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Objective: To evaluate the usefulness of an automated system for quantification and discrimination of usual interstitial 
pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP). 
Materials and Methods: An automated system to quantify six regional high-resolution CT (HRCT) patterns: normal, NL; 
ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EMPH; and consolidation, CONS, was 
developed using texture and shape features. Fifty-four patients with pathologically proven UIP (n = 26) and pathologically 
proven NSIP (n = 28) were included as part of this study. Inter-observer agreement in measuring the extent of each 
HRCT pattern between the system and two thoracic radiologists were assessed in 26 randomly selected subsets using an 
interclass correlation coefficient (ICC). A linear regression analysis was used to assess the contribution of each disease 
pattern to the pulmonary function test parameters. The discriminating capacity of the system between UIP and NSIP was 
evaluated using a binomial logistic regression.
Results: The overall ICC showed acceptable agreement among the system and the two radiologists (r = 0.895 for the 
abnormal lung volume fraction, 0.706 for the fibrosis fraction, 0.895 for NL, 0.625 for GGO, 0.626 for RO, 0.893 for HC, 
0.800 for EMPH, and 0.430 for CONS). The volumes of NL, GGO, RO, and EMPH contribute to forced expiratory volume 
during one second (FEV1) (r = 0.72, ß values, 0.84, 0.34, 0.34 and 0.24, respectively) and forced vital capacity (FVC) (r 
= 0.76, ß values, 0.82, 0.28, 0.21 and 0.34, respectively). For diffusing capacity (DLco), the volumes of NL and HC were 
independent contributors in opposite directions (r = 0.65, ß values, 0.64, -0.21, respectively). The automated system can 
help discriminate between UIP and NSIP with an accuracy of 82%.
Conclusion: The automated quantification system of regional HRCT patterns can be useful in the assessment of disease 
severity and may provide reliable agreement with the radiologists’ results. In addition, this system may be useful in 
differentiating between UIP and NSIP.
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and informed consent was not required because of the 
retrospective nature of our study. 

Patients
Between May 1998 and August 2007, we reviewed the 

HRCT images of 834 patients that had interstitial lung 
diseases as well as 652 patients that had visible UIP or 
NSIP patterns on images. We assigned an UIP pattern for 
predominantly basal and peripheral reticular opacities with 
honeycombing, traction bronchiectasis on HRCT images, 
and a NSIP pattern for predominantly basal ground-
glass opacities rather than reticular opacities. Of the 
652 patients with UIP or NSIP patterns on images, 286 
underwent surgical lung biopsies including video-assisted 
thoracoscopic surgery, open lung biopsy, and a lobectomy. 
Further, 195 patients had UIP or NSIP on HRCT images and 
pathologic specimens. Of these 195 patients, 83 underwent 
PFT. Several previous studies noted that texture-based 
quantification was largely dependent on training data sets 
(10, 13, 17, 18). Therefore, we decided to include patients 
with CT images from the same type of CT scanner (i.e., 
a 16-channel multi-detector CT - Sensation 16, Siemens, 
Forchheim, Germany). Among the patients who underwent 
PFT, 54 underwent HRCT scans using the same Siemens CT 
scanner. 

Consequently, a total of 54 patients (M:F = 27:27; 
mean age, 52 years ± 9.7 standard deviation [SD]) were 
included in our study. Twenty-six patients (M:F = 18:8; 
mean age, 55 years ± 9.9 SD) had pathologically proven 
UIP, and 28 patients (M:F = 9:19; mean age, 53 years ± 
9.7 SD) had pathologically proven NSIP. All patients had 
incremental HRCT scans using 0.75-mm collimation, 1-mm 
slice thickness, 10-mm intervals and a sharp kernel (B70f) 
on a 16-channel multi-detector CT (Sensation 16; Siemens, 
Forchheim, Germany). The matrix size was 512 × 512 and 
the window settings were center, -750 and width, 1500, 
respectively.

Automatic Classification System
We developed the automatic classification system using 

Visual C++ and the Insight ToolKit (ITK). Lung segmentation 
was performed automatically, and inaccurate segmentation 
was modified by one resident radiologist. Histogram, 
gradient features, run-length encoding, Grey Level Co-
occurrence Matrix (GLCM), and ITK-GLCM, were used as 
texture features. For shape analysis, the size and number of 
low attenuation areas and means with standard deviations 

INTRODUCTION

High-resolution CT (HRCT) is known to be useful for 
determining the extent of diffuse interstitial lung disease 
(DILD), especially idiopathic interstitial pneumonias (1-3). 
In addition, HRCT is useful for predicting the clinical 
outcomes of idiopathic pulmonary fibrosis (IPF) as the HRCT 
scoring of fibrosis correlates well with the mortality rate 
(4, 5). However, in most cases, the disease extent seen 
on HRCT has been subjectively and qualitatively evaluated 
by radiologists who analyze a medical image by searching 
for specific disease patterns. Typically, a correct global 
diagnosis of parenchymal lung disease can only be made 
40-70% of the time and by two experienced readers on 76-
85% of the global diagnoses (2, 6). Such variation has been 
confirmed in other studies examining lung pattern type, 
with an interobserver variation of 81% (kappa of 0.48) and 
a similar intraobserver variation (kappa of 0.37 to 0.78) 
(7). Other visual scoring system have been suggested by 
Remy-Jardin et al. (8) or Copley et al. (9). However, in their 
studies, the reproducibility of the scoring systems was not 
assessed and their scoring systems were semi-quantitative 
methods. Therefore, an automated classification system 
is necessary for objective and reproducible assessment of 
disease extent.

To objectively evaluate the extent of IPF, several 
automated classification systems have been developed 
based on the specific features of texture or shape such 
as a histogram, gradient, run-length matrix, Top-hat 
transformation and so on, as seen on HRCT images (10-
15). We developed an automated classification and 
quantification system for chronic obstructive pulmonary 
disease and DILD using HRCT images (5, 16). We thought 
that the basic algorithm of these studies can be applied for 
a quantitative assessment of HRCT in patients with usual 
interstitial pneumonia (UIP) and nonspecific interstitial 
pneumonia (NSIP). The purposes of this study are to 
evaluate the usefulness of quantifying UIP and NSIP in 
terms of the agreement with the radiologist’s interpretation, 
the contribution of regional patterns to pulmonary function 
test (PFT) variables, and the ability to discriminate between 
UIP and NSIP.

MATERIALS AND METHODS

Our study was approved by the Asan Medical Center 
Institutional Review Board for Human Investigation 
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of white and black Top-Hat transformations of the original 
images were used. The detailed information of each feature 
was reported in previous papers (5, 19, 20).

To train and test the automated system, HRCT images were 
selected retrospectively from a total of 106 patients, which 
were included in another previous study group (16), which 
included 14 healthy subjects, 16 patients with emphysema, 
35 patients with cryptogenic organizing pneumonia, 36 
patients with usual interstitial pneumonia, four patients 
with pneumonia, and one patient with acute interstitial 
pneumonia. A thoracic radiologist with 10 years of clinical 
experience evaluated a total of 600 typical regions of 
interest (ROIs) (circular ROIs of 32-pixel diameter) by 
the naked eye and marked them as normal (NL, n = 100), 
ground-glass opacity (GGO, n = 100), reticular opacity (RO, 
n = 100), honeycombing (HC, n = 100), emphysema (EMPH, 
n = 100) or consolidation (CONS, n = 100). We chose several 
axial HRCT images from each patient to select typical ROIs. 
However, in order to minimize any clustering effect, we 
tried to select only one ROI in each image. If the same 
disease pattern of ROIs were selected from one patient, the 
ROIs were chosen from different lung lobes.

With 600 ROIs selected to represent typical areas of local 
disease patterns, the system was trained using the Support 
Vector Machine (SVM) classifier and the image features 
were subsequently extracted. The classifier performance 
was tested using a 5-fold cross-validation method. This 
was achieved by first randomly classifying data into five 
sets and then using four data sets for model construction 

and retaining one data sets to test the performance of 
the model. The performance testing was repeated 20 
times, after which the results were averaged to assess the 
sensitivity and specificity of the system for classifying 
regional disease patterns. 

The overall accuracy of our classification system was 89% 
for typical test sets (Table 1). Details of the system were 
included in a previously published report (16).

Automatic Quantification
The trained system was applied to HRCT images of 

the whole lung in each patient with UIP or NSIP. For 
quantification of the regional patterns, round ROIs with 
a 10-pixel diameter were used. Analysis of the lung 
parenchyma was performed using an automatically moving-
ROI function running through the lung field. Even if we 
marked a ROI of a typical disease pattern with the naked 
eye, several disease patterns can be exist microscopically. 
Therefore, instead of each ROI, each pixel was classified 
into one of six categories. Area and volume fractions of 
each class were also calculated. Volume was calculated 
simply by multiplying the area of each class by the slice 
thickness of the HRCT image.

Comparison with Human Readers
To assess the agreement of these quantification data 

of the system with those of human readers, we randomly 
selected 26 HRCT scans (13 HRCT scans from UIP and 13 
HRCT scans from NSIP), and two thoracic radiologists with 
three and 11 years of experience with HRCT interpretation, 
respectively, were requested to record the extent of 
pulmonary abnormality. The extent of GGO, RO, HC, EMPH, 
and CONS was scored to the nearest 5% throughout the 
entire lung in each patient. The normal lung parenchyma 
was calculated simply by extracting the abnormality volume 
from the entire lung volume. All statistical analyses were 
performed using a statistical package (SPSS 15.0.0; SPSS; 
Chicago, IL). Results were expressed as mean ± SD. The 
interclass correlation coefficient (ICC) was used to evaluate 
the quantification agreement between the system and 
the readers. The comparison between the system and the 
readers was performed in terms of the volume fraction 
of each pattern. Values of the ICC were interpreted as 
k-statistics: slight (ICC 0-0.20), fair (ICC 0.21-0.40), 
moderate (ICC 0.41-0.60), substantial (ICC 0.61-0.80), or 
almost perfect (ICC 0.81-1). 

Table 1. Classification Performance of Texture-Based 
Analysis System Using 120 Typical ROIs Randomly 
Selected from 600 Typical ROIs*

Regional 
Disease 
Patterns

Classification Results Using Typical ROIs

Sensitivity (%) Specificity (%)

NL 95 98

GGO 80 99

RO 85 97

HC 95 97

EMPH 100 100

CONS 100 100

Note.— Overall Accuracy = 89%, CONS = consolidation, EMPH = 
emphysema, GGO = ground-glass opacity, HC = honeycombing, 
NL = normal, RO = reticular opacity, ROI = region of interest
* Modified from reference (16).
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Correlation Study between Pulmonary Function Test and 
Automated Quantification 

Spirometry was performed as recommended by the 
American Thoracic Society (Vmax 22, SensorMedics, CA; 
PFDX, MedGraphics, MN) in all 54 patients (21). The 
following values were evaluated: the forced expiratory 
volume during one second (FEV1); and the forced vital 
capacity (FVC). The diffusing capacity (DLco) was measured 
according to the single-breath carbon monoxide uptake 
(Vmax 22, SensorMedics, CA; PFDX, MedGraphics, MN) (22). 
All values were expressed both as a percentage of measured 
to predicted values and as measured values. A linear 
regression analysis (LRA) with backward elimination was 
used to evaluate the contribution of regional patterns (NL, 
GGO, RO, HC, EMPH, and CONS) to the PFT parameters (FEV1, 
FVC, and DLco). This analysis was performed using a volume 
of each pattern and a measured value of the PFT parameter.

Discrimination between Usual Interstitial Pneumonia 
and Nonspecific Interstitial Pneumonia

The discriminating ability of the automated system 
between UIP and NSIP was evaluated using a binary (or 
binomial) logistic regression. The best set of regional 
patterns for differentiating between UIP and NSIP was 
found by trial and error. A p-value less than 0.05 was 
considered to be statistically significant. The analysis was 
performed according to the volume fraction of each pattern.

To test the performance of the human reader in the same 
data sets, a thoracic radiologist with 11-years of experience 

was requested to review the whole 54 HRCT scans and 
decide the likelihood of diagnosis. The characteristic HRCT 
findings in UIP are predominantly basal and peripheral 
reticular opacities with honeycombing and traction 
bronchiectasis. In NSIP, basal ground-glass opacities tend 
to predominate over reticular opacities, with traction 
bronchiectasis present only in advanced disease (23). 
According to these criteria, the probability of UIP or NSIP 
in each patient was estimated using a five-point rating 
scale: 1, definite NSIP; 2, probably NSIP; 3, possible UIP; 4, 
probable UIP; and 5, definite UIP. 

RESULTS

Texture- and shape-based quantification was successfully 
performed on all images, and the quantification results were 
displayed using color-coded overlays of the original DICOM 
images (Figs. 1-3). 

For an abnormal lung volume fraction (GGO, RO, HC, EMPH, 
and CONS), the overall ICC value showed almost perfect 
agreement (0.895) among the quantification results of the 
automated system and the two radiologists (Table 2) and, 
considering only the volume fraction of fibrosis (RO and HC), 
the overall ICC value also showed substantial agreement 
(0.706) among the automated system and the two 
radiologists. The overall ICC values for each regional pattern 
were almost in perfect agreement (0.895) for NL, substantial 
agreement (0.625) for GGO, substantial agreement (0.626) 
for RO, almost perfect agreement (0.893) for HC, substantial 

Table 2. Agreement of Quantification Results between Automated System and Two Readers for Six Different CT 
Patterns in 26 Randomly Selected Patients (13 Patients from UIP and 13 Patients from NSIP)

Regional 
Disease 
Patterns

Quantification Results

Agreement between (%)

Abnormal Fraction Fibrosis Fraction Each Fraction

Overall
System 
and R1

System 
and R2

R1 and 2 Overall
System 
and R1

System 
and R2

R1 and 2 Overall
System 
and R1

System 
and R2

R1 and 2

NL 0.895 0.790 0.873 0.878

GGO 0.625 0.367 0.416 0.860

RO 0.706 0.488 0.325 0.873 0.626 0.463 0.106 0.842

HC 0.895 0.790 0.873 0.878 0.893 0.774 0.850 0.902

EMPH 0.800 0.668 0.641 0.934

CONS 0.430 0.100 0.126 0.665

Note.— CONS = consolidation, EMPH = emphysema, GGO = ground-glass opacity, HC = honeycombing, ICC = interclass correlation 
coefficient, NL = normal, NISP = nonspecific interstitial pneumonia, RO = reticular opacity, R1 = reader 1, R2 = reader 2, UIP = 
usual interstitial pneumonia
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A

B

C
Fig. 1. 50-year-old man who had pathologically proven usual interstitial pneumonia.
A. CT images predominantly showed basal and peripheral honeycombing and reticular opacities. Reader 1 gave five-point rating scale as 4, 
thereby suggesting probable usual interstitial pneumonia. And reader 2 gave five-point rating scale as 3, thereby suggesting possible usual 
interstitial pneumonia. B. Automated system interpreted approximately one-half of lung volume as honeycombing and reticular opacities. Value 
of prob (event)* was 0.61, thus classifying CT images as usual interstitial pneumonia. Pathology also indicated usual interstitial pneumonia. C. 
System determined 66% of whole lung as abnormal, whereas radiologist regarded 70% as abnormal lung. Extent of fibrosis was 52% according to 
system, and 50% according to radiologist. Fractional volumes of six patterns were also very similar.
*Logistic prediction equation was:
ln(prob(event)/[1-prob(event)]) = 0.404 HC + 0.178 GGO + 0.181 RO - 0.010 HC × RO - 0.006 GGO × RO - 0.064 CONS × GGO - 4.347
where, prob(event) < 0.50 was nonspecific interstitial pneumonia and prob(event) ≥ 0.50 was usual interstitial pneumonia.
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A

B

C
Fig. 2. 55-year-old woman who had pathologically proven nonspecific interstitial pneumonia.
A. CT images showed basal ground glass and reticular opacities with no areas of honeycombing. Reader 1 gave five-point rating scale as 2, 
thus suggesting probable nonspecific interstitial pneumonia. Reader 2 gave five-point rating scale as 1, thereby suggesting definite nonspecific 
interstitial pneumonia. B. System interpreted approximately one-half of lung volume as ground glass and reticular opacities. System also 
detected some areas of consolidation and honeycombing. Value of prob (event)* was < 0.01, thus classifying CT images as nonspecific interstitial 
pneumonia. Pathology also indicated nonspecific interstitial pneumonia. C. System determined 58% of whole lung as abnormal, whereas 
radiologist regarded 50% as abnormal lung. Extent of fibrosis was 26% according to system, and 20% according to radiologist.
*Logistic prediction equation was:
ln(prob(event)/[1-prob(event)]) = 0.404 HC + 0.178 GGO + 0.181 RO - 0.010 HC × RO - 0.006 GGO × RO - 0.064 CONS × GGO - 4.347
where, prob(event) < 0.50 was nonspecific interstitial pneumonia and prob(event) ≥ 0.50 was usual interstitial pneumonia.
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A

B

C
Fig. 3. 47-year-old man who had pathologically proven nonspecific interstitial pneumonia.
A. CT images predominantly showed basal and peripheral reticular opacities. There were also some areas of honeycombing and subpleural 
emphysema. Two readers gave five-point rating scale as 3, thus suggesting possible usual interstitial pneumonia. B. System interpreted more 
lung volume as ground glass and reticular opacities than did human reader. Honeycombing was less prominent in system’s quantification. Value 
of prob (event)* was 0.35, thus classifying CT images as nonspecific interstitial pneumonia. Pathology also indicated nonspecific interstitial 
pneumonia. C. System determined that 25% of whole lung as abnormal, whereas radiologist regarded 35% as abnormal lung. Extent of fibrosis 
was 15% according to system, and 20% according to radiologist.
*Logistic prediction equation was:
ln(prob(event)/[1-prob(event)]) = 0.404 HC + 0.178 GGO + 0.181 RO - 0.010 HC × RO - 0.006 GGO × RO - 0.064 CONS × GGO - 4.347
where, prob(event) < 0.50 was nonspecific interstitial pneumonia and prob(event) ≥ 0.50 was usual interstitial pneumonia. 
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agreement (0.800) for EMPH, and moderate agreement 
(0.430) for CONS. The agreement between the two readers 
was almost perfect except for CONS in which there was 
substantial agreement. The agreement between the system 
and readers 1 or 2 was lower than that between the two 
readers, particularly for GGO, RO, and CONS.

In LRA (Table 3), the volumes of NL, GGO, RO, and EMPH 
significantly contributed to FEV1 (r = 0.72, ß values, 0.84, 
0.34, 0.34 and 0.24, respectively) and FVC (r = 0.76, ß 
values, 0.82, 0.28, 0.21 and 0.34, respectively). And 
although the volume of NL contributed positively to the 
DLco, the volume of HC contributed negatively (r = 0.65, ß 
values, 0.64, -0.21, respectively).

In 26 patients with UIPs, the reader gave a five-point 
rating scale as 1 or 2 in four patients (15%), 3 in three 
patients (12%), and 4 or 5 in 19 patients (73%) (Table 
4). In 28 patients with NSIPs, the reader gave a five-
point rating scale as 1 or 2 in 17 patients (61%), 3 in nine 
patients (32%), and 4 or 5 in two patients (7%) (Table 
4). Among the 12 patients with a five-point rating scale 

of 3, there were three UIPs and nine NSIPs. Excluding 
scale 3, the diagnostic accuracy of the human reader for 
discriminating between UIP and NSIP was 67%.

By either binomial or binary logistic regression, our 
system showed a discrimination power of 82% between UIP 
and NSIP (Table 5). This discriminative accuracy was much 
higher than that of the human reader. And when the human 
reader had difficulty arriving at the diagnosis between UIP 
and NSIP, as in the 12 patients with a five-point rating 
scale of 3, the system correctly classified nine patients (75% 
accuracy). The logistic prediction equation was: 

ln(prob(event)/[1-prob(event)]) = 0.404 HC + 0.178 GGO 
+ 0.181 RO - 0.010 HC × RO - 0.006 GGO × RO - 0.064 
CONS × GGO - 4.347
where, prob(event) < 0.50 was NSIP and prob(event) ≥ 0.50 
was UIP.

DISCUSSION

Our results showed that the automated system had 

Table 3. Correlation between Volumes of Six Different CT Regional Lung Patterns Calculated by Texture-Based 
Analysis System and Results of PFTs in 54 Patients

Pulmonary Function Test

FEV1 FVC DLco

ß value P value ß value P value ß value P value

NL 0.843 < 0.001 0.817 < 0.001 0.636 < 0.001

GGO 0.340 0.014 0.280 0.028 0.041 0.281

RO 0.338 0.004 0.208 0.050 0.110 0.392

HC 0.129 0.325 0.103 0.401 -0.210 0.062

EMPH 0.236 0.032 0.336 0.001 0.235 0.091

CONS -0.002 0.089 -0.151 0.154 -0.080 0.529

Note.— CONS = consolidation, EMPH = emphysema, GGO = ground-glass opacity, HC = honeycombing, NL = normal, RO = reticular 
opacity, PFT = pulmonary function test

Table 4. Results of Five-Point Rating Scale Determined 
by Thoracic Radiologist with Ten Years of Clinical 
Experience in Distinguishing UIP from NSIP

Five-Point 
Rating Scale

NSIP, n = 28 (%) UIP, n = 26 (%)

1 or 2 17 (61) 4 (15)

3 9 (32) 3 (12)

4 or 5 2 (7)0 19 (73)

Note.— NSIP = nonspecific interstitial pneumonia, UIP = usual 
interstitial pneumonia

Table 5. Discriminating Ability of Automated System 
between UIP and NSIP

  System
Pathology

NSIP UIP Sensitivity (%)

NSIP (n = 28) 22 6 79

UIP (n = 26) 4 22 85

Overall accuracy 82

Note.— NSIP = nonspecific interstitial pneumonia, UIP = usual 
interstitial pneumonia
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reliable agreement with the radiologist’s interpretation 
and that several regional patterns contributed to the PFT 
parameters. Unlike the previous quantification system of 
UIP using only the density and texture features (10, 11, 
13-15, 24), we used shape features as well as the density 
and texture features to perform objective quantification of 
UIP and NSIP. The SVM classifier afforded highly sensitive 
and specific discrimination of the six typical, radiologic 
tissue types (Table 1). The results of this study are similar 
to or better than those of previous studies (7, 9). Even 
more importantly, our system can discriminate between UIP 
and NSIP with an 82% accuracy, which was superior to that 
of the human reader. To the best of our knowledge, there 
has been no previous report pertaining to the automated 
discrimination between UIP and NSIP. 

There are several studies existing, which highlight the 
density histograms for the quantification of UIP (10, 
11, 15, 24). And Do et al. (24) reported that a density 
histogram may be helpful for differentiating NSIP from UIP, 
without the definite presence of HC. Therefore, the system 
based on histograms had been used more extensively 
than the multiple feature method for the quantification 
of UIP. However, Uppaluri et al. (17) showed that the 
overall accuracy of the adaptive multiple feature method 
(AMFM) as 81%, which was 25% more successful than 
the histogram analysis. Uppaluri et al. (17) also showed 
that the samples comparing NL and the IPF samples had a 
discriminatory accuracy of 86% using the AMFM. Delorme 
et al. (13) developed a texture-based pattern recognition 
and segmentation for the quantification of HRCT findings 
in UIP. The overall accuracy of their study was 71%; 
however, they did not include HC, which is an important 
component of UIP. Rodriguez et al. (14) also showed that 
the automatic discrimination and quantification of IPF from 
normal lung parenchyma was possible using generalized 
fractal dimensions on HRCT images. However, they did not 
attempt to differentiate between UIP and NSIP, which 
is important for the treatment option and the patient 
prognosis. We demonstrated that our system had good 
agreement for determining the fibrosis extent between the 
system and the human reader, as well as a discriminating 
power of 82% between UIP and NSIP. Furthermore, when 
the human reader had difficulty distinguishing between UIP 
and NSIP, the system classified it correctly with an accuracy 
of 75%. In the logistic prediction equation of our system, 
HC was the largest component for discriminating between 
UIP and NSIP. GGO and RO also contributed to the power of 

discrimination.
Delorme et al. (13) showed that the identification of 

small anatomic structures such as vessels and bronchi 
was difficult and, our system similarly misclassified some 
normal vessels and bronchi as reticular opacity, ground-
glass opacity, or honeycombing. The basic logic used to 
differentiate disease patterns may differ between the 
system and human readers. The system was trained using 
ROIs representing typical disease patterns. In addition, the 
best combination of features and parameter settings was 
selected by the classifier to most effectively discriminate 
typical areas. However, on clinical HRCT images of DILD, 
many lung areas do not have such typical compositions 
as there are always transitional zones between disease 
patterns, where an area can develop from one class to 
another as the disease progresses. Therefore, there is 
no clear method to discriminate among such borderline 
patterns. This fundamental problem may be overcome or 
minimized by adjusting the system using ROIs of normal 
vessels and relatively atypical or borderline patterns. 
Therefore, the quantification result of our system will be 
further improved if we include normal bronchovascular 
bundles and borderline patterns in our training data sets.

Our study showed that the volumes of the NL, GGO, RO, 
and EMPH contributed to FEV1 (r = 0.72, ß values, 0.84, 0.34, 
0.34 and 0.24, respectively) and FVC (r = 0.76, ß values, 
0.82, 0.28, 0.21 and 0.34, respectively). For DLco, the 
volumes of the NL and HC were independent contributors 
in opposite directions (r = 0.65, ß values, 0.64, -0.21, 
respectively). This result indicated that the functional 
components of the lung, such as NL, had the greatest 
influence on FEV1 and FVC. HC corresponds to end-stage 
lung disease, and GGO reflects disease activity (25, 26). 
RO represents the disease spectrum between GGO and HC. 
In this context, our results showed that GGO and RO had 
a greater influence on FEV1 and FVC than did HC. On DLco, 
normal lung parenchyma was positively influenced, although 
the influence of HC was negative. These study results were 
well correlated with our previous knowledge.

Idiopathic pulmonary fibrosis is the most common 
idiopathic interstitial pneumonias (IIPs). With a median 
survival period ranging from two to four years, IPF has a 
substantially poorer prognosis than other IIPs (27, 28). 
NSIP is less common than UIP, but is still one of the 
most common histologic findings in patients with IIPs 
(29). As NSIP is associated with a variety of imaging and 
histologic findings, the diagnostic approach is highly 
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challenging. However, the distinction between NSIP and 
UIP is more than academic, given the greater response 
to corticosteroids seen in a subgroup of patients with 
NSIP (30, 31). Especially, UIP with HC have a worse 
prognosis than NSIP or UIP without HC (26). Therefore, 
it is important to differentiate between NSIP and UIP for 
the purpose of determining both the treatment and the 
prognosis. Our system had good agreement in determining 
the fibrosis extent between the system and the human 
reader and a discriminating power of 82% between UIP and 
NSIP. Furthermore, when the human reader had difficulty 
determining the diagnosis between UIP and NSIP, the 
system classified it correctly with an accuracy of 75%. As 
we used only clinic-radiologic-pathologically proven cases, 
the results of the human reader might be lower than those 
of a clinician. Despite these factors, the system showed 
very good discriminating ability between UIP and NSIP, 
by combining the quantification results of several regional 
patterns. If we added additional information such as the 
distribution of the regional patterns throughout the entire 
lung, it may be possible to provide a second opinion 
provided by the system, for differentiating UIP from NSIP.

There are several limitations to this study. First, we 
included only pathologically proven UIPs and NSIPs. As a 
general rule, a pathologic specimen is obtained when there 
is difficulty differentiating between UIP and NSIP on HRCT 
images. Therefore, it was possible that we included many 
atypical cases in our study. In this case, our correlation 
results between PFT parameters and regional patterns may 
differ from those of typical UIP and NSIP cases. There is 
also a limitation derived from the nature of the automatic 
classification system. Texture-based quantification is largely 
dependent on the training data sets (10, 13, 17, 18). To 
simplify our task, we used CT images from a single machine 
(a Siemens scanner). However, applying this system to 
images from other CT scanners may yield unreliable results 
as the texture and shape features may be sensitive to the 
noise patterns and machine resolution of each individual 
scanner. Therefore, further system development which is less 
influenced by machines or noise patterns created by testing 
as well as comparison of various scanners will be necessary. 
Third, we used a sample of typical ROIs selected among 
images from the population of patients included into the 
study. This may induce a selection bias. Finally, agreement 
between the system and the two readers was evaluated in 
only 26 randomly selected cases. Therefore, this aspect will 
require further study, including more cases. 

In conclusion, the quantification results of the automated 
system on HRCT images of UIP and NSIP, showed good 
agreement with those of the radiologist’s interpretation, 
and several regional disease patterns contributed to the PFT 
variables. The system was able to successfully discriminate 
UIP from NSIP. Therefore, it may be used for the objective 
and reproducible assessment of regional disease severity in 
cases of UIP and NSIP. 
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