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Abstract

Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral
symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite
RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a
bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the
infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we
revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the
specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene
involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U
pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the
complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats.
Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI
mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 59-RACE experiments, the
ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor
experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the
22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral
satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.
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Introduction

Plants infected with viruses often display various symptoms,

which can be very specific to given viruses. Despite past efforts, the

molecular bases underlying virus-induced diseases symptoms are

still poorly understood. Subviral non-coding RNA molecules such

as satellite RNAs (satRNAs) or defective interfering (DI) RNAs are

often associated with plant viruses and can modify the symptoms

induced by helper viruses [1,2,3]. Because such subviral RNAs

dramatically modify the symptoms induced by helper viruses, they

are potential tools for gaining insights into the molecular

mechanisms of symptom development.

SatRNAs of Cucumber mosaic virus (CMV) are dependent on

helper viruses for their replication and encapsidation and often

attenuate the disease symptoms induced by CMV. Specifically, Y-

satellite RNA (Y-sat) modifies the symptoms and exacerbates the

pathogenicity of CMV in specific hosts; Y-sat induces a bright

yellowing of leaves of Nicotiana tabacum (the natural host) and other

related species (i.e., N. benthamiana), which is yellower than a typical

chlorosis, whereas it induces systemic necrosis on tomato [4,5,6,7].

The sequence domains on Y-sat, which are responsible for the

symptom induction, have been identified in our previous and

several other reports [6,7,8,9,10]. We also suggested that a single,

nuclear-encoded, incompletely dominant gene in tobacco controls

the Y-sat-mediated yellowing in tobacco plants [11], but no such

host genes have ever been shown to be involved in the symptom

modification nor has the molecular mechanism been reported. An

attractive model based on RNA silencing has been suggested

[2,12], but the solid experimental data are still needed.

RNA silencing is a conserved, sequence-specific gene regulation

system, which has an essential role in development and

maintenance of genome integrity. RNA silencing relies on short

RNA (sRNA) molecules (21–24 nt), which are the key mediators of

RNA silencing-related pathways in almost all eukaryotic organ-

isms [13,14,15]. In plants, similar to other eukaryotic organisms,

there are two main classes of sRNAs: microRNAs (miRNAs) and

short interfering RNAs (siRNAs), but the latter class contains

several different types [16,17]. These sRNAs are produced from

double-stranded RNA (dsRNA) or from folded structures by

Dicer-like (DCL) proteins and guide Argonaute (AGO) proteins to

target cognate RNA or DNA sequences [13,18]. In higher plants,

RNA silencing also operates as an adaptive inducible antiviral
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defense mechanism. As a counter-defense strategy, plant viruses

have evolved viral suppressors of RNA silencing (VSRs) [19] that

interfere with the RNA silencing pathway at different steps by

binding to viral siRNA and/or dsRNAs or directly interacting with

AGO1 [20,21].

Subviral RNAs such as satRNA and DI RNA of tombusvirus

have been also used to understand the roles of RNA silencing in

viral replication and in symptom development. The DI RNA-

induced RNA silencing response is known to control the level of

helper virus, facilitating the long-term co-existence of the host and

the viral pathogen [20,22,23,24]. In addition, progress in

understanding plant antiviral RNA silencing has revealed cross

relationships between RNA silencing and viral pathogenicity.

Recent studies suggest the possibility that virus-derived siRNA

(vsiRNA) could mediate virus–host interactions through a shared

sequence identity with the host mRNA, resulting in silencing of the

host genes and subsequent viral symptom development. A few

interactions between host mRNAs and vsiRNAs that resulted in

the vsiRNA-guided cleavages of host mRNAs have been

experimentally shown [25,26], although their roles in the virus–

host interaction have not been determined to date.

Magnesium (Mg)-chelatase is the key enzyme in chlorophyll

biosynthesis, and three subunits (ChlI, ChlH and ChlD) of the

tobacco magnesium protoporphyrin chelatase are required for the

proper function of the enzyme [27]. Indeed, tobacco plants

defective for ChlI have the yellow phenotype [28], suggesting that

chlorophyll biosynthesis is impaired. The same yellow phenotype

was observed when the ChlI gene of tobacco or cotton was targeted

by virus-induced gene silencing (VIGS) [29,30,31]. Furthermore,

an Arabidopsis mutant defective for ChlI also had pale-green to

yellow leaves [32]. Importantly, the plants defective in the function

of the Mg-chelatase enzyme had a very similar yellow phenotype

to plants infected with CMV and Y-sat. Thus, these results raised

the possibility that the ChlI is downregulated by Y-sat in the virus-

infected plants.

In this study, we show that transgenic N. benthamiana plants

develop a yellow phenotype when expressing the inverted-repeat

sequence of Y-sat, similar to the symptoms of the Y-sat-infected

plants. Moreover, we provided evidence that Y-sat targets the ChlI

gene using the host RNA silencing machinery in such a way that Y-

sat-derived siRNAs efficiently downregulate ChlI mRNA through

RNA silencing-mediated cleavage. Our findings strongly suggest

that this yellow phenotype is the result of a disorder in chlorophyll

synthesis caused by the downregulation of the ChlI gene.

Results

Biosynthesis of chloroplast pigments is impaired in
Nicotiana benthamiana plants that express the dsRNA of
Y-sat

To identify host genes involved in the Y-sat-induced symptom

modification, we created transgenic N. benthamiana plants that

express the Y-sat sequence, expecting the yellow phenotype to be

induced without CMV as a helper virus. We have used this

strategy to avoid any effect of virus replication on host gene

expression, because virus infection itself has been shown to

regulate the expression of numerous genes [33]. We first created

transgenic plants that expressed the Y-sat sequence either in the

sense or antisense orientation, but these transgenic plants failed to

have any phenotypic changes (data not shown). However, when

the Y-sat inverted-repeat (IR) sequence-expressing cassette

(Figure 1A) was introduced into N. benthamiana plants, we observed

that the transgenic N. benthamiana lines (16c:YsatIR) had a yellow

phenotype (Figure 1B), although the yellow phenotype was less

pronounced in the 16c:YsatIR lines than in the Y-sat-replicating

system. Of four transgenic lines that we obtained, two had

phenotypes with distinct yellowing; line 1 had vein yellowing, and

line 2 had a yellow mosaic. No yellow phenotype was observed on

the N. benthamiana that expressed dsRNA of GUS (16c:GUSIR),

demonstrating that the expression of dsRNA of an unrelated

sequence in the same Y-sat IR transformation cassette does not

cause a yellow symptom (Figure 1B and 1C). We also confirmed

the lack of viral contamination in the 16c:YsatIR lines by RT-

PCR using primers that are specific to CMV genomes (data not

shown).

To identify putative plant genes responsible for the yellow

phenotype, we carried out microarray analyses of RNA extracted

from the 16c:YsatIR plants (Text S1). In 16c:YsatIR plants, 134

genes were significantly downregulated to levels that are at least

40% lower than in their wild-type counterparts (N. benthamiana 16c)

(Table S1). Among them, 31 genes were actually involved in

chlorophyll biosynthesis and chloroplast biogenesis (Table S1),

further supporting the hypothesis that the yellow phenotype could

be the result of downregulation of the host gene(s) involved in the

biosynthesis pathway of chloroplast pigments. Indeed, proteome

analyses showed that several chloroplast-related proteins, such as

RuBisCo small subunit, RuBisCo activase and glyceraldehyde-3-

phosphate dehydrogenase were significantly affected in 16c:YsatIR

plants (Text S1, Figure S1). More interestingly, the mobility of the

RuBisCo small subunits was shifted in a two-dimensional gel

(Figure S1), indicating that the proteins had been modified. All

together, these results suggest that the expression of chloroplast-

related genes and subsequent synthesis of proteins were altered in

the 16c:YsatIR plants.

ChlI mRNA is downregulated in 16c:YsatIR plants, in N.
benthamiana plants infected with Y-sat, and in Y-sat
dsRNA-transfected protoplasts

When we aligned the sequences of the 31 genes involved in

chlorophyll biosynthesis and chloroplast biogenesis identified

Author Summary

Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is an
interesting subviral RNA because it changes the green
mosaic induced by CMV into a bright yellow mosaic in
Nicotiana tabacum. The molecular basis underlying the
induction of symptoms by viruses is not well understood,
and this Y-sat-mediated modification of symptoms has
been a long-standing mystery. In this study, we discovered
the molecular mechanism involved in the Y-sat-induced
yellowing. First, we showed that transgenic N. benthami-
ana plants that expressed the inverted-repeat sequence of
Y-sat also developed a yellow phenotype, similar to the Y-
sat-infected plants. Then, we found that tobacco magne-
sium protoporphyrin chelatase subunit I gene (ChlI, the key
gene involved in chlorophyll synthesis) was downregulat-
ed in the transgenic plants and in the Y-sat-infected plants.
We then identified a 22-nt long sequence that is
complementary to the Y-sat including four G-U pairs in
the ChlI mRNA. Finally, we demonstrated that a short
interfering RNA (siRNA) derived from Y-sat specifically
targeted and downregulated the ChlI mRNA, thus impair-
ing the chlorophyll biosynthesis pathway. This discovery of
the molecular basis of the symptom modification induced
by Y-sat is the first demonstration that a subviral RNA can
induce disease symptoms by regulating host gene
expression through the RNA silencing machinery.

Satellite RNA Downregulates Host Gene Expression
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by microarray analysis with the Y-sat sequence, we found a

high degree of sequence complementarity (22 nt in a row

including four G-U pairs) between the yellow-inducing domain

of Y-sat [7,34] and the tobacco magnesium (Mg) protoporphy-

rin chelatase subunit I (ChlI) gene (accession AF014053).

Because ChlI is a component of the primary enzyme that

catalyzes the first step in chlorophyll synthesis via the

tetrapyrrole biosynthesis pathway [32], this evidence encour-

aged us to clone and sequence the ChlI gene of N. benthamiana.

We then found that both the ChlI genes from N. tabacum and N.

benthamiana had the 22-nt sequence complementary to the Y-sat

sequence (Figure 2A). Hereafter, we called the 22-nt comple-

mentary sequence for the ChlI gene and the Y-sat sequence as

the yellow region (YR) and satellite yellow region (SYR),

respectively (Figure 2A). We then examined the mRNA levels of

the ChlI gene by Northern blot analysis and quantitative real-

time RT-PCRs in 16c:YsatIR and Y-sat-infected N. benthamiana

plants. The outputs of these analyses showed that the ChlI

mRNA was markedly downregulated in both plants (Figure 2B

and C) and confirmed the results of the microarray analysis. To

confirm that the downregulation of the ChlI mRNA was due to

the satRNA itself, we further conducted a quantitative real-time

RT-PCR using RNAs from N. benthamiana protoplasts trans-

fected with the dsRNA of Y-sat. As controls, we transfected

protoplasts with dsRNA of three other CMV satRNAs; S19-sat,

T73-sat [35] and CM-sat [36]. These satRNAs are different

from Y-sat in the corresponding SYR sequences and do not

induce any yellow phenotypes in tobacco plants [35]. As shown

in Figure 2D, the ChlI mRNA level was lower in protoplasts

treated with dsRNA of Y-sat than in those treated with dsRNA

of the other satRNAs. In addition, the mRNA level of another

chloroplast-related gene, CAB3, decreased in the Y-sat dsRNA-

treated protoplasts (Figure 2D), confirming our findings from

the microarray analysis. In the proteome analysis, many

chloroplast-related proteins were affected in the transgenic

16c plants expressing Y-sat dsRNA; thus, it is conceivable that

the down-regulation of the ChlI gene caused a decrease in other

chloroplast-related genes expression in the Y-sat dsRNA-

treated protoplasts.

CMV vector-based gene silencing of the ChlI induces
downregulation of the ChlI mRNA and the yellow
symptom

We next examined whether silencing of the ChlI gene using

VIGS can induce similar yellow symptoms in the absence of Y-

sat. The 150-bp of ChlI (817 to 966) was inserted into the two

CMV vectors, CMV-A1 and CMV-H1; CMV-A1 lacks the C-

terminal one-third of the intact 2b protein [37], while CMV-H1

vector lacks the entire 2b protein [38] (Figure 3A). In the VIGS

experiments, we used a pseudorecombinant virus that contains

RNA components derived from RNA1 and RNA3 of CMV

strain L to avoid the severe mosaic symptoms induced by CMV-

Y. N. benthamiana plants infected with either of the viral vectors

had systemic yellow symptoms similar to those induced by the

replicating Y-sat in the presence of the helper virus (Figure 3B).

Although CMV-H1:ChlI150 induced the yellowing more slowly

than CMV-A1:ChlI150 in the early stage of infection, the results

of quantitative real-time RT-PCR confirmed that the ChlI

mRNA was downregulated in both CMV-A1:ChlI150- and

CMV-H1:ChlI150-infected N. benthamiana plants compared to

control plants infected with one of the empty vectors (Figure 3C).

Using enzyme-linked immunosorbent assay (ELISA), we con-

firmed that both pseudorecombinant viruses carrying the

inserted ChlI sequence replicated and accumulated to a similar

level in the systemic leaves at 14 days post-inoculation (dpi)

(Figure 3D).

Figure 1. Nicotiana benthamiana plants expressing the dsRNA of
Y-sat have a yellow phenotype without viral infection. A.
Schematic representation of the vector construct for expressing the
dsRNA sequence of Y-sat or GUS. The 317-bp (53 to 369) Y-sat sequence
was inserted in pJM007 vector [46] in a head-to-head manner to create
Y-sat dsRNA, then the inverted repeat (IR)-expressing cassette was
transferred to Ti-plasmid vector pIG121-Hm. The 1004-nt dsRNA of the
GUS sequence (GUS) was used as a control. 35S-P, Cauliflower mosaic
virus (CaMV) 35S promoter; 35S-T, terminator of CaMV 35S promoter.
The intron is derived from IV2 of the ST-LS1 gene from tobacco [46]. B.
Transgenic N. benthamiana plants that express the inverted repeat of Y-
sat had either the vein yellowing (16c:YsatIR line 1) or yellow mosaic
phenotype (16c:YsatIR line 2); the control N. benthamiana had the
typical green phenotype (16c). These plants were the same age and had
been grown together in the same conditions. C. Transgenic N.
benthamiana 16c plant that expresses the inverted repeat of GUS.
The yellow phenotype was not observed on N. benthamiana expressing
dsRNA of GUS (16c:GUSIR), while 16c:YsatIR line 2 had vein yellowing.
These plants were the same age and had been grown together in the
same conditions.
doi:10.1371/journal.ppat.1002021.g001

Satellite RNA Downregulates Host Gene Expression
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Sequence complementarity between Y-sat and the ChlI
gene is essential for the induction of the yellow
phenotype

The ChlI genes of pepper, tomato and Arabidopsis thaliana were

obtained from the gene database, and the 22-nt complementary

sequences of the ChlI genes and Y-sat were aligned (Figure 4A).

Pepper has the same YR sequence in the ChlI gene as those of

tobacco and N. benthamiana. Conversely, several mismatches were

found in the case of the tomato ChlI and Arabidopsis ChlI (ChlI1 and

ChlI2) genes (Figure 4A). We next examined whether the Y-sat can

induce yellow symptoms on pepper, tomato and Arabidopsis plants.

As expected, infected pepper plants developed bright yellow

symptoms (Figure 4B, right plant), whereas tomato plants did not

(Figure 4C, right plant). By site-directed mutagenesis of the SYR,

we generated three Y-sat derivatives having the 22-nt continuous

sequence complementary to the corresponding YRs of tomato ChlI

gene, Arabidopsis ChlI1 and ChlI2 genes (Y-sat-Tom, Y-sat-Ara1

and Y-sat-Ara2, respectively) (Figure 4A). When tomato plants

were inoculated with the Y-sat mut-Tom and the helper virus,

yellow symptoms appeared at 10 dpi (Figure 4C, left plant).

However, some of the introduced mutations in individual plants

had reverted to the original nucleotides at 21 dpi. Notably, the Y-

sat mut-Tom did not induce yellow symptoms in N. benthamiana

(Figure 4D, left plant). Similarly, when Arabidopsis plants were

infected with CMV-Y and Y-sat mut-Ara1, yellow symptoms

appeared (Figure 4E, right plant). On the other hand, Y-sat mut-

Ara2 did not induce yellowing (data not shown). The last

observation is consistent with the previous studies by Huang and

Li [32], who reported that ChlI2 of Arabidopsis has lower

functionality than ChlI1 due to a reduced level of expression. In

addition, like Y-sat mut-Tom, Y-sat mut-Ara1 did not induce

yellowing in N. benthamiana (Figure 4F). Quantitative real-time RT-

PCRs confirmed that the mRNA levels of the ChlI gene in the Y-

sat mutants-infected N. benthamiana plants were not downregulated,

unlike in the Y-sat-infected plant (Figure 4G). There were little

differences in satRNA or viral accumulation between Y-sat-

infected- and Y-sat mut-Ara1-infected leaves of N. benthamiana

Figure 2. The tobacco magnesium protoporphyrin chelatase subunit (ChlI) gene, which has the 22-nt complementary sequence to
the Y-sat sequence, was downregulated in the presence of Y-sat. A. The 22-nt complementary sequences of the ChlI gene of N. tabacum, N.
benthamiana and Y-sat. The 22-nt complementary sequences in ChlI (yellow region; YR) and in the Y-sat (satellite yellow region; SYR) are in bold face.
The 22-nt complementary sequences include four G-U base pairs. B. Northern hybridization of ChlI mRNA of the 16c:YsatIR and Y-sat-infected plants.
Total RNAs were prepared from 16c:YsatIR, and CMV-infected N. benthamiana with or without Y-sat. As a helper virus, CMV strain Y was used. The
levels of ChlI mRNA in healthy N. benthamiana (wild type and 16c) were also examined. The 371-bp DIG-labeled cDNA probe was synthesized from
the 39 region of the ChlI gene of N. benthamiana. Ribosomal RNAs were used as a loading control (lower panel). C. The mRNA levels of ChlI
determined by quantitative real-time RT-PCR. Total RNAs were prepared from 16c:YsatIR and CMV-infected N. benthamiana with or without Y-sat. As a
helper virus, CMV strain Y was used. The ChlI mRNA levels in healthy N. benthamiana (wild type and 16c) were also examined. The ChlI mRNA levels
relative to the actin mRNA level are shown (mean 6 SE; n = 3). In panels B and C, samples were taken from equivalent leaves of plants grown in the
same conditions. D. The mRNA levels of the ChlI gene and CAB gene in protoplasts after the introduction of dsRNA of Y-sat. Protoplasts prepared from
N. benthamiana (wild type) leaves were transfected with each dsRNA (2 mg) of Y-sat, S19-sat, T73-sat and CM-sat (dsYsat, dsS19sat, dsT73sat, dsCMsat,
respectively). Protoplasts were harvested at 20 h after transfection, and the mRNA levels of the ChlI and CAB gene were measured by quantitative
real-time RT-PCR (mean 6 SE; n = 3). The actin mRNA levels were used for data normalization. NC; Protoplasts transfected with 2 mL sterile deionized
water instead of satRNA.
doi:10.1371/journal.ppat.1002021.g002

Satellite RNA Downregulates Host Gene Expression
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(Figure 4H and 4I), confirming that the Y-sat mutant was

replicated to a level similar to that of the original Y-sat in the

systemic leaves of N. benthamiana. These results, all together,

strongly suggest that a specific interaction between Y-sat and the

ChlI host gene is involved in development of the yellow symptom.

Massive amounts of small RNAs from SYR sequence
accumulate in Y-sat-infected plants

Because Y-sat and the host ChlI gene seemed to have a specific

interaction through their sequence complementarity, we then

examined the possible involvement of RNA silencing in the Y-sat-

mediated yellow phenotype. First, we tested whether the Y-sat-

derived siRNAs can be hybridized and detected by ChlI mRNA

probe. As shown in Figure S2, sense siRNAs from Y-sat in both Y-

sat-infected and 16c:YsatIR plants were clearly detected in

Northern blots using the ChlI sense RNA probe. On the other

hand, we failed to detect antisense siRNAs from Y-sat by Northern

blots using the ChlI antisense RNA probe. This result seems

reasonable because the YR and SYR sequences do not share

complementarity in the antisense orientation (Figure S2). In

addition, we also detected siRNAs derived from Y-sat mut-Ara1

using the Arabidopsis ChlI1 sense RNA in Northern blots. As shown

in Figure S3, 351-bp Arabidopsis ChlI1 sense RNA probe, which

contains the 22-nt sequence complementary to Y-sat mut-Ara1,

detected the siRNAs of Y-sat mut-Ara1 in the Arabidopsis leaves

infected with CMV and Y-sat mut-Ara1. Assuming that the yellow

symptoms are the result of post-transcriptional RNA silencing of

host genes directed by Y-sat specific sequences, we further

analyzed Y-sat-derived siRNAs profile to find whether Y-sat

siRNAs targeting the ChlI mRNA accumulate in the Y-sat-infected

plants. We thus conducted small RNA deep sequencing to map the

small RNAs on the Y-sat sequence. As the result, Y-sat-derived

siRNAs covered almost the entire Y-sat sequence, and the

majority of Y-sat siRNAs accumulated in the sense orientation

in the Y-sat-infected plants. In addition, 21-nt and 22-nt siRNAs

were abundant among the Y-sat small RNAs populations

(Figure 5A). Y-sat-derived siRNAs in both sense and antisense

orientation were non-uniformly distributed along the sequence

with a few small RNA-generating hot spots (Figure 5A). Abundant

siRNAs were accumulated from the regions around positions 100,

180, 211 and 280 on the Y-sat. Northern hybridization confirmed

that the most abundant siRNAs were generated from the region at

positions 1–200 as opposed to 201–369 (Figure S4). Furthermore,

we found abundant siRNAs homologous to the SYR (Figure 5B).

The accumulation of siRNAs corresponding to SYR in 16c:YsatIR

and Ysat-infected plans was confirmed by Northern hybridization

using LNA probes specific to SYR of Y-sat (Figure 5C). In deep-

sequencing analysis, we also identified the ChlI siRNAs in the Y-

sat-infected tissues although the amounts were not very high

(Figure S5). The profile of the ChlI siRNAs revealed a very unique

Figure 3. Virus-induced gene silencing of the ChlI gene by the CMV vector resulted in yellow symptoms similar to the Y-sat-
mediated yellow phenotype. A. Schematic representation of the CMV vector constructs. Both CMV-A1 and CMV-H1 are derived from RNA2 of
CMV-Y. CMV-A1 lacks the C-terminal one-third of the intact 2b protein, while CMV-H1 vector lacks the entire 2b protein. The 150-bp of the ChlI gene
(817 to 966) was inserted into the two CMV vectors. T7-P, T7 promoter. B. Yellow phenotypes of the N. benthamiana plants infected with CMV vector
carrying the sequence of the ChlI gene. Empty vectors did not induce any yellow symptoms in the systemically infected leaves, but CMV-A1:ChlI150
and CMV-H1:ChlI150 induced systemic yellow symptoms (yellow mosaic and vein yellowing) similar to those induced by Y-sat. To avoid severe
symptoms, we used a pseudorecombinant virus that contains RNA components derived from RNA1 and RNA3 of CMV strain L. C. The mRNA levels of
the ChlI gene in the CMV-infected tissues determined by quantitative real-time RT-PCR. ChlI mRNA levels relative to the actin mRNA level are shown
(mean 6 SE; n = 3). RNAs were extracted from systemic leaves infected with the virus shown in panel B at 9 dpi. D. Virus levels in the systemic leaves
of N. benthamiana inoculated with the CMV vector at 14 dpi, which were determined by conventional ELISA using antibodies raised against CMV CP.
Samples are those in panel B.
doi:10.1371/journal.ppat.1002021.g003

Satellite RNA Downregulates Host Gene Expression
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Figure 4. Sequence complementarity between Y-sat and the host ChlI gene is important for the induction of yellowing. A. The 22-nt
complementary sequences of the ChlI genes of various plants and Y-sat or Y-sat mutants. The 22-nt complementary sequences in the ChlI genes
(yellow region; YR) and in the Y-sat (satellite yellow region; SYR) are in bold face. Site-directed mutations were introduced in the SYR of Y-sat so that
the generated Y-sat mutants (Y-sat mut-Tom, Y-sat mut-Ara1 and Y-sat mut-Ara2) have the 22-nt complementary sequence including G-U pairs to the
host YR in ChlI of tomato, Arabidopsis ChlI1 and ChlI2, respectively. Introduced mutations of the Y-sat mutants are underlined. B. Yellow phenotype of
pepper infected with CMV-Y (left) or CMV-Y and Y-sat (right) at 10 dpi. Pepper has the same YR sequence in the ChlI gene as that of tobacco. C. Yellow
phenotype of tomato infected with CMV-Y and Y-sat mutant, Y-sat mut-Tom at 10 dpi. Left, tomato plant infected with CMV-Y and Y-sat mut-Tom;

Satellite RNA Downregulates Host Gene Expression
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feature; all siRNAs derived from ChlI were generated only from

the 39 region downstream of the cleavage site as described below.

Small RNAs from Y-sat SYR cleave ChlI mRNA post-
transcriptionally

To clarify whether the ChlI mRNA is cleaved in the Y-sat-

infected plant, we analyzed the 59 ends of the cleaved mRNA

products with a 59-RACE assay. Sequencing of the 59-RACE

products revealed two distinct cleavage sites in the YR of the ChlI

mRNA. Almost all identified cleavage sites were mapped at the

middle position in YR (between 890 and 891), which agrees with

the expected cleavage site(s) driven by the 21-nt and 22-nt siRNAs

(Figure 6A). To verify that Y-sat can direct sequence-specific

cleavage, we created a GFP sensor construct in which the 39 non-

coding region contained the 22-nt YR sequence (Figure 6B). The

construct was delivered by agroinfiltration into Y-sat-infected N.

benthamiana leaves that had bright yellow symptoms (Figure 6B).

GFP accumulation was monitored using UV light after agroinfil-

tration. As shown in Figure 6B, GFP fluorescence was reduced in

the Y-sat-infected tissues, and this observation was supported by

the results of quantitative real-time RT-PCR of the GFP mRNA

(Figure 6C). The accumulation of GFP protein was also reduced in

the Y-sat-infected tissues (Figure 6D). These results clearly

demonstrated that the 22-nt YR sequence in the sensor mRNA

was sufficient for the sequence-specific downregulation of GFP-YR

mRNA in Y-sat-infected tissues.

Discussion

Plant RNA silencing has often been implicated as a molecular

mechanism for symptom induction caused by viruses or viral

subviral agents. Viral suppressors of RNA silencing (VSRs) are

able to compromise the endogenous RNA silencing pathways

[19,20], and these virus-encoded silencing suppressors have also

been identified as pathogenicity determinants. Indeed, virus-

induced developmental abnormalities are often explained by the

interference of virus-encoded VSRs with host miRNAs involved in

the developmental processes [39,40]. However, no explanation for

specific symptoms caused by VSRs has ever been confirmed nor

has any report explained the molecular basis for a specific viral

symptom including yellowing and necrosis. In recent studies, host

mRNAs were identified as potential targets of siRNAs and

miRNAs in virus-infected tissues, and several have been proved

to be downregulated [25,26]. For example, Moissiard and Voinnet

[25] demonstrated that the RCC1 gene in Arabidopsis infected with

Cauliflower mosaic virus (CaMV) was downregulated by virus-derived

siRNAs, but contrary to expectations, the decrease in gene

expression did not affect either viral accumulation or symptoms. It

is, in fact, quite difficult to clarify the relationship between such

small RNAs and viral pathogenicity although the idea that host

gene silencing against a particular gene might contribute to the

specific expression of symptoms is very attractive.

In the present study, we have shown that siRNAs derived from

Y-sat induced bright yellow mosaics on tobacco by specifically

targeting mRNA of the host ChlI gene, resulting in the inhibition of

chlorophyll biosynthesis. Here we provide several lines of evidence

that Y-sat-induced bright yellow mosaics are the outcome of

specific interference between the pathogen-derived siRNAs and a

host gene. First, the 22-nt long region of Y-sat (SYR) produces

specific siRNAs that were complementary, including four G-U

pairs, to the 22-nt long region of tobacco ChlI mRNA (YR).

Second, the ChlI mRNA could detect Y-sat-derived siRNAs in

Northern blots. Third, 59-RACE experiments revealed that the

ChlI mRNA was cleaved exactly in the expected middle of the YR.

Fourth, the levels of the ChlI transcript significantly decreased in

both Y-sat-infected plants and the transgenic plants expressing Y-

sat dsRNA. Fifth, the Y-sat mutants that had the modified SYR to

either Arabidopsis ChlI1 mRNA or tomato ChlI mRNA were able to

induce yellow symptoms in these host plants. In contrast, these

modified Y-sat lost the ability to induce yellow symptoms on

tobacco. Sixth, the GFP sensor construct carrying the YR

sequence was specifically targeted in Y-sat-infected plants.

Considering all these results, we propose a model that explains

that the Y-sat-mediated yellow symptom results from the cleavage

of host ChlI mRNA by RNA silencing machinery (Figure 7).

In deep-sequencing analysis, we found abundant Y-sat-derived

siRNAs in the Y-sat-infected N. benthamiana. Furthermore, we

noticed that the ChlI-derived siRNAs also accumulated in the Y-

sat-infected tissues although the amounts were not very high. The

profile of the ChlI siRNAs was very unique because all siRNAs

derived from ChlI were generated only from the 39 region

downstream of the cleavage site (Figure S5). Importantly, spread of

RNA silencing beyond the targeting site in endogenous plant genes

has not been shown [30,41,42], except for trans-acting siRNAs

[43]. Whether secondary siRNAs can be generated from the ChlI

mRNA after vsiRNA-directed cleavage, and whether such

secondary siRNAs are involved in the downregulation of the ChlI

gene still need careful studies.

Here we propose that Y-sat caused the yellow symptoms on

tobacco by directing post-transcriptional RNA silencing against

the ChlI mRNA. However, yellow symptoms appeared much

brighter in Y-sat-infected plants than in 16c:YsatIR plants

(Figure 1B). With regard to the observation, the amount of Y-

sat-derived siRNAs in 16c:YsatIR plants was lower than in Y-sat-

infected plants (Figure 5C), probably leading to different yellow

phenotype between 16c:YsatIR plants and Y-sat-infected plants.

Indeed, the level of the ChlI transcript analyzed by the Northern

blot was higher in the 16c:YsatIR plants than in the Y-sat-infected

plants (Figure 2B). Alternatively, as suggested by Du et al. [44], Y-

sat siRNAs from secondary structures (T-shaped hairpins) may

predominate over the Y-sat siRNAs generated from perfect

dsRNA forms. Thus it is likely that RNA silencing against ChlI

and subsequent yellow phenotype can vary depending on the

qualities and amounts of siRNAs derived from satRNA.

right, tomato plant infected with CMV-Y and Y-sat. D. Green mosaic on N. benthamiana infected with CMV-Y and Y-sat mut-Tom at 14 dpi. Left, N.
benthamiana infected with CMV-Y and Y-sat mut-Tom; right, N. benthamiana infected with CMV-Y and Y-sat. E. Yellow phenotype of Arabidopsis
infected with CMV-Y and Y-sat mut-Ara1 at 10 dpi. F. Green mosaic symptoms on N. benthamiana infected with CMV-Y and Y-sat mut-Ara1 at 14 dpi.
Left, N. benthamiana infected with CMV-Y; middle, N. benthamiana infected with CMV-Y and Y-sat; right, N. benthamiana infected with CMV-Y and Y-
sat mut-Ara1. G. The mRNA levels of ChlI in Y-sat mutant-infected N. benthamiana determined by quantitative real-time RT-PCR. RNAs were extracted
from equivalent systemic leaves infected with CMV, CMV+Y-sat or CMV+Y-sat mutant, and equivalent leaves of healthy N. benthamiana. ChlI mRNA
levels relative to the actin mRNA level are shown (mean 6 SE; n = 3). H. SatRNAs accumulation in Y-sat- and Y-sat mut-Ara1-infected N. benthamiana.
Total RNAs were extracted from the N. benthamiana leaves shown in panel F. An ethidium bromide-stained 1.2% agarose gel is shown. I. CMV
accumulation at 14 dpi in systemic leaves of N. benthamiana inoculated with CMV-Y and Y-sat mut-Ara1, which was determined by conventional
ELISA using antibodies raised against CMV CP. Samples are those shown in panel F.
doi:10.1371/journal.ppat.1002021.g004
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Figure 5. Small RNAs generated from SYR in Y-sat sequence. A. Deep-sequencing analysis of the Y-sat small RNAs in N. benthamiana plants
infected with CMV-Y and Y-sat. Location and frequency of Y-sat-derived small RNAs (21–24 nt) were mapped to the Y-sat sequence in either sense
(above the x-axis) or antisense (below the x-axis) orientation. Data from 21-, 22-, 23-, and 24-nt small RNAs are color-coded in green (21 nt), red (22
nt), blue (23 nt) and yellow (24 nt). The table shows the small RNA reads and percentage of each size of the small RNA. The graph surrounded by
broken lines shows an enlarged graph covering the number of small RNAs from –20,000 to 40,000 for better visibility of the small RNAs distribution.
Double-headed arrows show the major hot spots where abundant siRNAs are generated from the Y-sat. B. Histogram of location, frequency and size
distribution of small RNAs corresponding to the satellite yellow region (SYR) in Y-sat. Numbers on x-axis refer to location of SYR in the Y-sat sequence.
The number of reads for the siRNAs homologous to SYR is given below the histogram. SYR is in bold face. C. Detection of siRNAs corresponding to
SYR in 16c:YsatIR and Y-sat-infected plans in Northern blots. As a helper virus, CMV strain Y was used. LNA probes specific to SYR of Y-sat were used
for hybridization. Ribosomal RNAs were used as a loading control. Left image was taken after 4 h exposure; right image is an overnight exposure of
the same membrane.
doi:10.1371/journal.ppat.1002021.g005
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In conclusion, we discovered the molecular basis of the

symptom modifications induced by Y-sat: the involvement of

RNA silencing mechanism in the pathogenicity of Y-sat. But the

molecular mechanism underlying the synergistic and/or antago-

nistic interaction between satRNAs, helper viruses and host plants

still remain to be explored. In addition, the origin(s) of satRNAs,

their evolutionary strategy and biological significance have long

been intriguing topics. Since the original isolation of Y-sat in Japan

more than 30 years ago [4], no other satRNAs that induce yellow

mosaics on tobacco have been isolated in the world, suggesting

that Y-sat is a rare satRNA that specifically induces yellow mosaics

on tobacco. We have observed that Y-sat cannot compete with

other similar size satRNAs [35], and thus Y-sat may survive

through a different strategy from other satRNAs; the Y-sat-

induced yellowing of leaves, which could preferentially attract

aphids (the vectors of CMV and its satRNAs), may have favored

the transfer of CMV that harbors Y-sat during the its evolutionary

history.

Materials and Methods

Plant materials
Nicotiana benthamiana, Capsicum annuum, Solanum lycopersicum and

Arabidopsis thaliana were used as host plants for the analysis.

Nicotiana benthamiana line 16c having a single copy of the GFP

transgene [45] was obtained from Dr. D. Baulcombe (Sainsbury

Laboratory, UK) and was also used for the analysis. All plants

were grown in a plant growth room with a 16-h light/8-h dark at

24uC and 50% relative humidity.

Transgenic N. benthamiana lines expressing the inverted repeat

(IR) of Y-sat were generated by transforming N. benthamiana 16c

with the binary vector pIG121-Hm carrying the IR of Y-sat under

the CaMV 35S promoter. In the sense and antisense orientations,

the 317-bp (53 to 369) Y-sat sequence (GenBank accession

D00542) was inserted in the pJM007 vector [46], then the inverted

repeat (IR)-expressing cassette was transferred to a Ti-plasmid

vector, pIG121-Hm. The Ti plasmid vector containing the IR

(1004 nt) of the GUS sequence (GUS-IR) was previously

constructed [47].

Virus materials and inoculation
CMV strain Y (CMV-Y) was used as a helper virus for satellite

RNA. To induce gene silencing to the ChlI gene, we used two

CMV-based vectors, CMV-A1 and CMV-H1. CMV-A1 and

CMV-H1 are derived from RNA2 of CMV-Y, and CMV-A1 lacks

the C-terminal one-third of the intact 2b protein as a consequence

of introducing a multiple cloning site [37], while CMV-H1 vector

lacks the entire 2b protein [38]. The 150-bp of the ChlI gene (817

to 966) was inserted into the CMV vectors to create CMV-

A1:ChlI150 and CMV-H1:ChlI150, respectively. To avoid severe

mosaic symptom induction by CMV-Y, we used a pseudorecom-

binant virus that contains RNA components derived from RNA1

and RNA3 of CMV strain L together with RNA2 of the vector.

Each plasmid containing a full-length cDNA clone of RNA1 to

Figure 6. Sequence complementarity between Y-sat and the ChlI gene triggers mRNA cleavage, causing a yellow symptom. A.
Schematic illustration of the ChlI gene derived from the 59-end analyses of the cleaved ChlI mRNAs. The number of 59-RACE clones corresponding to
each site is indicated by arrows. B. Y-sat-mediated targeting of GFP-YR sensor mRNAs. Schematic representation of the GFP-YR sensor construct is
shown above. Leaf images show GFP fluorescence expressed from the GFP-YR sensor construct by agroinfiltration in N. benthamiana leaves with or
without Y-sat infection. As a helper virus, CMV strain Y was used. The GFP fluorescence in the infiltrated patches was observed 2 days after
agroinfiltration. Note that the GFP fluorescence (GFP-YR) was reduced in Y-sat-infected leaves, suggesting that YR was specifically targeted by Y-sat.
C. The mRNA levels of GFP determined by quantitative real-time RT-PCR. Total RNAs were extracted from agroinfiltrated areas at 3 days after
agroinfiltration. The mRNA levels for actin were used for data normalization. D. Western blot analysis of GFP. Total proteins were extracted from
agroinfiltrated areas at 3 days after infiltration and subjected to western blot analysis using anti-GFP antibodies. RuBisCo large subunit (rbcL) stained
with Coomassie brilliant blue (CBB) is shown as a loading control.
doi:10.1371/journal.ppat.1002021.g006
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RNA3 was transcribed in vitro after linearization with a restriction

enzyme [37]. Infectious viruses were then created by mixing

transcripts of RNAs 1 to 3. For virus propagation, leaves of 4-

week-old plants of N. benthamiana were dusted with carborundum

and rub-inoculated with the RNA transcripts. For inoculation of

tomato plants, leaves of young plants were rub-inoculated with the

sap from virus-infected tissues of N. benthamiana. Successful

systemic infection with the virus containing the full insert sequence

was confirmed by RT-PCRs. Viral accumulation was examined by

conventional ELISA [48] using the antibodies raised against the

CMV CP.

RNA analyses
Total RNAs were extracted by either a conventional phenol/

chloroform method [47] or a method using Trizol reagent

(Invitrogen) following the manufacturer’s instructions. The N.

benthamiana ChlI clone including the entire ORF was amplified by

RT-PCR using the primer pair designed from the tobacco ChlI

sequence (59-GCTCTAGAATGGCTTCACTACTAGGAAC-39

for forward primer, 59-GCCCAAGCTTAGGCGAAAACCTCA-

TAAAATTTC-39 for reverse primer). Quantitative real-time RT-

PCR was performed essentially as described before [37]. Primers

for quantitative real-time RT-PCR for the N. benthamiana ChlI gene

were as follows: 59-CTTATTGGTTCGGGTAATCCTG-39 for

forward primer and 59-GCTGAGTCGATTTGGTTCTG-39 for

reverse primer. The N. benthamiana actin gene was amplified using

59-GCGGGAAATTGTTAGGGATGT-39 for forward primer

and 59-CCATCAGGCAGCTCGTAGCT-39 for reverse primer

and used for data normalization. Northern blot hybridization was

performed essentially as previously described [49]. Specific probe

for the ChlI gene was generated by PCR with the PCR DIG Probe

Synthesis Kit (Roche Diagnostics) to amplify the 371 bp (634 to

1004) of 39-terminal regions of the ChlI gene using the primer pair

ChlI-634F (59-GAGCCTGGTCTTCTTGCTAAAGC-39) and

ChlI-1004R (59-GCTGAGTCGATTTGGTTCTG-39). In the

Northern blots of the small RNAs corresponding to the 22-nt

complementary sequence region (satellite yellow region, SYR), the

SYRs were detected by using 32P-labeled locked nucleic acid

(LNA) oligonucleotide probes described previously [50].

The ChlI mRNA cleavage sites were analyzed by modified

RNA-ligase mediated 59-RACE [51]. Total RNA (10 mg) was

purified using the MicroPoly(A) Purist Kit (Ambion), then the

fractionated Poly(A)+ mRNA was ligated to the GeneRacer RNA

Oligo adaptor using the GeneRacer Kit (Invitrogen). Ligated

RNAs were reverse transcribed using the gene-specific reverse

primer for the ChlI gene, ChlI-1004R (59-GCTGAGTC-

GATTTGGTTCTG-39). The 59end of the cDNA was then

amplified by PCR using the GeneRacer 59 primer and the gene-

specific reverse primer used for the reverse transcription for the

first PCR. The GeneRacer 59 nested primer was also used for the

subsequent nested PCR. The amplified product from the nested

PCR was excised from 1.2% agarose gel and cloned into pGEM-T

Easy (Promega) for sequencing.

Protoplast experiments
Protoplasts were prepared from leaves of N. benthamiana as

described before [52]. The dsRNA of four satRNAs (Y-sat, S19-sat

and T73-sat [35] and CM-sat [36]) were used. DsRNA of satRNA

was prepared by in vitro transcription using a PCR-amplified

fragment containing the T7 promoter sequence as described

previously [52]. The prepared protoplasts were transfected with

the satRNA dsRNAs (2 mg) in a PEG–calcium solution as

described [52] and then incubated for 20 h. Total RNA was

extracted from the harvested protoplasts with Trizol reagent

(Invitrogen), and the mRNA levels of the ChlI and CAB gene were

measured by quantitative real-time RT-PCR (mean 6 SE; n = 3).

Primers for quantitative real-time RT-PCR for the CAB gene were

59-CGGCCGATCCAGAAACTTT-39 for forward primer and

59-GCCCATCTGCAGTGAATAACC-39 for reverse primer.

Deep-sequencing analysis
Total RNA was extracted from CMV and Y-sat-infected N.

benthamiana plants. Small RNAs were isolated essentially as

Figure 7. Scenarios to explain the cleavage of ChlI mRNA by Y-
sat in the RNA silencing pathway. The most probable scenario is
that AGO1 associated with the primary Y-sat siRNAs cleaves the ChlI
mRNA at the SYR-YR portion, then a host RNA-dependent RNA
polymerase (RDR) may access the cleaved ChlI mRNA fragments to
produce dsRNAs, which are subsequently processed into secondary
siRNAs. In addition, Y-sat itself is cleaved by AGO1 loaded with siRNAs
derived from Y-sat, inducing the production of a large amount of
siRNAs containing the SYR sequence.
doi:10.1371/journal.ppat.1002021.g007
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described [49] and submitted to Hokkaido System Science

(Sapporo, Japan), where deep-sequencing analysis was per-

formed on an Illumina Genome Analyzer using the standard

protocol of the manufacturer. The 18–45-nt small RNA reads

were extracted from raw reads and aligned with the Y-sat

sequence using the program SOAP [53] to search for perfectly

matched sequences.

GFP sensor experiments
The GFP-YR sensor gene was inserted between the BamHI and

SacI sites in the pBE2113 vector. The Ti-plasmid construct was

then introduced into Agrobacterium tumefaciens KYRT1 strain, which

was supplied by Dr. G. B. Collins (University of Kentucky, USA).

Agrobacterium infiltration was carried out essentially as described

[49].

Western blot analysis
Total proteins were extracted from the sample tissues by

grinding in Laemmli buffer, separated by SDS-PAGE, and /

transferred onto a PVDF membrane (Immobilon, Millipore). Anti-

GFP antibodies were purchased from Roche and used at a 1:1000

dilution. For immunostaining, an alkaline phosphatase-conjugated

goat anti-rabbit antibody was added to the blots at a 1:3000

dilution followed by colorimetric development with BCIP and

NBT.

Supporting Information

Figure S1 Two-dimensional electrophoresis of extracted pro-

teins from Nicotiana benthamiana 16c (16c, upper panel) and N.

benthamiana 16c:YsatIR (16c:YsatIR, lower panel). Red circles in

the gel of 16c indicate the spots that decreased in 16c:YsatIR

compared to 16c. Blue circles in the gel of 16c:YsatIR indicate the

spots that increased in 16c:YsatIR compared to 16c. Among these

spots, we selected five spots (M1-M5) that had markedly changed

between 16c and 16c:YsatIR for LC-MSMS analysis. The

analyzed proteins were identified as follows: M1, ribulose bispho-

sphate carboxylase large chain (RuBisCo large subunit); M2,

ribulose bisphosphate carboxylase activase; M3, glyceraldehyde-3-

phosphate dehydrogenase A (NADP-dependent glyceraldehyde-

phosphate dehydrogenase subunit A); M4, ribulose bisphosphate

carboxylase small chain 1 (RuBisCo small subunit 1); M5, ribulose

bisphosphate carboxylase small chain 1 (RuBisCo small subunit 1).

This proteome analysis revealed that chloroplast-related proteins

were significantly altered in 16c:YsatIR, and that the mobility of

the RuBisCo small subunit had shifted in a two-dimensional gel,

suggesting that RuBisCo small subunit in 16c:YsatIR was modified

at the posttranslational level.

(TIF)

Figure S2 Detection of Y-sat small RNAs by the ChlI gene probe

in Northern blots. RNAs were prepared from 16c:YsatIR, 16c and

CMV-infected N. benthamiana with or without Y-sat. Left panel,

detection of sense small RNAs of Y-sat by the hybridization with

the ChlI sense RNA (mRNA) probe. Right panel, detection of

antisense small RNAs of Y-sat by the hybridization with the ChlI

antisense RNA probe. For the RNA probe, the amplified ChlI

fragments (634–1004, 371bp) were cloned downstream of the T7

promoter in the pGEM-T easy vector (Promega). The sense and

antisense RNA probes specific to the ChlI were prepared using

DIG RNA Labeling Mix (Roche). Arrows indicate small RNAs of

Y-sat. The 22-nt sequence complementarity between the ChlI and

Y-sat is shown below each panel. A continuous 22-nt comple-

mentary sequence including G-U pairs is formed between the ChlI

sense RNA and Y-sat sense RNA, but there are four mismatches in

the region between the ChlI antisense RNA and Y-sat antisense

RNA.

(TIF)

Figure S3 Northern blots of Y-sat mut-Ara1 small RNAs in Y-

sat mut-Ara1-infected Arabidopsis. RNAs were prepared from

Arabidopsis leaves infected with CMV or CMV+Y-sat mut-Ara1.

For the RNA probe, the amplified ChlI1 fragments (750–1100,

351bp) were cloned downstream of the T7 promoter in the

pGEM-T easy vector (Promega). The sense RNA probe specific to

the Arabidopsis ChlI1 was prepared using DIG RNA Labeling Mix

(Roche). Note that Arabidopsis ChlI1 sense RNA probe detected

small RNAs from Y-sat mut-Ara1 (shown by an arrow) in the lane

for Y-sat mut-Ara1-infected leaves.

(TIF)

Figure S4 Confirmation of the relative abundance of Y-sat small

RNAs by Northern blot hybridization. The small RNAs derived

from the hot spots that were observed in the Y-sat small RNA

profiles (Figure 5A) were detected and validated using DIG-labeled

probes: Y-sat-1-200 and Y-sat-201-369. Y-sat-1-200 is comple-

mentary to the positions 1–200, and Y-sat-201-369 is comple-

mentary to the positions 201–369. The hybridization signals

detected by Y-sat-1-200 (shown by an arrow in the left panel) were

clearly stronger than those detected by Y-sat-201-369 (shown by

an arrow in the right panel). These results support that the deep-

sequencing approach reflects the hot spots identified for Y-sat

small RNAs.

(TIF)

Figure S5 Deep-sequencing analysis of the ChlI small RNAs in

N. benthamiana plants infected with CMV-Y and Y-sat. Location

and frequency of the ChlI-derived small RNAs (21- to 24-nt) were

mapped to the ChlI sequence in either sense (above the x-axis) or

antisense (below the x-axis) orientation. Data from 21-, 22-, 24-nt

small RNA are color-coded in green (21 nt), red (22 nt), and yellow

(24 nt). Table in graph gives the number of small RNA reads and

percentage of each size. Note that the small RNAs are mostly

generated from the 39 region downstream of the cleavage site

indicated by an arrow.

(TIF)

Table S1 Genes downregulated in 16c:YsatIR 40% less than in

16c plants in microarray analysis. Among the 134 genes, 31 genes

were chloroplast-related genes.

(DOC)

Text S1 Supplementary materials and methods for the DNA

microarray (Table S1) and two-dimensional electrophoresis

experiments (Figure S1).

(DOC)
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