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Abstract
Constitutive Hedgehog (HH) signaling underlies several human tumors, including basal cell
carcinoma (BCC). Recently, Bijlsma et al (Bijlsma MF, et al. (2006) PLoS Biol 4: 1397–1410)
reported a new biologic function for vitamin D3 in suppressing HH signaling in an in vitro model
system. Based on that work, we have assessed effects of vitamin D3 on HH signaling and
proliferation of murine BCCs in vitro and in vivo. We find that indeed in BCC cells, vitamin D3
blocks both proliferation and HH signaling as assessed by mRNA expression of the HH target
gene Gli1. These effects of vitamin D3 on Gli1 expression and on BCC cell proliferation are
comparable to the effects of cyclopamine, a known inhibitor of the HH pathway. These results are
specific for vitamin D3, since the precursor 7-dehydrocholesterol and the downstream products
25-hydroxy vitamin D3 [25(OH)D] and 1,25-dihydroxy vitamin D3 [1,25(OH)2D] are
considerably less effective in reducing either Gli1 mRNA or cellular proliferation. Moreover,
these effects seem to be independent of the vitamin D receptor (VDR) since shRNA knock down
of VDR does not abrogate the anti HH effects of D3 despite reducing expression of the VDR
target gene 24-hydroxylase. Finally, topical vitamin D3 treatment of existing murine BCC tumors
significantly decreases Gli1 and Ki67 staining. Thus, topical vitamin D3 acting via its HH
inhibiting effect may hold promise as an effective anti-BCC agent.

Introduction
In 1941, Apperly (1) noted that the incidence of colon cancer in the United States is
considerably higher in the North than in the South, and the data favoring this “latitudinal
gradient” remain strong for several cancers including in particular those of the colon, breast,
and prostate. Four decades later, Garland and Garland noted that the differences in cancer
incidence in different locales are inversely related to the amount of sunlight they receive and
proposed that this gradient might be explained by an anti-cancer effect of varying amounts
of vitamin D made in sun-exposed skin (2,3). This proposal has been seminal, and 6000
papers have been published touching on vitamin D and cancer. Approaches taken to
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investigate this putative relationship include comparisons between cancer risk and sun
exposure and/or dietary vitamin D intake; assessments of circulating 25(OH)D, the most
readily available measurement of body vitamin D status, in patients with cancers and
controls; comparisons of DNA polymorphisms in the genes encoding the vitamin D receptor
(VDR) and the enzyme responsible for the catabolism of the VDR ligand: 1,25(OH)2D; and
studies of the cancer preventive effects of supplemental dietary vitamin D. The latter include
one very large prospective study of the effects of 400 IU of vitamin D3/day, which showed
no effects on cancer incidence or mortality (4), albeit the compliance rate in this study was
poor, and one considerably smaller prospective study of 1,100 IU vitamin D3/day, which
found a statistically significant reduction of cancer incidence in those taking the vitamin
supplement (5). Taken together, the positive correlation of cancer incidence and latitude of
residence seems strong and the inverse correlation of sunlight exposure and cancer seems
moderately strong, but the mechanistic importance of any inverse correlation of cancer
incidence and vitamin D3 and the anti-cancer efficacy of vitamin D3 supplementation
remain uncertain (6–8).

The most studied mechanism of the effect of vitamin D3 is the 1,25(OH)2D induced
transcriptional activation of the VDR with resultant changes in cell behavior including
enhanced differentiation and reduced proliferation of skin keratinocytes (9–11). By contrast,
Bijlsma and colleagues (12) recently proposed a new biologic function for unhydroxylated
vitamin D3 - the inhibition of hedgehog (HH) signaling. They found that D3 binds to Smo
specifically and thereby inhibits Gli reporter activity in C3H/10T1/2 fibroblasts in vitro. In
addition, D3 treatment of zebrafish in vivo mimicked the Smo−/− phenotype. In fact, Bijlsma
and colleagues (12) propose that Ptch1 protein accomplishes its inhibition of HH signaling
by transporting vitamin D3 to Smo protein.

HH signaling was identified initially as a pathway crucial to development but more recently
has come to be seen as a potentially important stimulator of carcinogenesis when
dysregulated. This can occur via mutations in the genes encoding components of the
pathway or by excess production of HH ligand by the tumor or stromal cells (13). Indeed,
the first in man inhibitor of HH signaling, GDC-0449, is now in clinical trials for at least
eight human cancers [clinicaltrials.gov], and several other HH inhibitors are in varying
stages of clinical development.

Of the human cancers with mutations in HH signaling pathway components, the best studied
tumor-HH relationship in humans and mice is that found in basal cell carcinomas (BCCs),
and inhibition of HH signaling with small molecule drugs can have dramatic inhibitory
effects on human BCCs (14). BCCs are the most common of all human cancers, affecting
approximately 1 million Americans per year (15). The pivotal molecular abnormality in
BCCs is constitutive activation of the HH signaling pathway, in 10–20% of tumors by
mutational activation of SMO and in the great majority of the others associated with
mutational inactivation of PTCH1 (16–19) (20–23). In addition to mutational activation of
the HH pathway, human BCCs also frequently have mutations in p53 (22,24). Ptch1+/−
mice develop BCCs after mutational insults, and the addition of conditional loss of
keratinocyte p53 greatly accelerates murine BCC carcinogenesis

Based on the known role of HH signaling in BCC carcinogenesis and on this newly reported
HH-inhibitory function of vitamin D3, we have studied whether vitamin D3, its precursor,
and its hydroxylated derivatives can inhibit cellular proliferation and down-regulate HH
signaling in established murine BCC cell lines and in murine BCCs in vivo. We then
investigated whether the anti-BCC effects of vitamin D3 are mediated via the classic VDR
pathway.
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RESULTS
In vitro Studies

Vitamin D3 inhibits proliferation of BCC cell lines—We treated an established
murine BCC cell line (ASZ), a murine non-tumorigenic keratinocyte cell line (C5N), and a
murine medulloblastoma cell line (Med1) with upregulated HH signaling (25) with
cyclopamine or vitamin D3 and assessed cellular proliferation after 48 hours. As we found
previously, the classical HH inhibitor cyclopamine decreases Med1 and ASZ proliferation at
5 µM and 10 µM, respectively, but does not decrease C5N cell proliferation (Fig.1A) (26).
Vitamin D3 similarly inhibits the proliferation of ASZ and Med1 cells by more than 80%
while not significantly inhibiting the proliferation of C5N cells (Fig.1A). Vitamin D3 also
inhibits the proliferation of two other BCC cell lines (BSZ and CSZ) that were established
from BCC tumors from Ptch1+/− mice with keratinocyte deletion of p53 (Fig. 1B). Neither
the vitamin D3 precursor 7-dehydrocholesterol (7DHC) nor the hydroxylated forms
25(OH)D and 1,25(OH)2D consistently inhibit proliferation of BCC cells. We tested lower
concentrations of 1,25(OH)2D because of the non-specific cell toxicity of concentrations
greater than 1 µM (27). Thus, vitamin D3 specifically inhibits the proliferation of all three
BCC cell lines tested.

Vitamin D3 decreases Gli1 mRNA expression in BCC cell lines—To address the
mechanism by which vitamin D3 inhibits ASZ proliferation, we next measured mRNA
levels of the HH target gene Gli1 and of the VDR target gene 25-Hydroxyvitamin D-24-
hydroxylase (24-hydroxylase, CYP24) in ASZ cells incubated with vitamin D3, 7DHC,
25(OH)D, or 1,25(OH)2D for 24 or 48 hours. Vitamin D3, 25(OH)D, and 1,25(OH)2D each
increased 24-hydroxylase mRNA levels. This was expected as normal human keratinocytes
and BCCs can convert vitamin D3 to 25(OH)D and then to the VDR-activating1,25(OH)2D
(9,28) (Fig.1C). In contrast, 7DHC fails to increase 24-hydroxylase levels, since UV is
required to convert 7DHC to vitamin D3. As expected, cyclopamine does not affect 24-
hydroxylase mRNA levels. Similar to prior reports (26), cyclopamine at 10 µM decreases
Gli1 mRNA by 3–5 fold at 24 hours and 48 hours after incubation (Fig. 1D). Vitamin D3
treatment at the same concentration (10 µM) also decreases Gli1 mRNA by 3–4 fold at 24
hours and 48 hours. In contrast, 7DHC (10µM), 25(OH)D (10 µM), and 1,25(OH)2D (0.10
µM) each fail to reduce Gli1 mRNA significantly. Our finding that 25(OH)D and
1,25(OH)2D can activate VDR (as indicated by increased expression of the VDR target gene
24-hydroxylase), without significantly reducing Gli1 mRNA is consistent with Bijlsma et
al’s data in other test systems indicating that vitamin D3’s inhibition of the HH pathway is
independent of VDR. Importantly, our finding that concentrations of 25(OH)D and of
1,25(OH)2D that did not affect murine BCC cell growth did up-regulate VDR target gene
expression is consistent with the effect on proliferation being independent of the VDR.

Vitamin D3 decreases Gli1 mRNA expression independent of the vitamin D3
receptor—To investigate further the requirement of VDR signaling for the effect of
vitamin D3, we incubated ASZ cells with a viral construct expressing shRNA against VDR
(shVDR) for 3 days, and then treated these cells with 5 µM of vitamin D3 for 24 hours (n =
3 experiments). This construct infected approximately 80–90% of cells as measured by the
expression of red fluorescence (Fig. 2A). Western blot analysis indicated that shVDR
infection reduced VDR protein levels by approximately 75% as compared to VDR protein
levels in cells infected with a virus expressing a random oligo (Fig. 2B). To assess the
effectiveness of shVDR on VDR function, we measured 24-hydroxylase mRNA levels by
qPCR in cells treated with vitamin D3. Vitamin D3 increased 24-hydroxylase mRNA by at
least 20-fold in ASZ cells previously treated with the control shRNA. Vitamin D3 increased
24-hydroxylase levels in ASZ cells pre-treated with shVDR by a much lower amount (Fig.
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2C). By contrast, pre-treatment with shVDR failed to affect vitamin D3’s decrease in Gli1
mRNA levels (Fig. 2C). Furthermore, vitamin D3 inhibited proliferation of ASZ cells
pretreated with shVDR or control vector (Fig. 2D). These results were similar when shVDR
was knocked down in a second cell line (BSZ, data not shown).

In vivo Studies
Vitamin D3 decreases proliferation but does not affect differentiation in BCC
tumors in vivo—To test the in vivo effects of vitamin D3 on BCC tumors, we next utilized
our murine model in which treatment with ionizing radiation (IR) at age 8 weeks induces
BCC carcinogenesis. Specifically, our IR-treated Ptch1+/− K14-CreER2 p53 fl/fl mice
treated with tamoxifen at age 6 weeks to activate Cre and thereby delete keratinocyte p53
develop multiple visible BCC tumors starting at age 5–6 months. These murine BCC tumors
histologically resemble nodular human BCCs (Fig. 3-1A); and similar to BCCs in Ptch1+/−
p53 wild type mice (16) these tumors express the basal cell marker keratin 14 (Fig. 3-1B)
but not the suprabasalar differentiation marker keratin 10 (Fig. 3-1C), and have a high level
of proliferation as measured by positive staining for Ki67 (Fig.3-1E, F). As expected for
cells lacking p53, they do not express the apoptosis marker cleaved caspase 3 (CC3) (Fig.
3-1D).

We applied acetone without (n = 7) or with 1.3 mg/kg vitamin D3 (n = 10) to visible BCCs
daily for approximately 30 days (Fig. 3-1, G–L). Treated BCCs continue to express
keratin14 (Fig. 3-1H) but not keratin10 (Fig. 3-1I), suggesting that vitamin D3 does not
induce differentiation of BCC cells. However topical vitamin D3 treatment markedly
decreases cellular proliferation as shown by reduction of Ki67 staining (P = 0.02) (Fig.
3-1K, L; Fig. 3-2). Topical D3 did not affect apoptosis as assessed by the low number of
brown staining CC3 positive cells relative to background staining (Fig. 3-1 D vs. J). These
topical applications of vitamin D3 to BCCs and their surrounding skin were sufficient to
increase circulating levels of 25(OH)D by approximately 4-fold (210 ± 160 vs. 50 ± 12 ng/
ml, P < 0.01).

Topical vitamin D3 decreases Gli1 mRNA level in BCC tumors in vivo—We also
treated murine nodular BCCs with topical acetone (n = 9) or with topical vitamin D3 (2.6
mg/kg) (n = 24) daily for 4 days and measured changes in mRNA expression of Gli1 and 24-
hydroxylase. Topical vitamin D3 reduced Gli1 mRNA levels (Fig. 4A) and induced
significant increases in skin 24-hydroxylase mRNA (Fig. 4B). We found no correlation
between suppression of Gli1 mRNA levels and increase of 24-hydroxylase mRNA levels (R
= 0.2, P = 0.28), consistent with the idea that vitamin D3 inhibition of HH signaling is
independent of VDR. Topical application of a 1,25(OH)2D analog (calcipotriene, Dovonex
cream, Leo Pharmaceuticals) used clinically for treatment of psoriasis did not significantly
alter Gli1 mRNA but induced significant increases in skin 24-hydroxylase mRNA (Fig. 4C,
D). However, calcipotriene cream, similar to topical vitamin D3, also decreases Ki67
staining in BCC tumor cells (1.7 ± 1.0 vs. 2.8 ± 1.0, calcipotriene vs. control cream,
respectively, P = 0.02).

Discussion
We have assessed the effects of vitamin D3 on carcinogenesis using BCCs because this is
the tumor in which aberrant HH signaling is most clearly the pivotal molecular abnormality.
Our findings in BCC tumor cell lines in vitro and in BCC tumors in vivo are highly
consistent with findings in non-cancer assays used by Bijlsma and colleagues (29) to
identify anti-HH effects of vitamin D3 that are independent of the VDR. They suggest that
non-hydroxylated vitamin D3 may have therapeutic potential as an inhibitor of BCC
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carcinogenesis - as a chemopreventive and/or a chemotherapeutic agent. Others have noted
the structural similarity between the Smo inhibitor cyclopamine and sterols such as vitamin
D3 (30).

Furthermore, our findings suggest a more complex role for UV radiation in BCC
carcinogenesis than has been considered previously. The evidence that sunlight enhances
BCC risk is well accepted. In fact, a significant proportion of PTCH1 and p53 gene
mutations in human BCCs are of the UVB-signature type (31–33). As an additional
mechanism by which sunlight might enhance BCC carcinogenesis, UV radiation is known to
be immunosuppressive, and there is some evidence for a role for the immune system in
protecting against BCC carcinogenesis (34). However, details of the relationship between
sunlight and BCC risk have been confusing, unlike the more straightforward relationship
between sunlight and squamous cell carcinoma (SCC) risk. Thus the relative risk for BCCs
peaks at a lifetime exposure of 10,000–35,000 hours whereas that for SCCs, which are not
known to be driven by HH activation, continues to rise with more hours of sunlight (35,36).
Were UVB not only to stimulate BCC carcinogenesis via mutagenesis and
immunosuppression but also to increase cutaneous vitamin D3, thus blocking hedgehog
signaling and thereby inhibiting BCC growth, this might provide at least a partial
explanation for the less than straightforward relationship between sun exposure and BCC
risk. However, other mechanisms also may contribute to the complex relationship. Thus
despite our knockdown data, the VDR itself, even without the 1,25(OH)2D ligand may
affect BCC carcinogenesis, as illustrated by the development of BCCs in VDR−/− mice
treated with DMBA (37). One possible mechanism for this could be the non-1,25(OH)2D
dependent effect of VDR on Wnt signaling, which appears to function downstream of HH
signaling in BCCs (38,39). Our data do not exclude possible anti-cancer effects of vitamin
D3 acting via the canonical VDR pathway in tumor and/or stromal cells since the topical
1,25(OH)2D analog also decreases Ki67 measured tumor proliferation.

Collectively, our data demonstrate that pharmacologic doses of vitamin D3 can block
proliferation of murine BCC cell lines in vitro and block proliferation in BCC tumors in
vivo. We do not know the ultimate effect of vitamin D3 on long term tumor proliferation
studies or tumor induction, and we do not know the role of endogenous physiologic doses of
vitamin D3 in the HH pathway or BCC development. However, our findings suggest a
mechanism underlying the latitudinal gradient for cancers of the colon, breast, and prostate
and even a non-sunlight approach to their prevention. Indeed, we are testing this possibility
in mouse models of visceral cancer as well as extending our murine BCCs studies.

Materials and Methods
Cell lines

Use of the murine BCC cell lines (ASZ, BSZ, and CSZ), the mouse medulloblastoma cell
line Med-1, and the immortalized non-tumorigenic murine keratinocyte cell line C5N were
as described previously (So et al, 2006, 2008). The ASZ cell line was generated from a
nodular BCC tumor from an IR-exposed Ptch1+/− mouse (26). The BSZ and CSZ cell lines
were generated from nodular BCCs from Ptch1+/− K14-CreER p53 fl/fl mice treated with
tamoxifen to delete p53. A murine medulloblastoma cell line (Med1) was maintained and
propagated in 154-CF medium (Cascade Biologics, Portland, OR) and the C5N cell line was
generated from murine epidermis and maintained in DME H-21medium (UCSF Cell Culture
Facility, San Francisco, CA) (25).
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Ptch1+/− K14CreER p53 fl/fl mice
We bred mice with the K14-Cre-ER transgene (40) and mice with a floxed p53 allele (41)
with our Ptch1+/− mice to generate Ptch1+/− K14-Cre-ER p53fl/fl mice. We treated these
mice intraperitoneally at age 6 weeks with 100 µg/day of tamoxifen for three consecutive
days. At 8 weeks of age, Ptch1+/− K14-Cre-ER p53fl/fl mice were exposed to 4 Gy of
ionizing radiation (IR). Mice were fed a 1% calcium Teklad Global 18% Protein Rodent
Diet 2918 Irradiated, containing 1.5 IU/g Vitamin D3 from Harlan Laboratories (Teklad
Diets, Madison WI). Mice were housed in a barrier facility with 12 hour light/dark cycles
using fluorescent bulbs emitting undetectable UV.

Vitamin D3 treatments
Vitamin D3, 7DHC, 25(OH)D or 1,25(OH)2D (Sigma Aldrich, St. Louis, MI) were
solubilized in 100% ethanol for cell culture experiments. Stocks were stored at −80°C for up
to 2 months at 33mM. KAAD-cyclopamine (Toronto Research Chemicals Inc., Toronto,
Canada; catalog # K171000) was dissolved in 100% DMSO and stored at −80°C for up to 2
months at 10 mM. For topical treatment of BCC tumors in vivo, 1.3–2.6 mg/kg (equivalent
to 1,500–3,000 IU) of vitamin D3 was applied daily to the tumors. Approximately 200 µl of
the vitamin D3/acetone solution was applied to visible BCCs on 20 cm2 area of dorsal back
skin for 5 days per week for 30 days (1.3 mg/kg for changes in immunohistochemistry
studies, Ki67) or 2.6 mg/kg daily for 4 days (for changes in Gli1 mRNA). Commercially
available 1,25(OH)2D analog cream (Dovonex, calcipotriene 0.005%) was donated by Leo
Pharmaceuticals, Dublin, Ireland.

Cell proliferation assay
Cell numbers were assayed with the WST-1 cell proliferation assay (Roche Applied Science,
Indianapolis, IN). 7 × 103 cells were seeded in 96-well plates and cultured overnight to 60–
70 % confluency and then serum starved overnight. Cells were incubated with vitamin D3,
7DHC, 1,25(OH)2D or cyclopamine at various concentrations for 48 hours and colorimetric
readings were measured at 450 nM on a microplate reader, SpectraMax 340PC (Molecular
Devices, Sunnyvale, CA) as previously described (26).

Quantitative PCR for Gli1 and 24hydroxylase mRNA expression
RNA was collected using the PureLink RNA mini kit (Invitrogen, Carlsbad, CA). Reverse
transcription was performed using the Taqman reverse transcription kit (Applied
Biosystems, Foster City, CA) and qPCR was performed on cDNA using TaqMan premixed
primer probes and reagents from Applied Biosystems (Foster City, CA). Ribosomal 18S or
GAPDH was used as a normalization control for all experiments.

Adenoviral infection of shRNA to knock-down the vitamin D3 receptor
The target sequences of shRNAs produced from adenoviral constructs are VDR 5’-
CCATTGAGGTCATCATGTT-3’and the non-silencing control 5’-
TGCGTTGCTAGTACCAACT-3’(42). 1.5 × 105 ASZ cells were seeded in Ti-12.5 flasks
and infected 4 hours later at a rate of 100 infectious units/cell and grown for 3 days in 154-
CF medium containing 2% chelexed fetal bovine serum, 1X penicillin and streptomycin and
0.05 mM calcium chloride (42). Cells were then serum starved overnight and exposed to
vitamin D3 at 5 µM for 24 hours.

Western blotting
Proteins were extracted with Lysis-M reagent (Roche, Mannheim, Germany) and protein
concentration was measured by using the micro BCA protein kit (Thermo science Pierce,
Rockford, IL). Proteins were resolved using 4–20% pre-cast gradient SDS/PAGE gels
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(Invitrogen, Carlsbad, CA), semi-dry transferred to PVDF membrane (Millipore, Billerica,
MA), blocked with 5% milk-TBST, and hybridized overnight at 4°C by using VDR-specific
(1:300) (Santa Cruz Biotech, Santa Cruz, CA) or β-actin (1:15000) (Sigma, St, Louise, MI)
polyclonal antibody. After incubation with secondary antibody conjugated with HRP
(1:2000) (Cell Signaling, Beverly, MA) for 1 hour at room temperature, signals were
detected by ECL using the Supersignal West Femto maximum Sensitivity Substrate Kit
(Thermo Scientific Pierce, Rockford, IL). Relative protein levels were quantified using
ImageJ software.

B-gal staining and immunohistochemistry
LacZ-encoded bacterial β-galactosidase was detected by incubation of glutaraldehyde and
formalin fixed tissue with X-gal (Roche Applied Science, Indianapolis, IN) (43). Mouse
tissues were fixed in 10% buffered formalin, embedded in paraffin, and cut into 5 um
sections. Sections were deparaffinized in xylene and antigen retrieval was carried out in
Trilogy solution (Cell Marque, Rocklin, CA, USA) by heating. Endogenous peroxidase was
blocked with 3% hydrogen peroxide and endogenous biotin was blocked by Avidin Biotin
blocking system (Vector Laboratories, Burlingame, CA, USA). Sections were also blocked
with normal Goat Serum (Vector Laboratories, Burlingame, CA, USA). Biotinylated goat
anti rabbit (Vector Laboratories, Burlingame, CA, USA) was used to detect the primary
antibody and was followed by incubation with the Vectastain ABC kit (Vector Laboratories,
Burlingame, CA, USA) and visualized with liquid DAB and substrate chromogen system
(Dako, Carpinteria, CA, USA). Antibodies used included control rabbit immunoglobulin
(1:250 dilution) and rabbit anti mouse polyclonal antibody against K10 (1:500 dilution)
(Covance, Princeton, NJ, USA), rabbit anti mouse polyclonal antibody against K14 (1:2000
dilution) (Covance, Princeton, NJ, USA), rabbit anti mouse polyclonal antibody against
cleaved caspase-3 (CC3) (1:800 dilution) (Pharmingen, San Diego, CA) (overnight at 4°C)
and rabbit anti mouse polyclonal antibody against Ki67 (1:400) (Thermo Scientific,
Waltham, MA, USA) (60 minutes at room temperature). Ki67 staining per tumor was ranked
from lowest to highest (0–4) by two independent readers blinded to the treatment group.

Statistical analysis
Nonparametric t-test’s and Spearman’s correlation test were used to compare the difference
in mean values and correlations of Gli1 and 24-hydroxylase mRNA levels, respectively. All
P values reported are two-sided.

Abbreviations

HH Hedgehog

BCC Basal cell carcinoma

VDR vitamin D receptor
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Fig. 1.
Vitamin D3 is a potent inhibitor of cellular proliferation and Gli1 mRNA (n = 3
experiments). (A) Cellular proliferation studies were conducted in a BCC cell line (ASZ),
non-tumorigenic keratinocytes (C5N), and a medulloblastoma cell line (Med1) incubated for
48 h with cyclopamine (CPN) versus 1,25(OH)2D and vitamin D3. Mean±SEM, *P < 0.01
compared to C5N. (B) Cellular proliferation was assayed in BCC cell lines (ASZ, BSZ,
CSZ) and non-tumorigenic keratinocytes (C5N) 48 h after treatment. Mean±SEM, *P < 0.01
compared to C5N. (C) 24-hydroxylase mRNA relative expression in ASZ cells treated with
7DHC (10 µM), 25(OH)D (10 µM), 1,25(OH)2D (0.1 µM), vitamin D3 (10 µM), and CPN
(10 µM) at 24 and 48 h. Mean±SEM, *P < 0.01 compared to control (DMSO or EtOH). (D)
Gli1 mRNA relative expression in ASZ cells treated with 7DHC (10 µM), 25(OH)D (10
µM), 1,25(OH)2D (0.1 µM), vitamin D3 (10 µM), and CPN (10 µM) at 24 and 48 h. Mean
±SEM, *P < 0.01 compared to control (DMSO or EtOH).
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Fig. 2.
Anti-BCC effects mediated by vitamin D3 are intact when vitamin D3 receptor is blocked (n
=3 experiments). (A) Phase contrast and fluorescence images for ASZ cells treated with
control, shVDR, or no treatment for 72 h. (B) Upper panel: western blot showing VDR and
β-actin protein levels in ASZ cells treated with shVDR or control. Lower panel: Quantitation
of VDR protein level relative to β-actin in ASZ cells treated with shVDR or control. Mean
±SEM. (C) Comparison of relative 24-hydroxylase and Gli1 mRNA in ASZ cells pretreated
with control vector or shVDR, and then exposed to vitamin D3 (5 µM) for 24 h. Mean±SD.
Note: the y-axis scale is different from Figure 1C, D. (D) Cellular proliferation in ASZ cells
pretreated with no treatment, control vector, shVDR, and then exposed to vitamin D3 at
5µM for 24 h. Proliferation was assessed as % of control ASZ cells without vitamin D3
treatment. Mean±SD.

Tang et al. Page 11

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Fig. 3.1. Histology of BCCs treated topically with acetone (control) for 30 days (A–F) or
with topical 1.3 mg/kg vitamin D3 for 30 days (G–L). β-gal and hematoxylin and eosin
staining for acetone or vitamin D3 treated BCC (Panel A, G). BCCs from Ptch1+/− K14-
Cre-ER p53fl/fl mice stain blue due to β-galactosidase activity which is encoded by the lacZ
gene that was inserted to replace the wildtype Ptch1 gene. Keratinocyte markers of
differentiation, K14 (Panel B, H) and K10 (Panel C, I) are shown as well as CC3, a marker
of apoptosis (Panel D, J) and Ki67 for proliferation (Panel E, F, K, L). Scale bars, 100 µm.
Fig. 3.2. Levels of Ki67 staining in BCC tumors treated with either acetone (control, n = 7)
or vitamin D3 (1.3 mg/kg, n = 10) for 30 days (P < 0.05).

Tang et al. Page 12

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Vitamin D3 decreases Gli1 and increases 24-hydroxylase in murine BCCs in vivo. (A)
Relative mRNA level of Gli1 in total RNA from BCC tumors treated with either acetone (n
= 9) or vitamin D3 (2.6 mg/kg) (n = 24) for 4 days. (B) Relative mRNA level of 24-
hydroxylase in total RNA from BCC tumors treated with either acetone (n = 12) or vitamin
D3 (2.6 mg/kg) (n=24). (C) Relative mRNA level of Gli1 in total RNA from BCC tumors
treated with either control cream (n = 9) or 1,25(OH)2D analog cream, calcipotriene (n = 9)
for 4 days. (D) Relative mRNA level of 24-hydroxylase in total RNA from BCC tumors
treated with either control (n = 7) cream or 1,25(OH)2D analog cream, calcipotriene (n = 7).

Tang et al. Page 13

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


