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ABSTRACT

Precise transcriptional control is dependent on
specific interactions of a number of regulatory
elements such as promoters, enhancers and silen-
cers. Several studies indicate that the genome in
higher eukaryotes is divided into chromatin
domains with functional autonomy. Chromatin
domain boundaries are a class of regulatory
elements that restrict enhancers to interact with
appropriate promoters and prevent misregulation
of genes. While several boundary elements have
been identified, a rational approach to search for
such elements is lacking. With a view to identifying
new chromatin domain boundary elements we
analyzed genomic regions between closely spaced
but differentially expressed genes of Drosophila
melanogaster. We have identified a new boundary
element between myoglianin and eyeless, ME
boundary, that separates these two differentially
expressed genes. ME boundary maps to a DNasel
hypersensitive site and acts as an enhancer blocker
both in embryonic and adult stages in transgenic
context. We also report that BEAF and GAF are the
two major proteins responsible for the ME boundary
function. Our studies demonstrate a rational
approach to search for potential boundaries in
genomic regions that are well annotated.

INTRODUCTION

Chromatin domain boundaries are elements that prevent
cross talk between regulatory elements of neighboring
genes and, thereby, facilitate proper transcriptional
control. It has been proposed that boundary elements
are present throughout the genome and functionally sub-
divide the genome into independent units called chromatin
domains. Regulatory elements are restricted to the target

genes within such domains as boundaries prevent inappro-
priate crosstalk among regulatory elements in different
domains. However, only a handful of such boundary
elements are known till date (1-13). Chromatin domain
boundary elements prevent communication between en-
hancers and promoters when placed between the two but
mechanisms involved in this process are poorly under-
stood. Various assays have been developed to study
boundaries that include insulator, enhancer blocker and
barrier assays (14-19). Some of the boundary elements
possess both enhancer blocker and barrier activities and
these different functions are attributed to different
proteins (20). These studies have opened exciting
possibilities associated with boundaries in higher order
chromatin organization but much remains to be under-
stood about how boundaries function, primarily because
very few boundaries have been identified and studied in
detail. It is, therefore, highly desirable to identify new
chromatin domain boundaries and their interacting
partners. Identification of the proteins that associate
with boundaries may also lead to understanding how
these elements function. Few proteins responsible for
boundary function of different known boundaries have
been identified (21-26) but the molecular mechanism by
which they contribute to the boundary function has
remained largely unclear.

It is speculated that thousands of such elements must be
present in every genome for proper gene regulation. Very
few new boundaries have been identified of late and the
reason for this slow progress is the lack of a rational and
functional screening for new boundaries. One of the ways
to identify new boundaries may be via genome-wide
binding studies of boundary interacting proteins. Such
studies have been carried out recently (27-30), but all
the binding sites identified may not reflect boundaries as
these proteins are also known to have additional func-
tions. In the current study we present a boundary search
approach based on the logic that closely spaced genes that
are differentially expressed must be insulated from the
regulatory elements of one another and one of the
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mechanisms to achieve this may be the presence of a
boundary element separating the domains of the two
neighboring genes. We analyzed the fourth chromosome
of Drosophila with this rationale and mapped a chromatin
domain boundary between myoglianin and eyeless genes.
We refer to it as myoglianin—eyeless, ME boundary. Our
studies show that ME boundary contains a DNasel hyper-
sensitive site and it functions as a boundary both in adult
and embryonic stages of Drosophila. Sequence analysis of
ME boundary revealed binding sites for known boundary
interacting proteins BEAF (boundary element associated
factor) (26,31,32) and GAF (GAGA factor, a.k.a.
trithorax like, Trl) (33). Earlier studies have shown that
binding sites of proteins on the boundary element and
presence of normal levels of the proteins are needed for
the activity of several boundary elements (25,32). Using
genetic and molecular approaches, we further show that
BEAF and GAF are positive regulators of the ME
boundary function and they contribute to the boundary
function of ME by directly binding to it.

MATERIALS AND METHODS
DNasel hypersensitivity assay

Nuclei were prepared from 0—16h old Canton-S embryos
essentially as described earlier (34) and digested with
DNase I in a controlled manner for 0.5 to 5min. About
100 U/ml DNasel concentration was used and reactions
were terminated at every half minute interval by adding
20mM EDTA and 1% SDS. DNA was isolated from
chromatin using standard phenol/chloroform extraction.
An aliquot from each digest was analyzed on agarose gel
for appropriate DNasel digestion pattern (smear pattern)
and samples from 2 to 4min digests were pooled and
digested completely with EcoRI restriction endonuclease.
After complete digestion with EcoRI, DNA was loaded on
a 40 cm gel and electrophoresis was performed for 10-12 h
at 40 V. The temperature of the buffer was kept constant
by attaching the electrophoresis tank to a water bath.
After electrophoresis the DNA was transferred from the
gel to positively charged nylon membrane using vacuum
transfer. Southern hybridization was performed according
to the DIG protocol (Roche) using probe from the region
mentioned in text.

Cloning of ME test fragments in P-element derived
boundary assay vectors

Test fragments from ME region were PCR amplified
using different set of primers and cloned into boundary
assay vectors (Supplementary Figure S1). In brief, PCR
product was first cloned in pTZ57R/T (a PCR cloning
vector from Fermentas Life Sciences) and excised out as
EcoRI-HindIII fragments and cloned into EcoRI/HindIII
double digested pLML vector that contains loxP sites
flanking the MCS (35,36). ME test DNA flanked by
loxP sites was excised out from the LML construct and
cloned into Xhol digested boundary assay vectors RW™,
YW and pCfhL. As indicated in Supplementary Figures
S1 and S3, 1583 bp ME fragment was used in RW™ and
YW while 917 bp fragment was used in pCfhL vector.

P-element transformation and scoring of reporter gene
expression

Transposon injections were done in early embryos of w’/*%

flies essentially as described (37) and transformants were
selected by rescue of the eye color. Transgenic lines used in
this study are listed in Supplementary Table S2. Levels of
mini-white expression of the different transgenic lines were
determined from 4-day-old flies of approximately the same
size (38). Genetic interaction of transgenic lines with dif-
ferent mutations (listed in Supplementary Table S3) was
checked by crossing virgin females from the mutant stocks
with males from the transgenic ME lines. This was done
to take advantage of possible maternal effect of the
mutant loci.

Quantitative measurement of eye pigment

Adult heads were homogenized in 1:1 mixture of chloro-
form/ammonium hydroxide (0.1%) and this mixture was
centrifuged. Supernatant was taken to read absorbance
at 485nm. Blank used was chloroform/ammonium hy-
droxide (0.1%).

Wing images

For taking wing images, flies were aged for 3—4 days and
then kept in a solution of glycerol/ethanol (1:10) for 3-4
days. Finally the wings were cut in water, mounted on a
slide in Hoyer’s medium and images were taken.

p-Galactosidase assay

CS and transgenic embryos (0-6-h old) were collected,
dechorionated in 50% bleach (NaOCI, sodium hypochlor-
ite) and washed thoroughly with PBS. Then embryos were
fixed in saturated heptane for 20 min at room temperature
on rotating shaker. About 10 ml of heptane was saturated
with 5ml PBS and 5ml gluteraldehyde (25%), phases were
allowed to separate and the top phase of heptane was
recovered. After fixation, fixing solution was removed
and washed for additional 20-30 min with PBSTr (0.3%
Triton X-100). Embryos were incubated in coloration
solution for 30 min at 37°C and later replaced with color-
ation solution supplemented with 1.0% X-gal and
incubated for additional 2-10h at 37°C (covered with
aluminum foil) until clear color pattern developed. After
staining, coloring solution was removed, washed in PBST
and finally, photographed. When testing effect of different
mutations (BEAF and Dref), we used virgins from mutant
stock balanced over CyO;wg-lacZ balancer chromosome
to distinguish embryos carrying the mutant allele.

RNA in situ hybridization

Whole mount RNA in situ hybridizations were carried out
using 0—6-h-old embryos of pCfhl-ME (917) transgenic
and flipped out flies. DIG labeled RNA probes were
made for lacZ and white mRNA and in situ hybridization
was performed as described earlier (39,40) with a small
change—instead of Proteinase K treatment 80% acetone
was used as described in Nagaso ef al. (41).



ImmunoFISH on polytene chromosomes

Flies were reared at 18°C under non-crowding conditions
and third instar larvae were selected for polytene prepar-
ation. Polytene chromosomes were prepared as described
carlier (42). The slides with good polytene preparations
were rinsed in PBS for 15min at room temperature, kept
in 2x SSC at room temperature and then into a 65°C
water bath for 45min. They were then dehydrated by
passing through 70% ethanol and 96% ethanol (twice
for Smin each). The chromosomal DNA was denatured
by incubating in 0.07 M NaOH for 10 min. After denatur-
ation the slides were washed in 2x SSC twice for 1 min
each and finally for 5min. The slides were dehydrated by
passing through 70% ethanol and 96% ethanol as above
and dried mildly after dehydration. Hybridization mixture
was then added to the slide and covered by a cover slip
and incubated at 80°C for Smin (formamide 50%, SSC
2X, dextransulfate 10%, salmon sperm DNA 0.8 mg/ml).
Dig labeled DNA (1 pg of ME DNA or lacZ DNA) was
prepared using the Nick translation kit from Roche. The
probe, purified by Qiagen reaction clean up kit, was mixed
with hybridization solution and incubated at 95°C
for Smin. The denatured probe was added to the slide
and covered with a cover slip. The slide was incubated
in a humid chamber at 37°C for 12-16 h. After hybridiza-
tion the cover slip was removed and the slide was washed
in 2x SSC, three times for 5 min each at 42°C and once for
Smin at RT. Thereafter the slide was washed in PBS for
15min. The slides were then incubated in blocking
solution for 1h at room temperature and then rinsed in
PBS for a minute to remove the milk powder. Primary
antibody [anti BEAF (1:10 dilution) or anti GAF
(1:100 dilution)] diluted in PBTx was added and the
slide was incubated in a humid chamber for 1h at 37°C.
After incubation the slides were rinsed with PBS twice,
Smin each at room temperature. The slides were then
washed for 15min in wash solution A (I1x PBS, 300 mM
NaCl, 0.2% Tween-20, NP40 0.2%) and for 15min in
wash solution B (Ix PBS, 400mM NaCl, 0.2%
Tween-20, 0.2% NP40) while shaking the rack thorough-
ly. The slides were then rinsed in PBS for 5 min. Secondary
antibody (anti-DIG Cy3 1:300 dilution) diluted in PBTx
was added and the slide was incubated in a humid
chamber for 1h at RT. The slides were rinsed in PBS
for S5min. Second secondary antibody [anti-mouse FITC
(1:200 dilution) or anti-rabbit FITC (1:200 dilution)]
diluted in PBTx was added and the slide was incubated
in a humid chamber for 1h at RT. After incubation the
slides were rinsed with PBS for 5Smin. The slides were then
washed for 15min each in wash solution A and B while
shaking the rack thoroughly. Finally, the slides were
rinsed with PBS for Smin. Mounting media with DAPI
was added to the slide and covered with a cover slip. The
slides were examined under confocal microscope.

Chromatin preparation

Chromatin was prepared from FLAG-BEAF expressing
larvae (wild-type and different mutant background as
indicated in the text), essentially as described earlier (43).
In experiments where embryos were used for chromatin
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preparation (for GAF pull down shown in Figure 7b), one
gram of freshly dechorionated Canton-S embryos (0-16h)
were washed several times in PBST, centrifuged at 500g
for 1 min and resuspended in 10 ml crosslinking solution
(Crosslinking solution: 50mM Hepes pH 7.6, 1mM
EDTA pH 8.0, 0.5mM EGTA pH 8.0, 100mM NaCl,
1.8% Formaldehyde) and 30ml heptane. The embryos
were cross-linked for 15min at room temperature with
vigorous shaking and then centrifuged for 1 min at 500g,
resuspended in PBST-glycine (125mM) and allowed to
sediment. The embryos were then washed with ice cold
PBST, and resuspended in ice-cold PBST containing
protease inhibitors. They were then homogenized using
Wheaton Dounce Tissue Grinder (10  times).
Homogenate was centrifuged at 400g at 4°C for 1min.
The supernatant was then centrifuged at 1100g for
10min at 4°C. Purified cells were resuspended in cell
lysis buffer (SmM Hepes pH 8.0, 85mM KCI, NP-40
0.5%) containing DTT, PMSF and protease inhibitor
mixture. The extract was centrifuged at 1300g for 4 min
at 4°C and the pellet was resuspended in cell lysis buffer
containing DTT, PMSF and protease inhibitor mixture.
The extract was centrifuged at 2000g for 4 min at 4°C. The
nuclei were washed once with cell lysis buffer and
incubated in nuclei lysis buffer (Nuclei lysis buffer:
S50mM Tris. HCI pH 8.0, 10mM EDTA, 1% SDS)
containing DTT, PMSF and protease inhibitor mixture
for 20 min on ice with gentle shaking. SDS concentration
(0.1%) was maintained by adding immunopercipitation
buffer to nuclei. The chromatin was sheared to an
average of 300-600 bp by sonication (Biorupter™).

Immunoprecipitation was performed using o-FLAG
M2 agarose (Sigma) and o-GAF antibody generated
in the lab (43,44) following the ChIP protocol provided
with Upstate Biotechnology ChIP Assay Kit. In
brief, ~40 pg of the chromatin was incubated with 75 pl
Protein A sepharose resin slurry (Upstate Biotechnology)
for an hour at 4°C. Pre-cleared chromatin was incubated
without antibody or with a-FLAG M2 agarose (Sigma) or
a-GAF antibody overnight at 4°C. Chromatin from chro-
matin—antibody-resin complex was recovered by centrifu-
gation followed by several washing steps. Chromatin was
eluted in elution buffer at room temperature (Upstate kit).
DNA was isolated by phenol/chloroform extraction and
ethanol precipitation in the presence of 20 ug glycogen.
Precipitated DNA was resuspended in equal volume and
analyzed by real-time PCR.

Real-time PCR and quantification

Each PCR reaction contained 2pmol of each primer,
I1x SYBR Green master mix with HotStart Taq polymer-
ase (Applied Biosystems). PCR was performed and moni-
tored in 7900HT Fast Real-Time PCR System: 4min
activation of Taq at 95°C, followed by 40 cycles of 94°C
10s, 56°C 205, 68°C 20s. Product formation was detected
at 60°C in the fluorescein isothiocyanate channel.
Enrichment was calculated based on Act values, difference
of C; between specific antibody and mock pull down.
Primers used for PCR analysis is listed in Supplementary
Table S4.
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Mutagenesis of BEAF sites

Five BEAF binding sites in the ME (917) including two
palindromic site in the core region (cloned in pLML
vector) were mutated by site directed mutagenesis using
QuickChange™ Site directed mutagenesis Kit from
Stratagene. BEAF motifs, CGATA, were changed to CT
CGA sequentially, using overlapping primers having
mutation at the corresponding sites, PCR amplified and
cloned in CfhL.

RESULTS

Sequence analysis of fourth chromosome for potential
boundary elements

The rationale used for a region to have boundary potential
was that closely spaced but differentially expressed genes
must have a boundary in between the two genes to prevent
regulatory crosstalk. We selected the fourth chromosome
of Drosophila melanogaster to look for new boundaries by
this approach. A whole chromosome analysis of the fourth
chromosome is easy as it is the smallest chromosome in
fly. Three fourth of this chromosome is a heterochromatin
block and the remaining ~1.2 Mb of euchromatin region
is also interspersed with heterochromatic regions (45).
Another interesting feature that distinguishes the fourth
chromosome from other chromosomes is the presence of
large number of repeats (46,47) although the gene density
on this chromosome is the same as on the other
chromosomes.

We analyzed the intergenic regions and looked at
various features associated with them, for example,
presence of MARs, patterns of repeats, etc. The fourth
chromosome sequence taken from NCBI (NC _004353.2)
consists of 81 predicted genes (61.5% of the entire
chromosome) of which 62 were found to be transcribed.
There are 80 intergenic regions, the smallest intergene,
154 bp, is located between CGI1076 and ATPsyn-beta
and the longest intergene, 45434 bp, is located between
CG2052 and Igs. Twenty-three intergenic regions were
flanked by convergent transcribed genes whereas 24
intergenic regions were flanked by divergent transcribed
genes; the rest of the intergenes were flanked by genes
transcribed in the same direction.

The approach we took to identify chromatin domain
boundaries in intergenic regions was to focus on small
(few kb) intergenic regions that separate differentially
expressed genes, as these are likely to possess insulator
functions needed to prevent cross talk between regulatory
elements of the flanking genes. Among various potential
boundary containing regions, we selected few intergenic
regions for further analysis based on features likely to be
associated with boundary elements such as differential
expression of genes flanking the intergene, presence of
motifs for boundary binding proteins, MAR potential
(48), etc. (Supplementary Table S1). Finally, we carried
out detailed functional analysis of a 1.6kb intergenic
region (49ig50) which separates two differentially
expressed genes myoglianin and eyeless (Supplementary
Figure S1 and Supplementary Table S1).

The Drosophila, eyeless (ey), Pax-6 gene homolog, is
expressed in the eye imaginal disc primordia and central
nervous system. In third instar larvae, ey expression is
visible in the optic lobes of the brain, in several spots of
the ventral ganglion and in the eye imaginal discs, where it
is restricted to the undifferentiated cells anterior to the
morphogenetic furrow (49). The second intron of
ey gene contains an enhancer that regulates the eye
specific expression of the gene in the eye disc primordia
of embryos and in the eye imaginal disc of the third instar
larvae (50). myoglianin, on the other hand, belongs to the
TGF-p superfamily and is closely related to the vertebrate
muscle differentiation factor Myostatin and BMP-11
(51). myoglianin is expressed throughout in Drosophila
life cycle. In situ data showed that in preblastoderm
embryos, a high level of maternally deposited myoglianin
transcript is uniformly distributed throughout the embryo.
By stage 14, strong expression is evident in glial cells. This
glial expression is completely lost in stage 15 embryos and
instead expression is detected in the somatic, visceral, and
heart musculature, which persists through late embryo-
genesis. In third instar larvae the expression pattern
is observed in the brain and ventral nerve cord where it
is expressed in the glial cells (51). Due to this, clearly
distinct spatial expression profile and dynamics, we
reasoned that the 1.6kb region separating myoglianin
and eyeless is likely to contain a boundary that prevents
enhancer of eyeless present in the second intron from
acting on the myoglianin promoter.

ME intergenic region contains DNasel hypersensitive site

We used DNasel hypersensitivity analysis to narrow down
our search for the potential boundary elements because
hypersensitive sites are found to be associated with regu-
latory elements and also because all known boundary
sequences have DNasel hypersensitive sites (4,52-56).
We used nuclei from 16-h-old CS embryos to perform
DNasel hypersensitivity assay. In case of control where
DNasel digestion step was omitted, a 9.7kb band
was detected. Five extra bands appeared in the case
when chromatin was subjected to DNasel digestion
prior to digestion with EcoRI revealing the presence of
hypersensitive sites within 9.7kb region (Figure la).
Of the five hypersensitive sites, III and I map to the pro-
moters of myoglianin and eyeless genes, respectively
(Figure 1b). Two minor hypersensitive sites IV and V
located in the region beyond the promoter of the
myoglianin gene (Figure 1b) may reflect regulatory
regions specific to this gene. Hypersensitive site 11
located in the 1.6kb intergenic region was taken as the
putative ME boundary for subsequent functional
analysis (Supplementary Figure S1).

ME acts as an enhancer blocker

ME acts as an enhancer blocker in adult tissues. Enhancer
blocker activity of boundary elements have been assayed
carlier using a P-element vector, RW™ (57). In this assay
vector, enhancer driving mini-white gene leads to a high
level of white expression seen as red eye color. However,
when a boundary is inserted between enhancer and
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Figure 1. Mapping of the DNasel hypersensitive sites in the intergenic region ME separating myoglianin and eyeless genes. (a) Lane 1 is a 1 kb DNA
ladder. Lane 2 is genomic DNA digested with EcoRI, a 9.7kb band is generated by cleavage in the myoglianin and eyeless genes. Lane 3 is nuclei
from 16-h-old embryos digested with DNasel followed by purification and complete digestion with EcoRI. Samples were subjected to electrophoresis
on a 1% agarose gel, transferred and covalently bound to positively charged nylon membrane and hybridized to probe shown in Figure 1b. DNasel
hypersensitive sites are marked with arrows. (b) A schematic presentation of the 9.7-kb region showing different DNasel hypersensitive sites. Two
hypersensitive sites III and I are near the promoter regions of myoglianin and eyeless genes, whereas two smaller hypersensitive sites IV and V are
within the myoglianin gene. The hypersensitive site II located in the intergenic region is designated as ME boundary. The region used as a probe is

shown as double headed arrow.

promoter, the transgenic flies have a light eye color due to
the enhancer blocking activity of the boundary element.
We inserted ME region between the enhancer and
promoter of the mini-white gene in the RW™ vector and
generated transgenic flies (Figure 2a and Supplementary
Table S2). As 8 lines out of 10 lines showed lighter
eye color in heterozygous state, we reasoned that the
ME region might be acting as an enhancer blocker in
the RW" construct. When these transgenic lines
were crossed to flies carrying Cre recombinase to flip out
the ME boundary DNA from the transgenic location, the

eye color turned darker in all the cases (Figure 2b). This
result showed that ME region acts as an enhancer blocker
and that the light eye color is due to the boundary
function of ME and not a position effect.

Next, we tested enhancer blocker activity of ME in
wings. We developed a P-element YW vector, which has
two reporters, mini-white for screening the transgenes and
yellow to score for the enhancer blocker activity
(S. Krishnan and R. K. Mishra, personal communica-
tion). In this construct two enhancers are used, one wing
enhancer and one body enhancer driving high expression
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Figure 2. Enhancer blocker assay in eye. (a) Schematic representation
of the RW" vector. The test fragment is inserted between the enhancer
and promoter of mini-white. The test fragment is flanked on both sides
with loxP sites. On crossing the fly with Cre expressing line the test
fragment gets flipped out and the enhancer can now act on the
promoter. (b) ME acts as an enhancer blocker in the eye. The eye on
the left contains the test fragment in RW" vector, whereas the eye on
the right is the same line after the test fragment is flipped out.

of yellow gene in wing and body, respectively. When
ME test fragment having enhancer blocker activity
was inserted between the two enhancers, the body
enhancer could still drive expression of the yellow gene
and give dark pigmentation to the body (Supplementary
Figure S2a). Wing enhancer, on the other hand, was in-
hibited by the presence of the ME boundary and yellow
expression was weaker, seen as light wing pigmentation,
supporting our earlier results that ME region indeed acts
as an enhancer blocker. When we flipped out the ME part
from the transgenic line, there was an increase in the wing
pigmentation (Supplementary Figure S2b and c¢) whereas
there was no change in eye color and body pigmentation
(Supplementary Figure S2d and e). These results reinforce
our observation that ME functions as enhancer blocker
and that the reduction in reporter gene expression is not
due to position effect. This also rules out any repressive
activity in the test DNA.

ME acts as an enhancer blocker in embryos. Having
established that ME region acts as a boundary in eye and
wing, we were interested in finding out if it could act as a
boundary in embryonic stages as well. We inserted 917 bp
DNA from the ME sequence (Supplementary Figure S3)
between the fiz enhancers and the lacZ gene of the CfhL
vector (Figure 3a) (58). ME sequence caused drastic reduc-
tion in the X-gal staining in embryos suggesting that ME
was not allowing both the enhancers to act on lacZ
(Figure 3b). Though blocking was seen both in case of
young and old embryos, it was more prominent in case of
young embryos and the boundary strength was similar
to known gypsy derived boundary eclement (58),
Supplementary Figure S4. Of the seven transgenic lines
that we established, two were strong blockers, two were
moderate blockers and three were weak blockers
(Supplementary Table S2). This data suggested that ME
region acts as enhancer blocker in the embryonic stages
and that a shorter version of ME region was sufficient to
act as a boundary. In the flipped out version of these lines
the X-gal staining came back strongly, whereas the eye
color remained the same before and after flipping out
(Figure 3b). To finally confirm that ME functions as
neutral boundary and not a repressor, we carried out
RNA in situ hybridization in embryos to look for expres-
sion levels of both lacZ and white gene from the transegenic
locus. As shown in Figure 3c, while lacZ expression was
enhanced in the flipped out line as compared to the initial
one, expression of white did not show any increase in the
flipped out line. On the contrary RNA level of white gene
shows a decrease in the flipped out line, presumably
because after the removal of the boundary, fzz enhancer
is competed by the /lacZ gene. This conclusively establishes
that ME region acts as a chromatin domain boundary and
not a repressor.

BEATF is required for the ME boundary function

A close look at the sequence of ME boundary revealed that
it contains binding sites for BEAF (Supplementary
Figures S1 and S3). To test whether boundary activity of
ME is dependent on BEAF, RW™ transgenic lines were
placed in BEAF mutant background. We used
BEAF*?%° fly (59) to test the contribution of BEAF in
enhancer blocking activity of ME in transgenic lines.
In heterozygous BEAF*#%? context, only a mild reduction
in the insulator function of ME boundary was observed
indicated by a slight increase in the eye color (data not
shown). In the homozygous null mutant context of
BEAF, a clear and significant increase in the eye color
was observed (Figure 4a). Effect in the case of male flies
was more pronounced as compared to female flies. On the
contrary, we did not observe any change in eye color or the
pigment level in case of the flipped out lines in the wild-type
and homozygous BEAF mutant backgrounds (Figure 4a).
Three independent initial lines and their flipped out
versions were tested and all the lines showed comparable
result, that BEAF mutation consistently weakened the
wild-type ME boundary activity. These results indicate
that BEAF contributes to the ME boundary function
though it may not be the only factor involved.
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Figure 3. Enhancer blocker assay in embryo. (a) Schematic representation of the CfhL vector. The test fragment is inserted between the f7z enhancers
and hsp70/lacZ gene. The test fragment is flanked on both sides with /oxP sites. On crossing the fly with Cre expressing fly the test fragment gets
flipped out and the enhancer can now act on the promoter. (b) Boundary function of ME is position independent. The upper panel (i and ii) shows
early and late embryos from a line carrying ME. The lower panel (iii and iv) shows the early and late embryo from the same line after ME is flipped
out. All the embryos shown are homozygous. As shown in the right panel the eye color of the initial and flipped out line does not vary indicating the
boundary and not a repressor action of ME. (¢) ME functions as boundary and does not affect fiz-driven expression of white in CfhL lines. RNA
in situ hybridization shows lacZ expression (i and iii) and f7z-driven expression of white (it and iv) in embryos. P and AP indicate initial and flipped

out ME transgenic lines, respectively.

It has been shown earlier that palindrome of BEAF
recognition sequence also consists of DNA replication-
related element (DRE), TATCGATA, which can be
recognized by transcription factor DREF (29,60). Since
DRE is present in ME boundary we wanted to test if
Dref has any contribution to this boundary. For this
purpose, we carried out /acZ staining of both initial and

flipped out lines of ME boundary in the Dref mutant
background. We did not find any effect of Dref<“?*?%?
on ME boundary although this allele is known to affect
the function of this protein (61), (Supplementary Figure
S6). We, therefore, conclude that ME boundary function
is not affected by Dref and that the BEAF recognition
motif present in ME boundary responds only to BEAF.
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values for these eyes. All the flies shown are females heterozygous for ME transgene.

GATF is required for the ME boundary function

ME region also contains scattered GAF binding sites
(Supplementary Figures S1 and S3). This prompted us
to analyze the requirement of this protein to the
enhancer blocker activity of ME in transgenic assay.

In heterozygous GAF mutant background of 7Tr/*%
(33), a mild relief from enhancer blocking by ME
boundary in form of a slight increase in eye color was
seen, which was also reflected in the pigment assay.
In the case of GAF mutant background we observed a
more pronounced effect in female flies (Figure 4b).
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Figure 5. Effect of boundary interacting factors and PcG/trxG of genes on ME boundary. (a) Mutations of known boundary interacting factors
(CTCF and CP190) and GAGA site interacting factors (GAF/Tr/ and pipsqueak) were tested. Relative pigmentation from eyes of male flies
heterozygous for transgene as well as the mutation were estimated. P indicates transgenic initial ME line and AP indicates the flipped out
version of the ME line. Virgin females from Tv/'*C, CTCFY'®, CP190"™, psqP’! crossed with males carrying the transgene. Male progeny
carrying different mutations in combination with the ME transgene were used for eye color comparison (Supplementary Figure S7) and quantitative
pigmentation assay. Error bars represent standard deviation form three independent experiments. (b) Mutations in selected PcG and trxG members
were tested for their effect on ME boundary. Virgins from mutant stock were crossed with ME males and female progeny carrying both the mutation
and the ME transgene were used for eye color com;)arison (Supplementary Figure S8) and quantitative pigmentation assay. Varying degree of effect
is seen in case of ashl®, brm?, Tri”>C, P¢' and es¢” while no noticeable effect is seen in case of z/ and Su(var)2-10°. Error bars represent standard

deviation form three independent experiments.

When flipped out line of the same transgene was brought
in the mutant background, no change in eye color or
pigment level was seen. We also tested 7r/"*¢ (Figure 5a,
Supplementary Figure S7) and, unlike in the case of
Tri® . observed similar effect in both male and female
flies. Since GAGA sites are also known to be recognized
by pipsqueak (62), we further tested if mutation in this
gene (psq”’’) could affect ME boundary function. As
shown in Figure 5a and Supplementary Figure S7,
psg”’’ had no effect on ME boundary. This data

suggested that GAF also is a positive regulator of ME
boundary function although the effect of BEAF appears
to be more pronounced indicating that the later is the
major factor responsible for this boundary function.

Effect of other boundary interacting factors on ME
boundary

Several factors are known to contribute to the boundary
function in Drosophila. These include CTCF and CP190
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that are involved in several boundary elements especially
gypsy insulator which also depends on PcG and trxG
members (63-65). We tested mutations in CTCF and
CP190 to see if ME boundary also depends on these
factors. We saw mild effect of CTCF but no effect of
CP190 on ME boundary function, Figure 5a and
Supplementary Figure S7. When PcG and trxG mutations
were tested, as reported earlier in the case of gypsy insu-
lator (65), we observed noticeable but varying degree of
effect of several of these mutations on ME boundary
function, particularly in ashl, Trl and esc mutant
context (Figure 5b and Supplementary Figure S8).
Mutations in heterochromatin component Su(var)2-10
and PcG/trxG members, Pc, brm and Zeste, did not
show any effect. ME boundary, therefore, appears to
depend on a large number of factors that influence
nuclear organization and chromatin structure (65).
BEAF and GAF, however, may be the direct factors
responsible for its boundary activity as ME boundary
region contains binding sites for these proteins.

BEAF and GAF contribute to the ME boundary function
by direct binding to it

While the above experiments show the role of BEAF and
GAF in ME boundary function, it does not rule out an
indirect effect of the mutatnts used. To check whether
BEAF binds to ME, immunoFISH was performed on
polytene chromosomes using anti-BEAF antibody (34).
Clear localization of BEAF at the ME region was
observed both on the transgene insertion site and the
native location of ME boundary on the fourth chromo-
some (Figure 6a). This data indicated that BEAF indeed
binds to ME region. To cross check our result, we
performed immunoFISH on the flipped out line as a
control. No colocalization was observed in case of
flipped out lines (Figure 6b). We also used anti-GAF
antibody (35,43,44), to test if GAF binds to ME region.
Clear colocalization of GAF and /lacZ was observed, sug-
gesting that GAF also binds to ME region (Figure 6c).
In the flipped out version of the same transgenic line,
GAF did not colocalize with lacZ (Figure 6d). These
results, Figure 6 and Supplementary Figure S5
(full image of polytene spread), clearly showed that
BEAF and GAF directly bind to the ME boundary and,
thereby, contribute to its boundary function.

To further confirm our findings that BEAF and GAF
are involved in boundary function of ME by direct
binding, we performed ChIP experiments. Since BEAF
antibody did not work for the ChIP experiments, we
used FLAG tagged BEAF expressing flies, generated in
the lab from FLAG-BEAF fusion construct under a
constitutive Pc promoter, to prepare chromatin (34).
Anti FLAG M2 agarose was used to pull down the chro-
matin. More than 10-fold enrichment of ME is seen in
BEAF pull down as compared to the negative control of
Ubx intron II, which does not contain binding sites for
BEAF, Figure 7a. As a positive control scs’ boundary was
used on which BEAF is known to bind (26) that showed
~40-fold enrichment with respect to the negative control.

This ChIP data confirmed that BEAF directly binds to the
ME boundary.

ChIP was also performed for calculating the occupancy
of GAF at ME using anti GAF antibody. We used
hexo-kinaseC promoter region, which does not contain
binding sites for GAF as a negative control and
iab-7PRE, which contains GAF binding sites (43) as
a positive control. We tested two regions of ME for
GAF, MEIl which is in the middle region of ME
adjacent to the BEAF sites and ME2 which is towards
the end of the ME region. We observed ~3-fold enrich-
ment in case of ME1 and ~5-fold enrichment in case of
ME2 as compared to the negative control, Figure 7b.
Although the enrichment is relatively less compared to
the positive control, these results clearly suggest that
GAF interacts with the ME boundary.

BEAF binding sites are essential for the ME boundary
function

Once we established that BEAF is the major factor that
contributes to the ME boundary function (Figure 4) by
directly binding to it, we wanted to analyze whether
BEAF binding sites in the ME boundary are essential
for its boundary function. To this end, we mutated all
the five BEAF binding sites, including two palindromic
sites in the 917bp core region of ME boundary
(Supplementary Figure S1). BEAF binding CGATA
motifs were changed to CTCGA, which is reported to
abolish BEAF binding (66). The mutated fragment was
cloned in the CfhL vector and transgenic lines were
generated (Supplementary Table S2). On staining the
embryos for the lacZ activity dark staining was observed
suggesting that mutated ME does not function as
a boundary and as a result the fzz enhancers are able to
drive the expression of lacZ gene, Figure 8. On flipping
out the mutated ME region from these transgenic lines, no
difference in the lacZ activity was observed (Figure 8).
Also, there was no significant change in eye color and
eye pigment observed in transgenes before and after
flipping out the mutated ME (data not shown).
To further confirm that loss of boundary function in
mutated ME lines is due to absence of BEAF from the
mutated region, we carried out ChIP experiments on
wild-type and mutated ME lines. We observed complete
loss of BEAF in mutated ME region as opposed to clear
occupancy in the wild-type ME (Supplementary
Figure S9). This suggests that BEAF binding sites are
essential for the ME boundary function.

DISCUSSION

Chromatin domain boundaries are essential for proper
transcriptional control of the genome. Although their im-
portance in regulation of higher order chromatin organ-
ization is well established, very few boundary elements
have been identified and studied till date. Sequence com-
parison of the known boundaries does not reveal any
sequence similarity, which makes identification of new
boundaries difficult. We looked for the pairs of genes
which are closely spaced and differentially expressed and
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(a)

(b)

BEAF/lacZ

lacZ

Figure 6. Colocalization of BEAF and ME on polytene chromosomes. Transgenic larvae carrying ME on the third chromosome were dissected and
used for immunoFISH. (a) Probe ME is in red, anti BEAF antibody is in green. Clear colocalization can be seen both on third and fourth
chromosome (white arrowheads). (b) BEAF does not colocalize to the transgene in case of flipped out line. Probe /lacZ is in red, anti BEAF
antibody is in green. (¢) Colocalization of GAF and ME at the site of transgene insertion probed by lacZ on polytene chromosomes. Probe lacZ is in
red, GAF antibody signal is in green. Clear colocalization can be seen (white arrowhead). (d) GAF does not colocalize to the transgene in case of
flipped out line.
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Figure 7. ChIP analysis of BEAF and GAF in ME region.
(a) Chromatin with Flag-tagged BEAF was immunoprecipitated after
sonication using anti FLAG-M2 agarose and analyzed by real-time
PCR. Fold enrichment at the endogenous ME, Ubx intron II region
(negative control) and SCS’ (positive control) loci were calculated as
relative enrichment over the mock control, and the averages from three
independent experiments, with error bars, are shown. (b) Enrichment of
GAF at the ME boundary, iab-7PRE (positive control) and /hexo
kinaseC promoter (negative control) regions. Chromatin was immuno-
precipitated after sonication using anti GAF antibody and analyzed by
real-time PCR. Fold enrichment were calculated as relative enrichment
over the mock control, and averages from three independent experi-
ments, with error bars, are shown.

applied the rationale that such genes must be separated by
chromatin domain boundary elements for their proper
regulation. ME is one such intergenic region which separ-
ates the two differentially expressed genes. We show that
ME boundary maps to a hypersensitive site and has
binding sites for BEAF which is a well studied boundary
associated protein (26). Finally, by using three independ-
ent transgenic assays, we show the functionality of the ME
boundary at different stages of development and in differ-
ent tissues.

BEAF is the major player in the boundary function of
ME boundary as evident from genetic data and the effect
that BEAF has on the ME boundary is by direct binding
to the ME region as is evident from the ImmunoFISH and
ChIP data. It is already known that BEAF binds to the
scs’ boundary as a heterotrimer at the CGATA sites (66)
and ME boundary has similar arrangement of the CGAT
A sites (Supplementary Figure S1). Some scattered CGAT

A motifs are also present in the ME boundary. ChIP data
shows that BEAF binds to the core region of ME where
two palindromic CGATA sites and one additional CGAT
A site are present. The importance of these BEAF binding
sites is also evident from the fact that when we mutate
these sites, boundary activity of ME is lost.

The ME boundary also contains binding sites for GAF.
The pattern of GAF binding sites in ME boundary is
similar to that seen in the case of Fab-7 boundary
present in the bithorax complex of D. melanogaster. This
prompted us to examine whether GAF has any effect on
the boundary activity of ME (Supplementary Figure SI)
(25). Our results show that GAF is also a positive regula-
tor of the ME boundary function as loss of single copy
of GAF results in partial loss of the boundary function
of ME. This effect is by direct binding of GAF to the
ME sequence as seen in the ImmunoFISH and ChIP
experiments. In case of GAF, we observed that the
effect of loss of GAF was more dramatic in female flies,
which was opposite to what we see in the case of BEAF.
Since both these proteins, specially GAF, regulate a large
number of loci and GAF has also been implicated in
dosage compensation (67), it is likely that the sex
specific effect seen here in the case of ME boundary may
be a result of complex and indirect interaction of multiple
factors.

We show that both BEAF and GAF are needed for ME
boundary activity. However, either BEAF or GAF (7))
mutations alone were not sufficient for the complete loss
of the boundary function. Since flies with BEAF15%9)
BEAF*BXO.pITr®% genotype were lethal in our hands,
it remains an open question whether BEAF and GAF can
account for the complete boundary function of ME.
Synthetic lethality in the double mutant BEAF*5%¢/
BEAF5X0.p/Ty[®% does, however, suggest that these
two proteins act in combination at the key loci and that
this combination is essential for viability. There might be
several such loci working as boundary elements and the
double mutant combination, by abolishing or weakening a
number of such boundaries, would cause misregulation of
associated genes and lead to lethality.

ME boundary function is by recruitment of BEAF and
GAF along with, perhaps, several other proteins although
BEAF appears to be the major player as mutation in
BEAF binding sites abolishes boundary function.
Relatively lower level of GAF enrichment at ME, as seen
in our ChIP experiments, may also indicate an indirect role
of this protein at this locus. We also noticed minor but
distinct effect of Polycomb and trithorax group mutations
on ME boundary function. Our data, although suggestive
and preliminary, indicate that ME boundary functions by
recruiting multiple proteins, mutants of which lead to a
partial loss of the boundary function. This mode of
boundary function is similar to the other well studied
gypsy boundary which depends on large number of
factors including Su(Hw) (68), Mod(mdg4) (69), CP190
(64) and dTopors that associate with lamina (70).
Boundary function of gypsy was also shown to depend
on Polycomb and trithorax group of proteins (65). While
we did not see any prominent effect of CTCF or CP190 on
ME boundary activity, which is expected as ME region



v

Nucleic Acids Research, 2011, Vol. 39, No.9 3555

vi

Figure 8. BEAF binding sites are essential for the ME boundary function. Embryos from different transgenic lines were stained for /acZ activity.
In the upper panel left embryo (i) is from a control line carrying only the vector, right embryo (ii) is from a control line carrying 1 kb A DNA in place
of test fragment. In the middle panel left embryo (iii) is from a transgenic line carrying ME boundary, right embryo (iv) is from the flipped out
version of same line. In the lower panel left embryo (v) is from a line carrying ME fragment with mutated BEAF sites, right embryo (vi) is from the

flipped out version of same line.

does not contain binding sites for these proteins, genome
wide ChIP studies do detect association of these factors
with ME (27,28,30). It is possible that ME may be part
of nuclear structures where multiple boundaries cluster
and number of factor participate even if not by direct
binding to each boundary (71).

In conclusion, a rationale to look for boundary
elements in short intergenic regions that separate differen-
tially expressed genes can be applied successfully.
Although expression pattern of a number of genes has
not been analyzed in many organisms, analysis in other
model organisms and human can be used and by
homology criteria, large part of a genome can be
mapped for potential boundary elements. Once a
boundary region has been identified, the precise
mapping of the functional boundary element can be ac-
complished by DNasel hypersensitivity and transgene
based assays available in model systems. Such studies
will help us in understanding the genomic organization
and regulatory environment of genes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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