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Abstract
Aggressive primary tumors express transcriptional signatures that correlate with their metastatic
propensity. A number of these signatures have been deployed in the clinic as risk stratification
tools. However, the molecular basis of these clinically useful prognostic signatures has remained a
largely unresolved area of controversy. We recently found that many prognostic signatures reflect
the activity of the MYC oncogene, which in turn regulates tumor metastasis through specific
effects on cancer cell invasion and migration. These findings offer a general framework for
understanding the molecular basis of clinically prognostic transcriptional signatures and suggest
potentially new avenues for studying metastasis.

Accumulating evidence has pointed to an intriguing model of tumor progression whereby
some primary tumors are molecularly preconfigured to metastasize relatively early (rather
than later) in their evolution (1). Several clinical and experimental observations support this
idea: (i) many cancer patients have metastatic tumors without obvious primaries; (ii)
circulating tumor cells or actual micrometastases can be found in patients with very early-
stage tumors; and (iii) aggressive primary tumors express transcriptional profiles that
correlate with propensity to eventual metastasis or are differentially expressed by metastatic
lesions compared with more indolent tumors (1–3). Moreover, there is clear selection for
oncogenic mutations that promote cancer cell proliferation and survival during tumor
evolution, but the selective advantage of purely metastasis-promoting mutations remains
unclear. This thinking has led to the interesting hypothesis that a primary tumor’s metastatic
propensity may be dictated in large measure by molecular changes that occur early in
tumorigenesis (and are reflected by the expression of prognostic signatures), rather than
solely by metastasis-enabling mutations per se, which are thought to arise in rare metastatic
precursors later in tumor progression (1, 4).

Over the past decade, independent groups have reported the identification of many different
“poor prognosis” gene expression signatures, mainly in breast cancer, which were derived
through transcriptional profiling in both human tumors and experimental systems (5).
Curiously, these different signatures are independently prognostic in the same tumor data
sets but overlap minimally with respect to component genes. Additionally, many signature
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genes relate to cell proliferation, which raises the speculation that gene expression profiles
might be useful biomarkers for risk stratification in cancer patients but only indirectly relate
to the molecular mechanisms that specifically regulate cancer cell metastasis. Against this
backdrop, we recently found that 13 different “poor outcome” gene expression signatures
are coordinately regulated by the MYC oncogene in breast cancer cells. In addition, MYC is
specifically necessary for the invasion and metastasis of these cells in experimental
xenografts independent of its effects on proliferation and survival (5). These results suggest
a model whereby early-stage primary tumors that express poor-prognosis transcriptional
signatures have high MYC activity that directly contributes to their metastatic spread.

The MYC transcription factor is one of the most important somatically mutated oncogenes
in human cancer. Recent studies suggest that inherited polymorphisms on 8q24 (near the
MYC locus), which powerfully modify solid tumor predisposition, also influence MYC
transcript expression (6). Somatic amplification and overexpression of MYC is seen in both
high-grade premalignancy and invasive tumors and is associated with poor outcome in
different human tumor types (7–12). Furthermore, many transforming oncogenes ultimately
drive MYC expression either directly or indirectly, thus assuring that deregulation of the
MYC pathway is one of the most common features of human tumorigenesis. The MYC
oncoprotein can confer a selective advantage on cancer cells by promoting proliferation, cell
survival, differentiation blockade, genetic instability, and angiogenesis, all of which may
indirectly contribute to metastasis (Fig. 1; refs. 13–15). Cell proliferation, survival, and
genetic instability promoted by MYC presumably result in more cancer cells with unstable
genomes and, therefore, a higher likelihood of further mutation contributing to progression.

Aside from these indirect functions, however, it is becoming increasingly clear that MYC
may also directly control cellular invasion and migration and, thus, metastasis, by regulating
the expression of specific downstream programs. For example, MYC can regulate the
epithelial-to-mesenchymal transition (EMT) that is necessary for cellular invasion and
migration in some contexts. MYC does this by promoting TGFβ-mediated activation of the
SNAIL transcription factor, both directly and indirectly though a microRNA network
involving a LIN28B/let-7/HMGA2 cascade (Fig. 1; refs. 16–22). Importantly, however, we
found that RNA interference (RNAi)–mediated MYC knockdown in highly metastatic
MDA-MB-231 breast cancer cells disrupts cellular invasion, migration, and metastasis in
vivo, independent of effects on EMT. This suggests that MYC may also regulate metastasis-
promoting mechanisms beyond EMT (5). Consistent with this idea, MYC can regulate cell-
cell–matrix interactions through transcriptional activation of LGALS1, which is a β-
galactosidase–binding protein that promotes cell migration and invasion (23). Similarly,
OPN is a MYC-regulated integrin-binding ligand that has been widely implicated in
stimulating cancer cell migration and invasion (24, 25). MYC also cooperates with SKP2 to
recruit MIZ1 and p300 into a transcriptional complex that activates RhoA, which is
necessary for migration, invasion, and lung metastasis in vivo (26). In addition, MYC
repression of ID2 inhibits expression of the secreted protein SEMA3F, which has been
found to increase cell migration and invasion through RhoA activation and modulation of
the actin cytoskeleton (Fig. 1; refs. 27–29). Clearly, more work is needed to
comprehensively understand all MYC transcriptional targets that can directly contribute to
metastasis.

Although MYC is necessary for the invasive and metastatic behavior of cancer cells, it
seems to be insufficient (5, 26). Furthermore, MYC promotes but, paradoxically, can also
retard migration depending on cell type (30). These and other observations suggest that
MYC likely cooperates with other genes (particularly RAS pathway components) to
promote both the early (e.g., invasion and migration) and late (e.g., seeding) phases of
metastatic progression (15, 31–33). Systematic and unbiased approaches should increasingly
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reveal the spectrum of cellular and molecular contexts in which MYC promotes distant
metastasis. Furthermore, MYC-driven primary tumors seem to remain dependent on this
oncogene even after becoming established (34). If MYC-driven metastatic tumors also
remain dependent (currently, an unanswered question), then strategies to target MYC in
cancer patients with advanced disease may prove to be clinically useful.

Beyond direct transcriptional regulation of metastasis-relevant target genes, MYC may also
play a more global role in regulating the metastatic phenotype. MYC is a powerful cellular
reprogramming factor that determines normal and cancer cell differentiation (35).
Presumably, cancer cells in an undifferentiated, more stem cell–like state might more easily
migrate to and seed distant sites. Along these lines, MYC regulates the expression of
different stem cell–associated transcriptional profiles (5, 33). How MYC regulates cellular
differentiation is still not completely clear. However, genome-wide chromatin
immunoprecipitation (ChIP) profiling studies have recently shown that MYC binds widely
across the human genome (36). Other recent studies also suggest that MYC-directed
transcriptional complexes containing histone-modifying enzymes may, in part, promote
cellular reprogramming by uniquely inducing genome-wide changes in chromatin
conformation (36–39). These findings suggest a fascinating but still speculative model.
Perhaps MYC contributes to metastasis by globally altering the epigenomic landscape of
cancer cells, thus providing a permissive molecular context in which additional, cooperative
molecular alterations can specifically promote different aspects of the metastatic phenotype.
If this speculative model proves to be correct, a deeper understanding of MYC complexes
that promote metastasis in this way may provide new opportunities to target this important
but currently “undruggable” cancer pathway. Further work will be required to fully explore
this model.
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Figure 1.
MYC has a myriad of different functions. Its role in proliferation, differentiation, survival,
and genetic stability has been studied extensively and is depicted summarily. More recent
findings have outlined mechanisms by which MYC directly regulates genes involved in cell
migration, invasion, and the epithelial-to-mesenchymal transition (EMT). (green-shaded
box). Finally, the effect of MYC on chromatin conformation may set a “metastasis-
enabling” epigenomic landscape (purple-shaded box); EGF, epidermal growth factor; ERK,
extracellular signal regulated kinase (gray-shaded box). HGF, hepatocyte growth factor;
MEK, MAP/ERK kinase; PDGF, platelet derived growth factor.
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