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Pore-forming toxins (PFTs) are potent cytolytic agents secreted
by pathogenic bacteria that protect microbes against the cell-
mediated immune system (by targeting phagocytic cells), disrupt
epithelial barriers, and liberate materials necessary to sustain
growth and colonization. Produced by gram-positive and gram-
negative bacteria alike, PFTs are released as water-soluble mono-
meric or dimeric species, bind specifically to target membranes, and
assemble transmembrane channels leading to cell damage and/or
lysis. Structural and biophysical analyses of individual steps in
the assembly pathway are essential to fully understanding the
dynamic process of channel formation. To work toward this goal,
we solved by X-ray diffraction the 2.9-Å structure of the 450-kDa
heptameric Vibrio cholerae cytolysin (VCC) toxin purified and crys-
tallized in the presence of detergent. This structure, together with
our previously determined 2.3-Å structure of the VCCwater-soluble
monomer, reveals in detail the architectural changes that occur
within the channel region and accessory lectin domains during
pore formation including substantial rearrangements of hydro-
gen-bonding networks in the pore-forming amphipathic loops.
Interestingly, a ring of tryptophan residues forms the narrowest
constriction in the transmembrane channel reminiscent of the phe-
nylalanine clamp identified in anthrax protective antigen [Krantz
BA, et al. (2005) Science 309:777–781]. Our work provides an exam-
ple of a β-barrel PFT (β-PFT) for which soluble and assembled
structures are available at high-resolution, providing a template
for investigating intermediate steps in assembly.
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The devastating human pathogen Vibrio cholerae, which is
endemic in many parts of the globe and responsible for thou-

sands of deaths annually, produces a cell-damaging toxin, Vibrio
cholerae cytolysin (VCC), that permeabilizes human intestinal
and immune cells (1–3) and significantly facilitates intestinal
colonization in mouse models (4). Although VCC’s involvement
as a virulence factor in the human cholera pandemic remains
unclear, this toxin belongs to a much larger class of pore-forming
toxins (PFTs) secreted by a wide variety of human pathogens (5).
PFTs are released by bacteria as water-soluble species and can
attack cells at a distance, especially if they enter into the blood-
stream. This poses an interesting physical problem in that the
toxin must shield the hydrophobic residues that anchor the lytic
channel in the membrane from the aqueous phase during transit
to the intended cellular target. As a consequence, the channel-
forming region comprises only a portion of the entire secreted
toxin, and formation of a complete pore requires oligomerization
of multiple subunits. The rest of the secreted polypeptide con-
tains regions that target receptors, facilitate oligomerization, and
regulate activity of the toxin.

Individual PFTs are generally classified into two primary
groups depending on whether the final transmembrane channel
contains an arrangement of α-helical or β-sheet motifs. VCC is
classified as a β-PFT, a diverse family unified by amphipathic hair-
pin loops that insert to form β-barrel structures. Similar to VCC

are the staphylococcal PFTs, which display weak sequence iden-
tity (approximately 15%) but strong structural similarity with
the VCC core domain (6). Structures exist for the water-soluble
bicomponent LukF (7, 8) and LukS (9) toxins as well as the
homomeric α-hemolysin (α-HL) heptamer (10), which represents
the only fully assembled β-PFTcrystal structure determined until
now. Distinct in sequence and structure from VCC (and each
other), but with a similar heptameric stoichiometry, are the ex-
tensively studied aerolysin (11) and anthrax toxins (12) produced
by Aeromonas hydrophila and Bacillus anthracis, respectively. An-
thrax toxin, which consists of three proteins, is unique in that the
heptameric pore [formed by protective antigen (PA)] facilitates
the translocation of two toxic enzymes (lethal factor and edema
factor) into the cytosol following clathrin-mediated endocytosis
of the proteolytically activated and receptor-bound toxin com-
plex. A third important class of β-PFTs is the cholesterol-depen-
dent cytolysin (CDC) family, which are unrelated in sequence to
VCC and include perfringolysin O from Clostridium perfringens
and intermedilysin from Streptococcus intermedius (13). CDCs
form large channels consisting of approximately 50 subunits, con-
tribute two amphipathic hairpins per subunit (14), and, similar to
VCC (15, 16), prefer cholesterol-rich membranes for lysis.

The VCC protoxin (17) consists of a core cytolytic domain con-
taining the single prestem (pore-forming) loop, an amino-term-
inal 15-kDa prodomain, and two carboxyl-terminal domains with
lectin-like folds that may aid in binding to carbohydrate receptors
(18). Functional studies indicate that proteolytic activation must
first occur within a consecutive string of protease sites that con-
nect the prodomain to the toxin core (19). Extensive experimen-
tal evidence supports a model for β-PFT assembly in which
individual toxin monomers bind to membranes, oligomerize into
nonlytic prepore intermediates, and insert their stem domains
into the membrane in a concerted fashion (20–23).

A wealth of structural and biophysical studies has outlined
many key features relevant to the targeting and assembly of
β-PFTs, but no high-resolution structures of identical toxins in
water-soluble and membrane-inserted states exist. For VCC, our
recent low-resolution structure determined by single-particle
electron cryomicroscopy (24) confirms a heptameric endpoint
for assembly (25) and suggests that substantial rearrangements of
structural domains occur during the transition to the membrane-
embedded pore. Although this structure provides an image of
the gross domain organization of the heptamer, the resolution
is insufficient to determine details of the transmembrane channel
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and to fully utilize the high-resolution monomeric crystal struc-
ture in understanding the molecular transitions that occur during
assembly. With these limitations in mind, we solved the crystal
structure of the VCC heptamer purified in detergent micelles.
Our structure reveals an unexpected aromatic ring of residues
within the channel lumen and a pore rich in charged amino
acids. Furthermore, a comparison with the VCC monomer struc-
ture suggests that assembly entails a substantial rearrangement of
secondary structure within the stem domain demonstrating why,
at least for some β-PFTs, the prepore to pore transition is the
rate-limiting step in assembly (21, 23).

Results and Discussion
Crystallization and X-Ray Diffraction. To produce assembled VCC
for structural studies, we activated monomeric protoxin with
trypsin and added milligram quantities to asolectin liposomes
containing 20% wt∕wt cholesterol. Following solubilization in the
nonionic detergent hexaethylene glycol monodecyl ether (C10E6),
we purified heptameric material by size exclusion chromatogra-
phy. Several additional detergents were successful in stabilizing
monodisperse heptamer in solution, but C10E6 produced the
best diffracting crystals for X-ray experiments. These crystals
belonged to a P212121 space group with approximate unit cell
dimensions of a ¼ 172 Å, b ¼ 182 Å, and c ¼ 430 Å. This large
unit cell, containing two heptamers per asymmetric unit (67% sol-
vent content), provided a challenging data collection and phasing
problem, and exhaustive attempts at using molecular replace-
ment techniques proved unsuccessful. Phases were ultimately
derived from a three-wavelength multiwavelength anomalous
diffraction (MAD) experiment (26) using crystals soaked in
Ta6Br12

2þ clusters (Fig. S1). Extension of low-resolution (4 Å)
phases to the final native 2.9-Å data was greatly facilitated by
the 14-fold noncrystallographic symmetry (NCS) and the high-
resolution water-soluble monomer structure (2.3 Å) yielding ex-
cellent electron density maps. The final model refined against the
2.9-Å native dataset contained two VCC heptamers (residues
136–716), 650 water molecules, and had Rwork and Rfree factors of
21.8 and 24.9%, respectively (Table S1). Weak density for 14 de-
tergent molecules surrounding the channel and fragments of the
disordered amino terminus (residues 124–135) were discernable,
but the density was too discontinuous to include in the model.

VCC Heptamer Structure. The VCC heptamer forms a ring-like
structure approximately 140 Å high perpendicular to the mem-
brane plane with a widest outer diameter of 135 Å (Fig. 1 A
and B). The channel pore, which runs along the 7-fold symmetry
axis of the heptamer, is separated into an upper large vestibule,
formed by β-prism and cytolysin domains, and a 14-strand trans-
membrane β-barrel formed by the stem domains. The β-barrel has
a backbone-to-backbone diameter of approximately 25 Å and is
ringed by a single layer of aromatic residues (composed of F288
and Y313) commonly observed in transmembrane β-barrel pro-
teins near the lipid/solvent interface (27). However, VCC is miss-
ing a second ring on the opposite side of the barrel predicted to
occur in many β-PFTs [primarily phenylalanines (28)]. At its nar-
rowest point, the β-barrel has an approximately 8-Å-wide con-
striction [calculated by the program HOLE (29)] formed by a
heptad of tryptophan residues (W318) conserved throughout
many Vibrio species (except Vibrio vulnificus) but not Aeromonas
species (which also lack the β-prism lectin). The upper vestibule
surface is primarily acidic, whereas the β-barrel region contains
alternating bands of basic and acidic amino acids with two rings of
lysine residues near the intracellular opening of the stem (K304
and K306; Fig. 1 C and D). This is in contrast to staph α-HL,
which is more neutral in character and wider within the channel
(approximately 10-Å constriction formed by M113 and K147;
Fig. 1E and Fig. S2). Consistent with these observations, electro-
physiological measurements of single channels in planar lipid-

bilayers indicate that VCC is moderately anion-selective and has
a 4-fold lower conductivity than α-HL (30). Previous modeling stu-
dies of the VCC pore predicted an excess of positive charge near
the intracellular opening (31), which may also help to explain the
low permeability of Ca2þ ions through the channel (1). The VCC
outer vestibule is more open than in α-HL, but repulsion of ions
due to charges within the barrel could underlie the lower conduc-
tivity of VCC, similar to the 10-fold drop in conductance seen be-
tween ScrYand LamB, two glycoporins with nearly identical pore
geometries but different electrostatic profiles (32).

The ring of β-trefoil lectin domains sits atop the cytolysin do-
mains and heightens the upper vestibule by 30 Å. An extended
loop connects the β-trefoil lectin to the second β-prism lectin
in a VCC protomer. This lectin domain interacts with the outer
surface of the cytolysin domain, burying approximately 600 Å2

of accessible surface area. The cytolytic core region of the VCC
protomer shares an overall topology with α-HL (RMSD 2.9 Å
for 1453 of 2051 Cα residues, 11.9% sequence identity), with im-
portant differences discussed below.

Structural Rearrangements During Assembly. Superimposing the cy-
tolytic domains (residues 136–278 and 325–459) of the protoxin
monomer and a protomer from the VCC oligomer reveals five
major rearrangements that occur along the pathway between the
protoxin and assembled states (Fig. 2 A and B and Movies S1 and
S2). Firstly, the amino-terminal prodomain (amino acids 1–105)
is absent from the heptameric assembly after liberation by pro-
teolytic cleavage. Secondly, the β-prism lectin domain swings
around the cytolytic domain to a location 180° opposite its start-
ing place. This new position on the exterior of the ring (forming
the “spikes” seen in the low-resolution EM structure) partially
overlaps the previous location of the prodomain in the water-
soluble protoxin and involves a different surface of the β-prism
domain than utilized in interactions with the prestem. Our water-
soluble monomer structure exhibits electron density for a bound
glucoside moiety consistent with reports that this domain inter-
acts with carbohydrate receptors on cell membranes. It appears
that the β-prism rearrangement could occur while still bound to a
carbohydrate receptor, with the final location of the site facing
downward toward the cell membrane (as modeled in Fig. 2B).
The third transition involves a 35° rigid-body rotation of the
β-trefoil lectin domain around the loop connecting it to the cy-
tolytic domain. The short helical turn that precedes the β-trefoil
linker is anchored within the cytolysin domain by a phenylalanine
residue (F455) that is necessary for oligomerization in the related
Vibrio vulnificus hemolysin (33). The fourth transition is a move-
ment of the loop that cradles the prestem in the water-soluble
structure (residues 191–203) through hydrophobic side-chain in-
teractions (notably L192, Y194, L307, and A309) and backbone
hydrogen bonds involving G291 (Fig. S3). Superposition of the
water-soluble monomer on top of the heptameric structure indi-
cates this loop would sterically bump with each neighboring
protomer if a rearrangement did not occur.

Reordering of the cradle loop may destabilize the interactions
holding the stem in the water-soluble position and initiate unfold-
ing of the stem loop, which constitutes the fifth major transition.
Rearrangement of the prestem loop from the water-soluble to
assembled state requires a significant breaking and reforming
of numerous polar and nonpolar interactions (Fig. 2 C and D).
The prestem in the water-soluble monomer consists of a 10-
residue-long antiparallel β-sheet with an intervening 18-residue
loop with 310 helical characteristics. Analysis of hydrogen-bond-
ing patterns identifies approximately 18 bonds between backbone
atoms within the prestem that are broken during pore assembly.
Upon formation of the β-barrel stem, each of the seven stem
loops transforms into 19-residue-long antiparallel β-sheets held
together by 20 newly formed backbone hydrogen bonds. Each
protomer loop additionally forms 21 main chain hydrogen bonds
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with each of its two neighboring protomer stem loops. The net
gain in hydrogen-bonding interactions explains the irreversibility
of oligomer assembly, and the rearrangement of bonds likely
constitutes an energy barrier that must be overcome to initiate
stem unfolding. This transition represents the rate-limiting step
in α-HL assembly, with a measured t1∕2 of 8 min on rabbit ery-
throcyte membranes (21). In VCC, the rate-limiting step for pore
formation is highly dependent on the membrane cholesterol con-
tent, an additional requirement necessary for the insertion of the
stem (34). Hydrophobic residues that contact the inner leaflet of
the target membrane in the assembled stem are mostly packed
against hydrophobic residues on the cytolytic core in the water-
soluble monomer, shielding them from water.

Most of the interactions between protomers in the heptamer
are localized within the interface between cytolysin domains and
stem loops and, with the exception of stem hydrogen bonds, are

distinct from interactions that bridge α-HL protomers. The VCC
cradle loop, which is absent in α-HL, forms multiple interactions
between the cytolytic and lectin domains of neighboring proto-
mers (Fig. 3A) and is in a position to coordinate assembly-related
conformational movements between domains. This loop may play
a functionally analogous role to the amino latch in the staph
toxins, which prevents premature oligomerization of monomers
in solution and may form cooperative interactions with the pre-
stem (35). In α-HL, a key histidine residue (H35) forms important
interprotomer contacts, and mutations to this residue arrest
assembly at the prepore state (36). In VCC, the H35 position is
replaced by a unique loop structure containing three consecutive
aspartate residues that form salt bridges within and between
protomers (Fig. 3B). Together, interactions between each pair
of protomers bury 2;854 Å2 of accessible surface area with a total
of 19;978 Å2 in the entire heptamer.

Fig. 1. Structure of the VCC heptamer. (A) Ribbon representation of the assembled heptamer. Core cytolysin domain (including rim region), blue; β-trefoil
lectin, purple; β-prism lectin, gold; β-barrel stem, green. Side chains of aromatic residues near the putative membrane-solvent interface are shown in red. The
approximate outline of the membrane is in gray. (B) Top view of the heptamer. (C) Surface representation of the heptamer sliced in half along the sevenfold
axis and colored by electrostatic potential. Figure generated using APBS (55) and Chimera (56). (D) Outline of the central vestibule/channel of the VCC hep-
tamer generated using HOLE (29). The sevenfold axis is shown as a yellow bar. (E) Graph showing the inner pore diameter along the sevenfold symmetry axis for
VCC (purple solid line) and α-HL (dotted black line).
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VCC Membrane Interactions. The functional role of cholesterol in
the assembly of VCC and other β-PFTs is still an area of intense
investigation and may vary between different toxins. For some
proteins such as aerolysin and anthrax toxin, cholesterol may
serve to cluster membrane receptors and facilitate productive oli-
gomerization of bound monomers (37, 38). In contrast, cholester-
ol is a receptor for the CDC perfringolysin O, which contains a
two-residue motif (T490–L491 in YTTL sequence) within a mem-
brane-interacting loop responsible for cholesterol recognition
(39). Inspection of the membrane-proximal rim domain of VCC
reveals an identical motif (T237–L238 in TTLY sequence) within
a loop facing the membrane surface, which could similarly
mediate interactions with cholesterol (the L238 side chain is dis-
ordered in our maps). A second possible site (A360–L361) is lo-
cated in a comparable orientation on an adjacent loop (Fig. S2).
We do not observe any bound lipid or cholesterol moieties in
our crystal structure even though the toxin was solubilized from
membranes containing 20% cholesterol. It is possible that such
interactions are weak, disrupted by detergent, or nonspecific in
nature; or that lipids and cholesterol only play a role in earlier

stages of assembly. Additionally, the lipid-headgroup binding
pocket observed within the LukF (7) and α-HL (40) rim domains
is absent in VCC (neither staph toxin rim contains a Thr–Leu
motif). A superposition of the VCC and α-HL β-barrel stem do-
mains indicates that the hydrophobic and presumably membrane
buried region of the VCC stem is approximately 3–5 Å longer
than the α-HL stem, possibly due to complementarity with thicker
membranes, such as found in cholesterol-rich “lipid-raft” subdo-
mains (41). It remains to be seen whether a longer stem is a con-
sequence of the toxin evolving toward increased stability within
thicker regions of the membrane and to what extent cholesterol
or lipid-binding motifs are responsible for membrane specificity.

Another distinction between the VCC heptamer and α-HL is
the significantly longer loops within the VCC membrane-proxi-
mal rim domain (Fig. S2B). These loops are 10–15 Å longer in
VCC, adopt a conformation nearly identical to the VCC water-
soluble monomeric state, and would presumably extend much
deeper into the membrane bilayer than the loops in α-HL. Aside
from two valine residues (V422 and V423) on the tip of the long-
est loop and the two previously mentioned leucine residues (L238

Fig. 2. Comparison of the VCC protoxin structure and a protomer from the VCC heptamer. (A) The VCC water-soluble monomer structure with bound gluco-
side (PDB ID code 1XEZ) (17). Domains are colored as in Fig. 1 with the prodomain in red andW318 shown as green spheres. (B) In the assembled form, the stem
domain is completely unfurled and the β-prism lectin domain moves to the opposite side of the cytolysin domain. The cradle loop has rearranged, contacting
the neighboring protomer. The sugar headgroup seen in A is modeled into the β-prism lectin-binding site. (C) Schematic of the putative backbone hydrogen-
bonding pattern in the prestem. Hydrogen bonds (using a 3.2-Å cutoff) are shown as black dashed lines. (D) The shifted hydrogen-bonding pattern of the
assembled stem loop. Amino-acid side chains facing the membrane are marked with black dots, and the aromatic residues near the membrane/
solvent interface are marked with gold asterisks.
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and L361), the amino-acid composition within the rim domain
loops is richly aromatic and contains a balance of tyrosine, tryp-
tophan, and histidine residues: side chains less likely to penetrate
deep into the bilayer. We note that our VCC EM structure (24) is
consistent with the loop conformation seen in the crystal struc-
ture, which is not surprising because both were determined from
solubilized heptamer in micelles rather than in a lipid bilayer
environment. It is possible that these loops adopt a splayed con-
formation when the heptamer is sitting on the membrane and that
detergent solubilization of the complex may have allowed them
to relax to their preferred water-soluble conformation. Without
significant reorientation, it is also possible that the loops distort
the local lipid bilayer structure in a way that might facilitate
insertion of the stem domain.

The VCC Pore.Analysis of alignments of the predicted membrane-
spanning loops of β-PFTs reveals common features within the
family of β-barrel membrane proteins. Many channels are lined
with charged amino acids and have an approximately 5-residue
loop (or turn) containing hydrophobic and/or aromatic residues
at the trans (opposite the side of entry) end of the pore. A“rivet”
model for membrane insertion has been proposed, where this
hydrophobic loop at the end of the stem hairpin folds back into
the membrane and anchors the channel (28), a motif also ob-
served in some bacterial outer membrane proteins. The α-HL
toxin is an exception, with a neutral pore surface and two charged
aspartate residues in the trans-loop (with sequence DDTGK).
VCC combines features from both groups, having a highly
charged lumen and a loop containing a single aspartate residue
(with sequence SGDG). Instead of fluting outward on the trans
side as α-HL does, the tip of the VCC channel backbone curves
slightly inward (see Fig. S2B).

Another feature linking VCC with a nonhomologous β-PFT is
the W318 aromatic ring positioned at the narrowest aperture
of the pore. Within the anthrax PA channel lies a “φ-clamp,” a
heptameric ring of phenylalanine residues (F427) that may also
outline a pore constriction (42, 43). This hydrophobic belt forms
a seal around translocating polypeptides and facilitates unidirec-
tional transport through the pore (42). Mutations at position

F427 in PA disrupt polypeptide translocation and in some cases
also inhibit the prepore to pore transition (44). An interprotomer
salt bridge lying directly above the φ-clamp (formed by K397 and
D426) may help position F427 and neutralize charges near the
constriction that interact strongly with a translocating protein
(45). Quite remarkably, two charged residues in VCC reside di-
rectly above the W318 ring (K283 and E281) within close enough
proximity to form a salt bridge (less than 4 Å), and VCC has an
acidic central vestibule similar to anthrax toxin. At this time, we
are unaware of any evidence that VCC serves as a translocation
channel, although electrophysiological experiments indicate that
synthetic peptides can fit within the α-HL pore (46) and presum-
ably VCC as well. Certainly these intriguing similarities between
VCC and anthrax toxin require further inquiry to elucidate
whether analogous features exist in other β-PFTs and to deter-
mine to what extent they participate in the assembly mechanism.

Conclusions
The VCC heptamer structure provides a deeper understanding
of the specific rearrangements that occur during assembly of a
β-PFT as well as structural insight into the properties of the
VCC channel. It supports an assembly model where interactions
between large interprotomer surfaces drive loop rearrangements
that lead to the unfolding of the channel stem (Fig. S4). The stem
rearrangement requires the breaking and reforming of virtually
all of the backbone hydrogen bonds within the stem loop as well
as numerous van der Waals surface interactions. Our structure
reveals intriguing similarities with structurally unrelated β-PFTs
including an aromatic ring similar to anthrax toxin and putative
cholesterol-binding sites shared with CDCs. This information will
provide a launching point for new experiments aimed at under-
standing the specificity of VCC and related PFTs against target
cell membranes and the involvement of individual membrane
components and structural motifs in the assembly process.

Methods
Assembly of the VCC Oligomer. Monomeric VCC was expressed and purified
as described previously (17). Trypsin-cleaved toxin was added to freshly
prepared soybean asolectin liposomes (1∶2 protein∶lipid ratio) containing
20% cholesterol and incubated for 30 min at room temperature. Following
centrifugation for 30 min at 40 K rpm in a Beckman TL-100 rotor tabletop
ultracentrifuge, oligomeric toxin was solubilized in a buffer containing
20 mM Tris pH 7.6, 150 mM NaCl, 1 mM EDTA, and 40 mM C10E6. After a sec-
ond centrifugation step, the solubilized toxin was purified over a Superose 6
column in a buffer containing 20 mM Tris pH 7.6, 150 mM NaCl, 1 mM EDTA,
and 1 mM C10E6. Peak fractions were concentrated to 10 mg∕mL before crys-
tallization using a 100-kDa cutoff membrane (Millipore Ultrafree).

Crystallization and Data Collection. Oligomeric toxin was crystallized by the
hanging drop method. One microliter of concentrated oligomer was added
to an equal volume of buffer containing 20mMHEPES pH 7.6, 10% PEG 2000,
and 20 mM CoðNH3Þ6Cl3. Crystals were cryoprotected in 20% glycerol before
freezing in liquid nitrogen. For heavy atom derivativatization, crystals were
soaked overnight in a buffer containing 20 mMHEPES pH 7.6, 10% PEG 2000,
10% glycerol, and 1 mM Ta6Br12

2þ clusters (Jena Bioscience). All native and
heavy atom data were collected at beamline 12-2 at the Stanford Synchro-
tron Radiation Laboratory (SSRL), and X-ray data were processed by HKL2000
(47). MAD data were collected using the inverse-beam method at the peak,
infection point, and high remote energies based on tantalum fluores-
cence scans.

Structure Solving and Refinement. The program SHELX (48) located cluster
sites and provided preliminary phases (using data to 6.5 Å) resulting in elec-
tron density maps with a clear molecular outline for two VCC heptamer
molecules in the asymmetric unit. Phases were extended to 4.0 Å by solvent
flattening and 14-fold NCS averaging using the program PARROT (49).
Real-space 14-fold NCS averaging by COOT (50) allowed manual docking
of the three main domains from the 2.3-Å VCC monomer structure [Protein
Data Bank (PDB) ID code 1XEZ]. The resulting 42 domains were subjected to
rigid-body refinement [REFMAC (51)], first in the 4-Å data and then in a na-
tive dataset diffracting to 2.9 Å (resulting in an R factor of 44%). Missing
regions, including the transmembrane channel region and several connect-

Fig. 3. Key residues at the interprotomer interface (two protomers shown).
(A) The cradle loop (yellow) knits together multiple domains through hydro-
gen bonding (dashed lines) and van der Waals (dotted surface) interactions
(see Fig. S3 for more details). (B) An insertion containing three consecutive
aspartate residues not present in staph toxins (red) participates in multiple
salt-bridge interactions. Additional putative hydrogen bonds involving R330
form links between the protomers.
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ing loops, were built into 14-fold NCS averaged and B-factor sharpened
2Fo − Fc electron density maps. Alternating refinement and model-rebuild-
ing steps were carried out using the PHENIX suite (52) and COOT. NCS
restraints (coordinate sigma ¼ 0.05 and B-factor weight ¼ 10) were used in
refinement, with residues 589–716 restrained in a second NCS group for
chains A and L (due to crystal-contact induced loop rearrangements). Model
validation was performed using Molprobity (53). Movies were created using
the Gerstein morph script (52, 53) and CNS (54).
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