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ABSTRACT

The ACLAME database (http://aclame.ulb.ac.be) is a
collection and classification of prokaryotic mobile
genetic elements (MGEs) from various sources,
comprising all known phage genomes, plasmids
and transposons. In addition to providing informa-
tion on the full genomes and genetic entities, it aims
to build a comprehensive classification of the func-
tional modules of MGEs at the protein, gene and
higher levels. This first version contains a compre-
hensive classification of 5069 proteins from 119
DNA bacteriophages into over 400 functional
families. This classification was produced auto-
matically using TRIBE-MCL, a graph-theory-based
Markov clustering algorithm that uses sequence
measures as input, and then manually curated.
Manual curation was aided by consulting annota-
tions available in public databases retrieved
through additional sequence similarity searches
using Psi-Blast and Hidden Markov Models. The
database is publicly accessible and open to expert
volunteers willing to participate in its curation. Its
web interface allows browsing as well as querying
the classification. The main objectives are to collect
and organize in a rational way the complexity
inherent to MGEs, to extend and improve the in-
adequate annotation currently associated with
MGEs and to screen known genomes for the
validation and discovery of new MGEs.

INTRODUCTION

The sequencing of the complete genomes of several strains of
the same bacterial species brought a new dimension to our
understanding of horizontal gene transfer (HGT) in pro-
karyotes, questioning the very meaning of strains and species
[see for instance (1-4)]. The two enterobacteria Escherichia
coli and Salmonella share ~70% of their genes (5). A similar
level of divergence is seen between the genomes of two E.coli
strains, the laboratory strain K12 and the pathogen O157-H7,
which differ by as much as 20-30% of their genomes.
Strikingly, most of the differences are accounted for by
prophages (6,7). Similarly, all of the major gaps in the

alignment between the genomes of Listeria monocytogenes
and Listeria innocua correspond to the prophages integrated in
the latter (8). The pathogenic Bacillus anthracis and its close
relative Bacillus thuringiensis, the source of Bt toxins, offers
another example: their chromosomes are extremely similar
and they mostly differ by the nature of the plasmids they
host (9).

Phages and plasmids are members of the prokaryotic
Mobile Genetic Elements (MGEs), which are central players
in mobilizing and reorganizing genes, be it within a given
genome (intracellular mobility) or between bacterial cells
(intercellular mobility). MGEs are defined DNA sequences of
widely varying length (1 to several hundred kb), which often
carry the functions that drive their transfer and recombination
with the host genome. They are now seen as key players in the
reshuffling of genetic material, which in combination with
mutations and selection, drive evolution.

Traditionally, MGEs have been classified as bacterio-
phages, plasmids or transposons. This classification becomes
exceedingly obsolete as many chimerical elements are iden-
tified as the many types of so called ‘genomic islands’, which
share genes or entire groups of genes. The modular nature of
MGE:s and the potential for reshuffling between modules has
been long recognized, see for instance (10) for the tailed
phages, (11) for plasmids. A systematic analysis of MGEs in
terms of their modules might therefore be warranted. It is
made difficult by the fact that these elements are not
adequately annotated in the existing databases, out of which
they cannot be easily retrieved. MGE are often referred under
the name of the host in which they were identified. As a result,
the same (or a closely related) element residing in widely
different hosts cannot be readily identified as being related.
Complete genome annotations are not particularly helpful
either. In the present gene ontologies, the vast majority of
MGE gene functions are classified under the three very
general ‘plasmid’, ‘phage’ or ‘transposon’ related functional
categories.

Using as the basis the idea that MGEs would best be
described in terms of a hierarchy of functional modules, at
both the protein and DNA levels, we undertook the develop-
ment of the ACLAME database (http://aclame.ulb.ac.be). The
first version presented here, contains information on proteins
encoded by genuine prokaryotic ‘mobile elements’ (phages,
plasmids, transposons and other genomic islands), as well as
proteins from other sources that are significantly similar to
those. It provides a comprehensive classification of these
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proteins into families with similar sequences and related
functions. The main aims of the ACLAME database are to
(i) provide a common framework for the representation of
MGESs and their components, (ii) offer tools for facilitating
their analysis; (iii) provide a community-wide discussion
platform with the goal of deriving a consistent ontology for
MGE functions that could then be used to provide a consistent
functional annotation of MGEs in all genomes.

DATABASE CONTENT

ACLAME (version o) contains information on 119 DNA
bacteriophage genomes, represented by 5069 proteins. Phage
sequences were chosen because of their abundance in
prokaryotic genomes, their wide size distribution, their very
compact genome organization and the resulting occasional
overlap of coding sequences and the wide variety of functions
they express. All these features were expected to raise most of
the technical challenges to be solved in building up the
database. All the information used has been downloaded from
the NCBI genomes section (http://www.ncbi.nlm.nih.gov/
Genomes/index.html), using a completely automatic pro-
cedure, which handles tasks such as protein extraction, MGE
information retrieval and database cross-referencing. As a first
step towards building a comprehensive MGE functional
classification, all the proteins have been clustered into families
using TRIBE-MCL, a graph-theory-based automatic Markov
clustering algorithm that uses sequence measures as input
(12). We obtained 437 clusters containing at least three
members. These clusters covered a total of 2501 proteins,
representing 50% of all analyzed proteins. The remaining
proteins were left as singletons or in pairs. In an attempt to
build up larger clusters from those, and in order to help in the
functional annotation of all clusters, it was deemed useful to
search different sequence databases for related proteins and
thereby exploit any available functional annotations on those.
To that end several searches were performed. In one,
individual sequences in each cluster were used to search in
Swiss-Prot (13) using 3 iteration Psi-Blast (14) and an E-value
threshold of 0.001. The sequences identified and their
corresponding functional annotations are stored in dedicated
tables linked to the original cluster, which can be queried by
the user, or expert annotator. In another, the protein sequences
in each cluster were multiply aligned using ClustalW (15) with
standard setting. Using these multiple alignments, Hidden
Markov Models (HMMs) were built with the HMMER
package (http://hmmer.wustl.edu/) (16) and used to screen
the NRDB-NCBI (17), Swiss-Prot (13) and SCOP (18)
databases for additional sequences more remotely related to
those in each cluster. These database search results are stored
in dedicated tables also linked to the original clusters and
accessible for query and annotation purposes.

FUNCTIONAL ANNOTATION: TOOLS AND
DISCUSSION PLATFORM

The first 300 clusters were analyzed manually via the web
interface. A functional annotation could easily be assigned to
233 of them based on experimental evidence, similarities in
previous annotations and matches in screened protein data-
bases. Clearly, the present functional annotation should be

considered as a first draft to be reviewed by the specialized
scientific community, using the discussion platform provided
on the ACLAME website. A typical example is provided here
by cluster 11, which features 24 proteins, some of which are
annotated (helicase or putative helicase), but others are not.
On the basis of our searches using an HMM in SCOP, NRDB
and Swiss-Prot, plus the Psi-Blast searches in Swiss-Prot with
individual sequences, the function of the cluster can be
unambiguously defined as DNA replication with all its
proteins clearly related to helicases. In contrast, cluster 7
comprises 28 proteins, all annotated as having ‘unknown’
function. Interestingly, some MGEs are represented in this
cluster by more than one of their proteins. Knowing that
functional redundancy in viruses is rare, it could be interesting
to understand why, in the case of cluster 7, some of them have
multiple copies of proteins with probably the same function.

Our annotations rely on the use of a slightly extended
MultiFun classification scheme (19), which is presently the
reference for bacterial genome annotation, and the Gene
Ontology (20), whenever a satisfactory definition could be
found (see our website for the proposed extensions). A group
of experts has been invited to review our annotations and help
in improving and extending it with the ultimate aim of
developing a consistent and complete annotation scheme
applicable to the many different types of MGE. A major
concern is dealing with the many inconsistencies currently
encountered in the different ontologies. We noticed for
instance that the GO definitions for transposase, integrase
and site-specific recombination are not correct for prokaryotic
organisms. Moreover, this ontology in its present form does
not properly consider MGEs that have not been found in
eukaryotes.

ACCESS AND INTERFACE

At present, the ACLAME database can be accessed only via a
web interface; however, the data and the classification will be
stored in a relational database under the MySQL database
management system (21), which will be directly and publicly
accessible to the scientific community. The web interface
allows browsing the MGE genomes currently loaded in the
database, their associated proteins and the hosts in which they
are found (Fig. 1). The protein classification obtained through
the automatic clustering procedure is also accessible (Fig. 2)
and the annotation tools are available to registered users.

A Blast search interface has been implemented in order to
query the database. Results of sequence or genome analysis
can be accessed and retrieved through various file formats
(XML, tab delimited, ...).

FUTURE DIRECTIONS

The ultimate goal in developing ACLAME is to be able to
define functional modules, which are well-characterized
features, found in MGEs, independently of their ‘generic
identification’. Defining such modules should not only allow
the reconstruction of known MGEs but more importantly,
should enable their high complexity and the difficulty in
identifying them across genomes to be dealt with. For
instance, many comparisons between phages originating
from related bacteria have been published throughout the
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Figure 1. Three views of the MGE genomes loaded in ACLAME. (a) The list of hosts where the MGE genomes are found. (b) The list of MGE genomes
with their major features. (¢) The list of proteins found in a MGE genome. Links to external databases are provided in all pages.
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Figure 2. Access to the clustered MGE proteins. (a) The list of clusters with the number of proteins found in each of them, the functional annotation and the
number of hits found using HMMs in SCOP, NCBI-NRDB and Swiss-Prot. Some tools are provided to further analyze these clusters. (b) Content of a cluster
with the list of proteins, their original annotation and the MGE genome where they are found. Access to the database searches with Psi-Blast 3 iterations in

Swiss-Prot and/or NCBI-NRDB is also provided.

years [see (22) and (23) for the most recent ones]. To our
knowledge, only one study so far has covered all available
completely sequenced phage genomes (24), but this classifi-
cation was related to the taxonomy of the phages analyzed,
one aspect that we deliberately omitted. Indeed our aim is to

traverse the largest spectrum of MGEs and associated protein/
DNA sequences, independently of their taxonomy. This we
hope will help in cases like for instance the DD-E transposase
proteins, to provide a general classification covering the whole
range of IS sequences, transposons, conjugative transposons,



transposable phages and pathogenicity islands, all of which
encode enzymes of that family. Such a description should
better reflect the functional roles and evolutionary history of
the considered modules, thereby hopefully allowing the
derivation of a taxonomy and ontology that rest on a more
rational basis. To achieve this goal, we will continuously
update ACLAME with information from newly sequenced
MGE genomes and with help of expert knowledge in the
scientific community.
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