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HIV-1 drug resistance is a major clinical problem. Resistance is
evaluated using in vitro assays measuring the fold change in IC50

caused by resistance mutations. Antiretroviral drugs are used at
concentrations above IC50, however, and inhibition at clinical con-
centrations can only be predicted from IC50 if the shape of the
dose–response curve is also known. Curve shape is influenced by
cooperative interactions and is described mathematically by the
slope parameter or Hill coefficient (m). Implicit in current analysis
of resistance is the assumption that mutations shift dose–response
curves to the right without affecting the slope. We show here that
m is altered by resistance mutations. For reverse transcriptase and
fusion inhibitors, single resistance mutations affect both slope and
IC50. For protease inhibitors, single mutations primarily affect
slope. For integrase inhibitors, only IC50 is affected. Thus, there
are fundamental pharmacodynamic differences in resistance to
different drug classes. Instantaneous inhibitory potential (IIP),
the log inhibition of single-round infectivity at clinical concentra-
tions, takes into account both slope and IC50, and thus provides
a direct measure of the reduction in susceptibility produced by
mutations and the residual activity of drugs against resistant
viruses. The standard measure, fold change in IC50, does not cor-
relate well with changes in IIP when mutations alter slope. These
results challenge a fundamental assumption underlying current
analysis of HIV-1 drug resistance and suggest that a more com-
plete understanding of how resistance mutations reduce antiviral
activity requires consideration of a previously ignored parameter,
the dose–response curve slope.
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With suboptimal treatment, drug-resistant HIV-1 evolves
rapidly (1–7). Resistance results from mutations in-

troduced by the error-prone HIV-1 reverse transcriptase (RT)
(8–10). Treatment with inadequately suppressive regimens and/
or problems with adherence allow additional cycles of replication
and selection of resistant variants. For some antiretroviral drugs,
single amino acid substitutions in the drug target produce high-
level resistance (3, 11). Some mutations confer cross-resistance
within a drug class (12–15). Many reduce enzyme or protein
function, thereby decreasing viral fitness (16–19).
At the molecular level, resistance often results from mutations

that interfere with drug binding to the target enzyme or protein
(20–23). Additional mechanisms may also contribute. For exam-
ple, resistance to zidovudine involves mutations that promote
excision (24–26). Although the molecular mechanisms of re-
sistance are well studied, the pharmacodynamics of resistance are
less well understood. Resistance is typically measured as a change
in IC50 (Table S1) relative to WT virus (27–30). Antiretroviral
drugs are used at concentrations above IC50, however, and in-
hibition at clinical concentrations can only be predicted from IC50
if the shape of the dose–response curve is known. The shape is
influenced by cooperative interactions and is described mathe-
matically by the slope parameter or Hill coefficient (m) (31, 32).
Certain drugs, notably nonnucleoside RT inhibitors (NNRTIs)
and protease inhibitors (PIs), have cooperative dose–response
curves with high slopes even though they target enzymes that are

univalent with respect to the inhibitor (33). These high slopes may
reflect a unique form of intermolecular cooperativity operative
when multiple copies of a drug target participate in a given step in
the virus life cycle (33). High slopes allow for extraordinarily high-
level inhibition at concentrations above IC50.
In all basic pharmacodynamic models, including the Hill

equation, the median effect equation (32), and the sigmoidal
maximum effect (Emax) model (34), m has an exponential re-
lationship to drug effect (31). Thus, slope is an important
determinant of antiviral activity. Implicit in current analysis of
resistance is the assumption that mutations shift dose–response
curves to the right without affecting slope. The effects of re-
sistance mutations on slope have never been described, however.
If a mutation increases IC50 and decreases m, it may cause more
resistance than is anticipated from a consideration of IC50 alone.
Thus, the effects of mutations on slope must be understood.
Here, we measure these effects and demonstrate that consider-
ation of slope provides a unique way to understand the effects of
resistance mutations.

Results
Dose–Response Curves for Antiretroviral Drugs Against Resistant Vi-
ruses. Inhibition caused by a drug can be expressed as the fraction
of single-cycle infection events affected by the drug (fa) or the
fraction that remains unaffected (fu = 1 − fa) and is determined
by the drug concentration D, IC50, and m according to the me-
dian effect equation (32, 35):

fa=fu ¼ ðD=IC50Þm [1]

or

logðfa=fuÞ ¼ mlog D –mlog IC50 [2]

We studied single mutations that confer at least partial re-
sistance according to the International AIDS Society-USA Drug
Resistance Mutations Group and the Stanford University HIV
Drug Resistance Database (36–38). Importantly, we analyzed
resistance using a single-round infectivity assay because multi-
round assays distort m (39). Primary CD4+ T lymphoblasts were
used as target cells because they mimic the principal target cells
for HIV-1 in vivo. Assays were done in 50% (vol/vol) human
serum to account for protein binding and with preincubations of
target cells with nucleoside RT inhibitors (NRTIs) to allow
concentrations of the active triphosphate forms of these drugs to
reach steady state (SI Methods).
Fig. 1 shows dose–response curves for representative drugs

from five classes. For each drug, Fig. 1A shows a standard
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semilog dose–response curve (fu vs. log D). Resistance mutations
shift curves to the right and increase the IC50. For example, the
K65R and M184V mutations in RT shift the curve for the NRTI
lamivudine (3TC) substantially to the right (Fig. 1A, 3TC). In-
terestingly, single mutations associated with resistance to the PI
atazanavir (ATV) cause only minor shifts and do not increase
IC50 by more than 10-fold (Fig. 1A, ATV). A problem with
semilog plots shown is that differences in antiviral activity at
higher drug concentrations are obscured as fu approaches 0. Log-
log dose–response curves (Fig. 1B) provide a better indication of
antiviral activity at high drug concentration and reveal the im-
pact of slope. If a mutation lowers m, inhibition achieved by the
drug may be dramatically reduced. This is illustrated for M184V
(Fig. 1B, 3TC), which increases IC50 but also reducesm such that
increases in 3TC concentration cause a much less dramatic fall in
fu than for WT. To determine IC50 and m, we used the median
effect model (Eq. 2) to linearize dose–response curves (Fig. 1C).
It is possible to directly determine m from the slope of median
effect plots. The effect of M184V on slope is readily evident (Fig.
1C, 3TC). We have previously shown that PIs have steep slopes
(33), and this is clear in the plot for ATV against WT (Fig. 1C,
ATV). Some PI mutations reduce slope. For example, I84V,
I50L, and N88S caused significant decreases in m (P = 0.0042,
P = 0.029, and P = 0.016, respectively). Interestingly, mutations
conferring resistance to the integrase strand transfer inhibitor
(InSTI) raltegravir (RAL) did not significantly alter m.

Inhibition of replication at a given drug concentration can be
predicted using the median effect equation, given IC50 and m
(33). Inhibition can be expressed as instantaneous inhibitory po-
tential (IIP), the number of logs by which single-round infection
events are reduced at a clinically relevant drug concentration:

IIP ¼ logð1=fuÞ ¼ log
�
1þ ðD=IC50Þm

�
[3]

IIP plots for the selected resistance mutations are shown in Fig.
1D. As previously described (33), IIP values for NNRTIs and PIs
are greater than the IIP values for drugs from other classes be-
cause of higher m values for these classes. Resistance mutations
reduced IIP at clinical concentrations, but residual activity against
resistant virus varied dramatically for different drugs and muta-
tions. Importantly, drugs with high IIP values for WT [efavirenz
(EFV) and ATV] retained more activity against some resistant
viruses than drugs from other classes had against WT. For exam-
ple, N88S in protease is considered to cause high-level ATV re-
sistance (37), but the IIP of ATV against this mutant is still higher
than the IIP of 3TC, enfuvirtide (ENF), or RAL toward WT.
With suboptimal suppression, mutants with selective advan-

tage over WT evolve. Selective advantage is the ratio of in-
fectivity of a preexisting mutant to infectivity of WT at a given D.
It can be estimated by multiplying the ratio fu (mutant)/fu (WT) at
that D by the replication capacity, the fractional infectivity rel-
ative to WT in the absence of drug. Selective advantage takes

Semi-log PlotsA Median Effect PlotsCLog-log PlotsB Inhibitory Poten alD

3TC

M184V
K65R
WT

0.0

0.2

0.4

0.6

0.8

1.0

-3 -1 1 3
log [3TC] (μM)

f u

lo
g 

( f
a/

f u
)

4

-1 1 3
log [3TC] (μM)

2

0

-2
-3

0

-1 1 3
log [3TC] (μM)

-2

-1

-3

-4

lo
g
f u

-3

IIP

10

-1 1 3
log [3TC] (μM)

0
-3

2

8

6

4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2
log [EFV] (μM)

f u

EFV

Y181C
K103N
WT

G190S

0

-2 0 2
log [EFV] (μM)

-2

-1

-3

-4

lo
g
f u

-4 -2 0 2
log [EFV] (μM)

-4
-2

lo
g 

( f
a/

f u
)

4

2

0

IIP

10

0

2

8

6

4

-2 0 2
log [EFV] (μM)

-4

0.0

0.2

0.4

0.6

0.8

1.0

-3 -1 1 3
log [RAL] (μM)

f u

RAL

Q148K
Y143H
WT

N155H
-3 -1 1 3

log [RAL] (μM)

0

-2

-1

-3

-4

lo
g
f u

-3 -1 1 3
log [RAL] (μM)

IIP

10

0

2

8

6

4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2
log [ENF] (μM)

f u

0

-2 0 2
log [ENF] (μM)

-2

-1

-3

-4

lo
g
f u

-4 -2 0 2-4

IIP

10

0

2

8

6

4

G36D

V38A
WT

N43D

-2 0 2
log [ENF] (μM)

-4
-2

lo
g 

( f
a/

f u
)

4

2

0

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2
log [ATV] (μM)

f u

ATV

I50L
I84V
WT

N88S

0

-2 0 2
log [ATV] (μM)

-2

-1

-3

-4

lo
g
f u

-4 -2 0 2
log [ATV] (μM)

-4

IIP

10

0

2

8

6

4

-2 0 2
log [ATV] (μM)

-4
-2

lo
g 

( f
a/

f u
)

4

2

0

-3 -1 1 3
log [RAL] (μM)

-2

lo
g 

( f
a/

f u
)

4

2

0

NRTI

NNRTI

PI

InSTI

Selec ve AdvantageE
10000

-1 1 3
log [3TC] (μM)

10

100

1

0.1

1+
s

-3

1000

10000

10

100

1

0.1
1+
s

1000

-2 0 2
log [EFV] (μM)

-4

10000

10

100

1

0.1

1+
s

1000

-3 -1 1 3
log [RAL] (μM)

10000

10

100

1

0.1

1+
s

1000

-2 0 2
log [ENF] (μM)

-4

10000

10

100

1

0.1

1+
s

1000

-2 0 2
log [ATV] (μM)

-4

log [ ENF] (μM)

FI
ENF

Fig. 1. Analysis of HIV-1 drug resistance mutations requires a consideration of dose–response curve slope. (A) Standard semilog dose–response curves for
representative drugs from five different classes of antiretrovirals. Drugs were tested for inhibition of WT (blue curves) and mutant viruses bearing the in-
dicated drug resistance mutations in a single-round infectivity assay. The fraction of infection events that remain unaffected (fu) by the indicated D is shown.
Error bars represent SE. The peach-shaded region indicates the clinical concentration range of the relevant drug. fu = 0.5 (dotted line) indicates IC50 for each
drug. Note that the D axis for 3TC and RAL is shifted by 1 log relative to the other drugs. (B) Log-log plots of the dose–response curves from A. IC50 for each
drug can be determined from the points where the curves intersect log fu = −0.3 (dotted line). Error bars represent SE. (C) Median effect plots of the dose–
response curves from A. IC50 for each drug can be determined from the points where the curves intersect log (fa/fu) = 0 (dotted line). Them value is the actual
slope of the median effect plot. Error bars represent SE. (D) IIP for WT and mutant viruses at the indicated D. IIP was computed using Eq. 3 and the measured
IC50 and m. (E) Selective advantage (written as 1 + s, where s is the selection coefficient) is the ratio of the infectivity of a preexisting mutant virus to the
infectivity of WT at the indicated D. The blue shading indicates regions where mutant viruses have selective advantage. ENF, enfuvirtide.
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into account reductions in fitness caused by the mutation. The
selective advantage profiles for specific mutants are shown in
Fig. 1E. Selective advantage >1 indicates that the mutant will
prevail. In the clinical concentration range, most mutants had a
selective advantage over WT, but the degree varied widely.

Effect of Resistance Mutations on IC50 and m. The above analysis
was extended to major resistance mutations affecting licensed
drugs from five classes. Fig. 2A shows the fold change in IC50 for
each single mutant. Fig. 2B shows the fractional change in m
relative to WT. Most NRTI, NNRTI, and fusion inhibitor
mutations decreased m but increased IC50. In contrast, single PI
mutations caused only relatively minor shifts in IC50, whereas m
decreased. Interestingly, InSTI mutations resulted in an inverse
pattern in which m values were preserved but IC50 increased
(Fig. 2 A and B). Thus, depending on drug class, there were
fundamental differences in the way resistance mutations affected
the dose–response curves.
To illustrate the effects of slope, we looked for mutations that

altered m but not IC50. The V82F mutation in protease does not
affect IC50 for indinavir (IDV) but does decrease m (Fig. 2 A
and B). As shown in Fig. S1, this change results in a marked
decrease in IDV susceptibility concentrations above IC50. This is
most evident in a median effect plot. Extrapolation into the-
clinical concentration range reveals that the change in m alone
can give a 5-log decrease in inhibition at minimum plasma
concentration.
To extend the generality of these observations, we examined

clinical isolates bearing the common resistance mutation M184V
or K103N (Fig. S2). Isogenic viruses lacking the relevant muta-
tion were generated by reverting the relevant codon to WT. As
expected, M184V caused a large decrease in the slope of the
3TC dose–response curve, whereas K103N caused a moderate
decrease in the slope of the EFV dose–response curve. Thus, the
principles described here are not unique to laboratory strains.

Effect of Resistance Mutations on IIP. Because changes in m can
have a major effect on antiviral activity, we compared IIP values
at the peak plasma concentration (Cmax) for each drug between
WT and mutant viruses (Fig. 2C). Most resistance mutations
decreased IIP compared with WT, albeit to varying extents. In-
terestingly, PI mutations caused substantial reductions in IIP
even though they had only minor effects on IC50. This reflects the
fact that IIP takes m, as well as IC50, into consideration.
The effect of the common M184V mutation on susceptibility

to tenofovir disoproxil fumarate (TDF) illustrates the potential
clinical significance of these concepts. M184V is thought to cause
minimal resistance or even hypersusceptibility to TDF (40–43).
As shown in Fig. S3A, there is little difference in IC50 between
WT and M184V; however, the log-log plot (Fig. S3B) reveals
a shallower slope for the M184V mutant, indicating substantial
resistance to TDF at the high end of the clinical concentration
range. This resistance would not be evident in assays that report
only changes in IC50. At high concentrations, both WT and
mutant viruses are inhibited. As is discussed below, the results of
several clinical trials are consistent with the notion that M184V
causes TDF resistance. Similar observations were made with
clinical isolates carrying M184V (Fig. S3C).

Fold Change in IC50 Correlates Poorly with Fractional Change in IIP
When Mutations Affect m. Our results indicate that the analysis of
drug resistance is compromised by failure to include slope when
this parameter is altered by a mutation. For integrase mutants,
there were no significant fractional changes in m compared with
WT (+0.064 to −0.058; P > 0.05). In contrast, PI mutants show
up to a 0.578 fractional decrease in m (P < 0.05) (Fig. 2). Thus,
PI resistance cannot be accurately assessed by considering IC50
alone. Fig. 3 demonstrates a lack of correlation between fold
change in IC50 and fractional change in IIP when a mutation
significantly changes m. For InSTI mutations, fractional change
in IIP correlates well with fold change in IC50 because m is not
altered (correlation coefficient = 0.99) (Fig. 3A). On the other

hand, a poor correlation coefficient (0.35) was obtained for PI
mutants (Fig. 3B). Hence, using fractional change in IIP ensures
that the effects of a change in m are accounted for.

Residual IIP Against Drug-Resistant Viruses. Because IIP is simply
the number of logs by which a drug reduces in single-round in-
fectivity, it can be used to compare the expected antiviral activity
of different drugs against different viruses under clinical con-
ditions. Fig. 4 displays the predicted IIP of each drug against WT
and mutant viruses at Cmax based on m and IC50 measured in
primary cells. The reduction in IIP produced by single mutations
varies dramatically. Certain drugs, notably the PIs, retain sub-
stantial IIP against single mutants, consistent with the clinical
observation that PI resistance generally requires multiple muta-
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tions. To some extent, differences in residual IIP reflect the tre-
mendous differences in antiviral activity of different drug classes
caused by differences in m.

Effect of Resistance Mutations on Replication Capacity and Selective
Advantage. We also measured the replication capacity of each
viral clone in the absence of drug by comparing the infectivity of
standardized amounts of WT and mutant viruses in primary cells
(Fig. 5A). As expected, most single mutations reduced replica-
tion capacity. The effects observed were consistent with but of
lower magnitude than effects observed in multiround assays (44,
45). Single mutations in protease produced varied effects on
replication capacity. The L90M, I47V, and M46I mutants
exhibited higher replication capacity than WT, consistent with
a previous study (46). The protease mutants I50V and I47A had
highly impaired replication capacity (<0.1) relative to WT.
Overall, these results suggest that common resistance mutations
impair replication capacity by up to 10-fold in a single cycle.

Changes in replication capacity must be considered in assessing
the selective advantage conferred by a mutation and are in-
corporated in the calculation of selective advantage described
above. Fig. 5B shows the selective advantage of all mutants studied
relative to WT at Cmax. Most single mutants had a 10- to 10,000-
fold selective advantage over WT. For the thymidine analog sta-
vudine and the PI darunavir, single mutants had little selective
advantage, consistent with the observation that resistance to these
drugs involves accumulation of multiple mutations (47, 48).

Analysis of Resistance Mutations Using Primary Cells vs. Transformed
Cell Lines. The above results were obtained using primary CD4+ T
cells, which mimic the principal target cells for HIV-1 in vivo.
Clinicalmethods for determining drug resistance phenotype rely on
transformed cell lines, some of which are nonlymphoid (29). The
use of cell lines facilitates high-throughput analysis and eliminates
the donor-to-donor variability that can be seen in primary cell
assays. Although IC50may vary slightly from donor to donor in our
primary CD4+ T-cell assay, the effect of resistance mutations on
slope is relatively constant (Fig. S4). Nevertheless, primary cells are
not optimal for high-throughput analysis; therefore, we compared
dose–response curves in primary CD4+ T lymphoblasts, a trans-
formed human T-cell line (Jurkat), and the human embryonic
kidney cell line (293T) used in current clinical phenotypic assays
(29) (Figs. S5 and S6). In all three cell types, M184V decreased the
slope of the 3TC dose–response but there were differences in the
extent of inhibition and thedegreeof slope change, particularlywith
thenonlymphoid 293T cells. Interestingly, theTDFeffect described
in Fig. S3 was not evident in either transformed line. Analysis of
resistance inprimary cellsmay reveal effects not evident in cell lines,
but whether this advantage outweighs the difficulty, cost, and vari-
ability inherent in primary cell assays requires further study.

Discussion
IC50 is used as a measure of the potency of antiretroviral drugs.
Resistance is typically expressed as the fold change in IC50 relative
to WT. Clinical concentrations of drugs used are typically well
above IC50, however. Therefore, determining inhibition at clinical
concentrations requires a method for extrapolating from IC50 to
higher concentrations. IC90 is sometimes used (46, 49); however,
like IC50, it represents only a single point on the dose–response
curve. However, m describes how inhibition changes with drug
concentration, and is thus critical for understanding drug effects at
clinical concentrations. Previous analyses of resistance have ig-
noredm or assumed that mutations do not alter it. Here, we show
that some single resistance mutations cause changes in slope that
dramatically affect the amount of inhibition produced by drugs.
The importance of slope is illustrated by the M184V mutation

and its effect on the response to TDF. This mutation reduces the
slope such that in some regions of the dose–response curve, the
mutant virus is resistant to TDF despite minimal change in IC50.
Our resultsmay explain the unexpected failure of aTDF, 3TC, and
abacavir regimen (50). M184V was detected as the main mutation
in most patients failing this regimen. It has been suggested that
failuremayhave beenattributable to viruseswithK65R in addition
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to M184V (51, 52). In many failing patients, however, this double
mutant was not detected. A simpler explanation is that M184V
alone confers partial resistance to TDF. M184V also decreases
slope of the didanosine (ddI) dose–response curve, which may
explain the unexpected failure of TDF, 3TC, and ddI.*
Our results also show that some single resistance mutations

leave substantial residual IIP. Because IIP takes into account
alterations in both IC50 and m, it provides a unique way to
quantitate how much antiviral activity a drug retains against mu-
tant virus. We previously showed that the high slope values of the
PIs and theNNRTIs result in high IIP (33). Not surprisingly, single
mutations do not abolish all this antiviral activity. The PI class
retains the highest residual IIP values in the presence of single
mutations. Measuring the fraction of IIP remaining against
a mutant virus provides an intuitive numerical value that is more
quantitative than the current system of categorizing resistance as
low, intermediate, or high level, based on fold change in IC50. Fold
change in IC50 ignoresm and is potentially boundless, resulting in
demarcations of resistance that are not consistent across drug
classes. Because fractional decrease in IIP uses a finite intuitive
numerical value incorporating m, we propose that it may be
a more useful way to compare the extent of resistance.
Our results also have implications for mechanisms of drug ac-

tion. InSTI mutations affected IC50 but not m. Increases in IC50
can be attributed to decreased affinity, resulting in the need for
higher drug concentrations for inhibition. Biochemical analyses of
integrase mutants indicate that the off-rate is remarkably in-
creased relative to WT (53). This finding, coupled with our ob-

servation of a constant slope close to 1, indicates that integrase
inhibitors affect WT and mutant viruses by blocking a non-
cooperative reaction. At low multiplicity of infection, the critical
reaction is mediated by a single molecular complex per cell con-
sisting of a single integrase tetramer bound to the ends of the
complete linear cDNA.
In contrast, single PI mutations decrease slope but have mi-

nor effects on IC50. Protease mutations are classified by position
relative to the active site: substrate cleft mutations, protease flap
mutations, and those at other conserved residues (23, 54). All
single mutations studied exhibited the same pattern, however,
showing modest change in IC50 but decreased slope. The com-
paratively small fold change in IC50 caused by protease muta-
tions has been observed previously (55). We hypothesize that
the reduction in m may reflect the fact that PIs block a coop-
erative process in which multiple copies of protease partici-
pate in virion maturation (33). The loss in enzyme efficiency
caused by mutations affects the number of protease molecules
needed to complete maturation before irreversible decay pro-
cesses intervene.
As we and others have pointed out (33, 56–58), IIP is only one

of several factors that determine the magnitude and durability of
viral suppression by antiretroviral drugs. Other factors include
drug half-life, distribution, toxicity and tolerability, drug inter-
actions, and genetic barriers to resistance. A study by Henrich
et al. (57) shows that IIP and inhibitory quotient have only
modest correlations with clinical trial outcomes as measured
using intent-to-treat analysis after 48 wk. This is expected, be-
cause many factors in addition to intrinsic antiviral activity de-
termine clinical outcome. In addition, it is becoming clear that
many regimens have sufficient inhibitory potential to suppress
viral replication completely. In this situation, clinical outcome
will be dominated by other factors. These caveats also apply to
the residual IIP against resistant viruses. Furthermore, residual
IIP only indicates the extent of inhibition a drug exerts on mutant
virus and does not indicate how well this mutant virus is able to
replicate and compete with other variants, including WT. Se-
lective advantage profiles account for changes in replication ca-
pacity and indicate the relative probability that one mutant will
be selected for at various drug concentrations. The observed high
residual IIPs of some drugs, notably the PIs, suggest that these
viral variants may nevertheless be adequately suppressed despite
their higher selective advantage.
Taken together, these results demonstrate that a consideration

of dose–response curve slope is important for assessing re-
sistance. Values of replication capacity, IC50, m, and IIP ob-
tained in our primary cell system may differ from those obtained
with other isolates and with assays using cells lines. For sim-
plicity, we studied single mutations, but the concepts discussed
are grounded in fundamental laws of pharmacology and, with
further development, can be applied to more complex patterns
of resistance. It will be of interest to determine how m and IC50
are altered by complex patterns of mutations that arise in some
patients, such as the thymidine analog mutations; the Q151M-
complex; and those seen with PI resistance, including Gag-
cleavage site mutations.

Methods
Detailed materials and methods are provided in SI Methods.

Dose–response curves for anti–HIV-1 drugs were obtained using an NL4-3
construct (33, 59) bearing single resistance mutations in a single-round in-
fectivity assay. CXCR4-pseudotyped WT viruses encoding GFP in the env gene
were used to infect primary CD4+ T lymphoblasts. Patient isolates bearing the
M184V and K103N mutations were cloned into the NL4-3 backbone, and
viruses generated from these were used in the single-round assay.

Infectivity was quantified by flow cytometry, and fu was calculated as
%GFP+ cells in the presence of drug normalized by %GFP+ cells without
drug. Using Eq. 2, dose–response curves were linearized, and IC50, m, and IIP
were determined as previously described (33).
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