ⌊βh⌋ exist and are bounded by a constant Ch and the
partial derivatives of order ⌊βh⌋ are Hölder with exponent βh − ⌊βh⌋ and bound Ch. Recall
that a function q(x) is Hölder with exponent a and bound c if |q(x) − q(x*)| < c|x − x*|a with a
< 1 for all x, x*. A formal definition of our model and of a Hölder class are given in the web-
supplement.

Robins et al. (2009b) proved that in model M (Θ)

(1)

is a necessary condition for the existence of a –consistent estimator of ψ(θ).

We introduce a novel class of point and interval estimators for ψ (θ) that can be applied in
both the “regular” case where condition (1) holds and in the “irregular” case where
condition (1) does not hold. Our novel estimators are U-statistics. In previous work we
derived these estimators using an abstract theory of higher order influence functions (Robins
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(2004), Robins et al. (2008) and Robins et al. (2009a)). In this paper we derive these
estimators using a much more accessible bias correction procedure.

In section 2 we assume that condition (1) holds. However Robins and Ritov (1997) argue
that, in epidemiologic studies in which the dimension d of X is not small, the large sample
behavior of estimators derived under asymptotics that assumes condition (1) often fails to
provide an accurate guide to their actual finite sample behavior; therefore we study the
irregular case in Section 3.

For two sequences of random variables XN and YN, the notation XN ≲ YN means XN ≤ CYN
for a constant C that is fixed in the context. The notations XN ≍ YN mean XN ≲ YN and YN ≲

XN. The notations XN ~ YN and XN ≪ YN mean that  and . For convenience,
we will drop the N subscript and write X and Y for XN and YN.

2. Failure of First Order Inference in The Regular Case
By definition, an estimator ψ ̂ is a regular asymptotically linear (RAL) estimator of ψ(θ) if
and only if

(2)

(3)

Here U1 (θ) is the so called first order influence function of ψ (θ). By Slutsky’s theorem
N1/2(ψ ̂ − ψ (θ)) is asymptotically normal with mean zero and variance var {U1 (θ)}. Thus a
RAL estimator converges to ψ (θ) at rate . Consider the plug-in estimator ψ (θ ̂) and the

one step estimator , where θ ̂ is a rate-
optimal nonparametric estimator of θ (i.e of FO, Härdle et al. (1998)). If ψ (θ ̂) is RAL then
so is the one step estimator but not vice-versa, as the onestep estimator may have smaller
asymptotic bias with the same asymptotic variance (Bickel et al. (1998)).

In this paper, we require a modified version of the one step estimator in which b̂, p̂, f̂, and
thus θ ̂ are estimated from a separate, randomly-chosen training sample of size N – n, and the

modified one-step estimator is , where the sum is
over the n subjects in the estimation sample. The original one step estimator and ψ ̂1 will
generally have the same rate of convergence and order of asymptotic bias if (N − n) ≍ n
(which we assume to be true unless stated otherwise). This modification is made because
Hölder classes with β < d/2 are not Donsker (Van der Vaart and Wellner (1996)).
Henceforth, all expectations and variances are to be interpreted as conditional on the training
sample and thus are random, although for convenience, we sometimes suppress this fact in
the notation, especially for variances.

Conditional on the training sample, the estimator ψ ̂1 is the sum of n independent random
variables. Hence, it is conditionally asymptotically normal with mean Eθ[(b(X) − b̂(X))(p(X)
− p̂(X))] + ψ(θ) and variance of order  (Bickel et al. (1998)). Thus, the interval  = ψ ̂1 ±
zα/2s.e.(ψ ̂1) is a honest asymptotic confidence interval if and only if the maximal bias
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 is oP(n−1/2), where the subscript p reflects the randomness in BI(ψ ̂1)
due to the training sample. Thus, BI(ψ ̂1) is of smaller order than s.e.(ψ ̂1) ≍ n−1/2. Here
BI(ψ ̂1, θ) = Eθ[(b(X) − b̂(X))(p(X) − p̂(X))] is the bias under θ. A formal definition of a
honest asymptotic confidence interval is given in the web-supplement. In addition, ψ ̂1 has a

uniform convergence rate of  (i.e. is -consistent) if and only if .

If b̂ and p̂ are rate optimal estimators of b and p, they have convergence rates  and

. Hence,  (i.e.,  when (N − n) ≍ n). Hence
even when condition (1) holds, BI(ψ ̂1) can exceed OP(n−1/2). For example, if βb = βp then
for BI(ψ ̂1) to be OP(n−1/2) requires that βb + βp ≥ d. In fact, if βp = 0 holds, then BI(ψ ̂1) ≫
n−1/2 for any finite βb. Thus, to construct a uniform -consistent estimator for ψ (θ)
whenever condition (1) holds, we require an estimator with smaller bias than ψ ̂1. To achieve
this, we will subtract from ψ ̂1 a bias correction term which estimates the bias BI(ψ ̂1, θ).

3. Second Order U-statistics Estimators
3.1. The Estimator

To motivate our bias correction term, suppose that X were categorical with known
probability mass function f. Define the residuals ε ̂i ≡ Yi − b̂(Xi), Δ ̂j ≡ Aj − p̂(Xj), and kernel

function . Then  is an unbiased estimator of BI(ψ ̂1,
θ). Since f is unknown, we use Kf̂ (Xi, Xj) instead. By analogy, for X continuous, if we could
find a “kernel” Kf,∞ (x, X) such that

(4)

then the statistic  would be unbiased for BI(ψ ̂1, θ).

A kernel satisfying eq. (4) is referred to as a Dirac delta function wrt to the measure FX and
is known not to exist in L2 [FX] × L2 [FX]. However, the above motivates the construction of
a class of estimators for BI(ψ ̂1, θ) using “truncated Dirac kernels”.

Let {zl (·)} ≡ {zl (x); l = 1, 2, …} be dense in L2(μ) with μ the Lebesgue measure and let z ̄k
(x)T = (z1 (x), …, zk (x)). Define, for f̂ a component of θ ̂, φ ̄k (X) = (Ef̂[z ̄k (X) z ̄k (X)T])−1/2 z ̄k
(X) so Ef̂[φ ̄k (X) φ ̄k (X)T] = Ik×k. Here f̂ is a rate optimal estimator of f with convergence rate

 in Lq (μ) for q finite. Let Kf̂,k (Xi, Xj) = φ ̄k (Xi)T φ ̄k (Xj). Then, for any h(x), the
projection Πf̂[h(x)|z ̄k (x)] ≡ Πf̂[h(x)|lin{z ̄k(x)}] under f̂ of h(x) onto the subspace lin{z ̄k(x)}
spanned by the elements of z ̄k (x) is Ef̂[Kf̂,k (x, X) h(X)]. Thus, by definition, Kf̂,k (x, X), is the
associated projection kernel. Note that Πf̂[h(x)|z ̄k(x)] = Πf̂[h(x)|φ ̄k (x)] since lin{z ̄k(x)} and
lin{φ ̄k (x)} are equal.

Kf̂,k (x, X) is a truncated at k approximation to Kf̂,∞ (x, X) in the sense that, with f̂ substituted
for f, it satisfies eq. (4) for r(x) ∈ lin{z ̄k (x)}. Our bias corrected estimator is then
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3.2. Bias and Variance Properties of ψ ̂2,k
The bias of ψ ̂2,k is given in the following theorem proved in the web-supplement. The bias
can be decomposed into the sum of two terms-the truncation bias and the estimation bias.
The truncation bias is due to the truncated at k approximation Kf,k (Xi, Xj) to Kf,∞ (Xi, Xj),
whereas the estimation bias comes from using b̂(Xi), p̂(Xi), and f̂(Xi) to estimate b(Xi), p(Xi)
and f(Xi).

In the following, since f ∈ θ, we can and sometimes do write the projection operator Πf as
Πθ. Let  be the projection under θ of h(X) onto the
orthocomplement of lin{z ̄k (X)} = lin{φ ̄k (X)}.

Theorem 1—Suppose regularity conditions (A.1)– (A.2) of the web-supplement hold.
Then the (conditional) bias BI (ψ̂2,k, θ) ≡ Eθ[ψ̂2,k] − ψ (θ) equals TBk (θ) + EB2,k (θ) where

(5)

and

(6)

The next theorem, proved in the web-supplement, derives the orders of TBk (θ) and EB2,k (θ)
for a choice of Z ̄k ≡ z ̄k (X), that provides optimal uniform approximation error of order k−β/d

for any function h(x) of a d-dimensional x in a Hölder class with exponent β. That is
 is of order k−β/d in sup norm. Polynomial, spline and

suitable wavelet bases all satisfy this assumption.

Theorem 2—Suppose that regularity conditions (A.1) – (A.3) of the web-supplement are
satisfied. Then with BI (ψ̂2,k) = supθ∈Θ|BI(ψ ̂2,k, θ)|, TBk = supθ∈Θ{TBk (θ)}, EB2 = supθ∈Θ|
EB2,k (θ)|,

(7)

(8)
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Note the order of the maximal bias of EB2,k (θ) does not depend on k. The theorem is proved
in the web-supplement. A heuristic argument is as follows. If, as is always possible, our
optimal estimates of b̂(x) and p̂(x) are in lin{z ̄k (x)} = lin{φ ̄k (x)}, then TBk (θ) depends on

the product of  and , which is . Next, noting

and

we observe that EB2,k (θ) is a product of terms in (b(X) − b̂(X)), (p(X) − p̂(X)) and (f(X) − f̂
(X)).

The following theorem proved in the web-supplement gives the order of the (conditional)
variance of ψ ̂2,k.

Theorem 3—Assume (A.1) – (A.3) are satisfied, then conditional on the training sample,

(9)

3.3. Convergence Rate of the Optimal Estimator in the Class ψ̂2,k: k ∈ }
3.3.1. The regular case - Eq. (1) holds—In this subsection, condition (1) holds so
N−1/2 is a lower bound on the rate of convergence.

Lemma 4: Given (1) and (N − n) ≍ n, (i) ψ̂2,n ≡ ψ̂2,k=n converges at rate n−1/2 (and thus is
rate minimax) if and only if

(10)

and (ii) no estimator ψ̂2,k converges at rate n−1/2 if ψ̂2,n does not.

Proof:  has variance of order O(n−1) only if k = O (n). Among all

ψ ̂2,k with k = O (n),  is minimized for k ≍ n, proving (ii). Further TBn =
Op(n−1/2) by condition (1). Finally, when (10) holds, EB2 = Op(n−1/2). Hence ψ ̂2,n converges
at rate n−1/2.

Recall ψ ̂1 has maximal bias BI(ψ ̂1) ≲ n−1/2 (and thus converges at rate n−1/2) if and only if

. As an example, with , the bias of ψ ̂1 shrinks to zero at rate
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; in contrast, ψ ̂2,n converges at rate n−1/2 as long as . Thus the second
order U-statistic added to ψ ̂1 to form ψ ̂2,n has reduced the bias to Op(n−1/2) without any
increase in the order of the variance since k/n2 ≍ 1/n when k ≍ n.

In Section 4, we shall construct an estimator that converges at the minimax rate of n−1/2

when eq. (1) holds, even though neither ψ ̂1 nor ψ ̂2,n converges at rate n−1/2 because (10)
fails to hold and so EB2 ≫ n−1/2.

Finally suppose that eqs. (1) and (10) hold with strict inequalities. Then TBn and EB2 are
op(n−1/2). Hence, with (N − n) ≍ n, N1/2(ψ ̂2,n − ψ (θ)) is asymptotically normal with mean
zero and finite variance. However ψ ̂2,n does not achieve the optimal constant as its
asymptotic variance exceeds the semiparametric variance bound varθ[U1 (θ)]. This
deficiency can be remedied by no longer choosing (N − n) ≍ n. Specifically, arguing as on
page 379 in Robins et al. (2009b), if we make the ratio (N − n)/N to be of order 1/log (N)
rather than of order 1 and take keff ≍ n/log(n), then

; hence ψ ̂2,keff is asymptotically linear and
normal with variance varθ [U1 (θ)] and thus semi-parametric efficient.

3.3.2. The irregular case - Eq. (1) does not hold—Suppose condition (1) does not
hold. In that case Robins et al. (2009b) proved that a lower bound for the minimax rate is

. The following Lemma shows that, if

(11)

holds, ψ ̂2,k* with  is rate minimax.

Lemma 5: If (11) holds, i) ψ̂2,k* converges at rate , which is thus minimax and
(ii) no estimator ψ̂2,k converges at this rate if ψ̂2,k* does not.

Proof: Consider ψ ̂2,k* with . The standard error  and the

truncation bias TBk* of ψ ̂2,k* both are of order , proving (ii). When (11) also

holds, .

In Section 4, we construct an estimator that, often converges faster (and never slower) than

ψ ̂2,k*, when (11) does not hold, although the rate remains slower than .

4. U-Statistic estimators

We next show that we can construct a new estimator  that subtracts from ψ ̂2,k

a third order U-statistic, denoted by , which estimates the estimation bias EB2,k (θ) of
ψ ̂2,k. In fact we show that we can iterate this process to construct new estimators

 that subtract from ψ ̂m−1,k a mth order U-statistic
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, which estimates the estimation bias EBm−1,k (θ) of ψ ̂m−1,k. In the web-supplement we
prove the following theorem

Theorem 6—Under assumptions (A.1) – (A.3) and with each zl (x) the tensor product of
elements of a univariate compact wavelet basis with optimal approximation properties, for m

= 3, …, the estimator  has (i) truncation bias TBk (θ) for all m, (ii)
estimation bias EBm,k (θ) of smaller order than EBm−1,k (θ), total bias BI(ψ̂m,k, θ) ≡
Eθ[ψ̂m,k] − ψ(θ) = TBk (θ) + EBm,k (θ) and (iii) variance of the same order as ψ̂2,k when k =
O (n) but of greater order than that of ψ̂m−1,k when k ≫ n. Here

(12)

Specifically

(13)

(14)

(15)

Remark 1—The assumption that each zl (x) is the tensor product of compact wavelets is
only used in the proof of (iii) for technical reasons. We expect that (iii) holds for many other
bases.

Remark 2—In this notation we could write  with

.

4.1. Convergence Rate of the Optimal Estimator in the Class {ψ̂m,k: m = 2, …, k ∈ }
4.1.1. The regular case - Eq. (1) holds—In this subsection, condition (1) holds so
N−1/2 is a lower bound on the rate of convergence.
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Lemma 7: Given condition (1), βf > 0, and (N − n) ≍ n, ψ̂mopt,n ≡ ψ̂mopt,k=n converges at
rate n−1/2 (and thus is rate minimax) where mopt is the smallest integer for which

.

Proof: Since ρm increases without bound as m → ∞, mopt always exists when βf > 0 and

EBmopt is . Further  and  by
condition (1).

The key point is the same as in the case discussed in Section 3.3. The U-statistic terms of
ψ ̂mopt,n reduce the order of the estimation bias below , and yet do not increase the order
of the variance or truncation bias. Thus by introducing the U-statistic estimators of
arbitrarily large order m, we are able to construct -consistent estimators for ψ (θ) for any
value of βf > 0, as long as condition (1) holds.

Although ψ ̂mopt,n fails to be semiparametric efficient this defficiency can be remedied as
follows.

Lemma 8: Assume condition (1) holds with a strict inequality. Let (N − n)/N=1/log(N) so n
= N (1 − 1/log(N))]. Let mopt* be the smallest integer for which

, and keff ≍ n/log (n). Then (i) ψ̂mopt*,keff has
TBkeff = op(N−1/2), (ii) EBmopt* = op (N−1/2), and (iii)

; hence ψ̂mopt*,keff is semiparametric
efficient.

4.1.2. The irregular case - Eq. (1) does not hold—Suppose condition (1) does not
hold so estimation of ψ(θ) at rate N−1/2 is not possible. For any fixed m ≥ 2, let

 be the value of k equating the order  of var[ψ ̂m,k] to the order

k−2(βb+βp)/d of . (Note k* of Sec 3.3 is k* (2)). Thus . ψ ̂m,k*(m)

has the optimal rate in the class {ψ ̂m,k: k ∈ } since  does not
depend on k. This rate is

The optimal estimator in the class {ψ ̂m,k: m = 2, …; k ∈ } is thus ψ ̂meff,,k*(meff) with meff the
minimizer of r (m). As discussed in Section 3.3, if condition (11) holds, then meff = 2, and

ψ ̂meff,,k*(meff) attains the minimax convergence rate . If (11) fails to hold,
ψ ̂meff,,k*(meff) will not be minimax (Robins et al. (2008)).

5. Confidence Interval Construction
In the regular case where (1) holds with a strict inequality and βf > δ, it follows from Lemma
8 that an honest asymptotic 1 − α confidence interval for ψ (θ) whose width shrinks at rate

n−1/2 is the Wald interval . where

Li et al. Page 9

Stat Probab Lett. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and zα is the upper α–quantile of a N (0, 1) distribution.

Consider now the irregular case. A necessary condition for an ψ ̂ to center a honest Wald
interval  is that the order of its bias be less than that of the standard error. The
estimator ψ ̂meff,,k*(meff) fails to satisfy this condition as its maximal estimation bias EBmeff
can dominate its standard error. However the condition is satisfied by the estimator
ψ ̂meff,k̃(meff) with meff as above and k̃ (meff) equal to the k that equates the variance

. The log n factor insures that the order of the standard error exceeds that of the bias.
Furthermore ψ ̂meff,k̃(meff) converges at the same rate as the estimator ψ ̂meff,,k*(meff) up to a log
factor.

In Theorem 10 of the web-supplement we show that, if an estimator ψ ̂m,k in our class has

bias of lower order than the standard deviation, then, for k ≫ n,  is
conditionally (given the training sample) and unconditionally uniformly asymptotically
normal with mean zero and variance that can be consistently estimated. It follows that

 is an honest asymptotic 1 − α confidence interval for ψ (θ) whose

width shrinks at rate , where the formula for  is given in Theorem 10 of the
web-supplement. Thus, the interval

shrinks as fast as any interval Cm,k in our class.

6. Inference on τ(θ)
Recall from Section 1 that our ultimate functional of interest, τ (θ) = Eθ[covθ(Y, A|X)]/Eθ
[varθ (A|X)], is the unique solution to the equation ψ(τ, θ) = 0 where ψ(τ, θ) = Eθ [{Y (τ) −
b(X, τ)}{A − p(X)}] with b (τ): x → b (x, τ) ≡ E[Y(τ) | X = x] and Y (τ) = Y − τA. We assume
it is b (τ) for τ = τ (θ) that is known to lie in the Hölder class of smoothness βb rather than the
function b.

Consider first the irregular case where condition 1 fails to hold. As discussed in Section 1,
{τ: 0 ∈ Cmeff,k̃(meff) (τ)} is an honest asymptotic 1− α confidence set for τ (θ), where Cm,k (τ)
and ψ ̂m,k (τ) are Cm,k and ψ ̂m,k with Y replaced by Y (τ). Furthermore, it follows from
Theorem 6.1 of Robins et al. (2009b) that the width of the confidence set {τ: 0 ∈ Cmeff,k̃(meff)

(τ)} or τ (θ) shrinks with increasing n at the same rate  as does the
confidence interval Cmeff,k̃(meff) (τ) for ψ (τ, θ). Finally, let τ̂meff,k̃(meff) be the solution to
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ψ ̂meff,k̃(meff) (τ) = 0. Then, a Taylor expansion around τ (θ), shows that

 is asymptotically normal with mean zero and a finite variance.

In the regular case where condition 1 holds and βf > δ, we conclude by a similar argument
that τ̂mopt*,keff solving ψ ̂mopt*,keff(τ) = 0 is a semiparametric efficient estimator of τ(θ) with

influence function , where U1 (θ, τ) = {Y (τ) − b(X, τ)}{A −
p(X)} − ψ (τ, θ) is the efficient influence function of the functional ψ (τ, θ).

7. Discussion
Although this paper breaks important new ground, many difficult issues remain. First, we
have assumed the maximal possible roughness (as encoded in Hölder exponents and
constants) of the nuisance functions p, b, and f to be known apriori. In practice, different
subject matter experts will clearly disagree as to the maximal roughness; in addition, the
actual smoothnesses of the nuisance functions cannot be empirically estimated. Thus it
would be important to have methods that adapt to the unknown smoothness of these
functions. However, for honest confidence intervals, the degree of possible adaption to
unknown smoothness is small. Therefore an analyst needs to report a mapping from apriori
smoothness assumptions encoded in Hölder exponents and constants (or in other measures
of smoothness) to the associated (1 − α) honest confidence intervals proposed in this paper.
Such a mapping is finally only useful if substantive experts can approximately quantify their
informal opinions concerning the smoothness of p, b, and f using a measure of smoothness
offered by the analyst. It is an open question which, if any, smoothness measure is suitable
for this purpose.

In the irregular case, our results are for rates of convergence. We currently have few results
on the constants in front of those rates.

Finally, a general software program to calculate our estimators must first construct a non-
parametric d-dimensional density estimator f̂ and then compute the k×k matrix {Ef̂[z ̄k (X) z ̄k
(X)T]}−1 by numerical integration followed by matrix inversion. As, in practice, k can easily
be 500,000, we have yet to solve these computational challenges.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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