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Plant cytochrome P450s are involved in the production of
over a hundred thousand metabolites such as alkaloids, ter-
penoids, and phenylpropanoids. Although cytochrome P450
genes constitute one of the largest superfamilies in plants,
many of the catalytic functions of the enzymes they encode
remain unknown. Here, we report the identification and func-
tional characterization of a cytochrome P450 gene in a new sub-
family of CYP71, CYP71BJ1, involved in alkaloid biosynthesis.
Co-expression analysis of putative cytochrome P450 genes in
the Catharanthus roseus transcriptome identified candidate
genes with expression profiles similar to known terpene indole
alkaloid biosynthetic genes. Screening of these candidate genes
by functional expression in Saccharomyces cerevisiae yielded a
unique P450-dependent enzyme that stereoselectively hydroxy-
lates the alkaloids tabersonine and lochnericine at the 19-posi-
tion of the aspidosperma-type alkaloid scaffold. Tabersonine,
which can be converted to either vindoline or 19-O-acetylhör-
hammericine, represents a branch point in alkaloid biosynthe-
sis. Thediscovery ofCYP71BJ1,which formspart of the pathway
leading to 19-O-acetylhörhammericine, will help illuminate
how this branch point is controlled in C. roseus.

Cytochrome P450 enzymes (P450s)5 play a key role in the
development and survival of plants (1). P450s participate in the
biosynthesis of a wide variety of compounds throughout pri-

mary and specialized metabolism, including fatty acids, terpe-
noids, phenylpropanoids, cyanogenic glucosides, glucosino-
lates, and alkaloids. Notably, plants have an unusually large
number of P450 genes compared with prokaryotes and other
eukaryotic organisms. Furthermore, plant P450s are typically
stringently substrate-specific enzymes that catalyze highly
regio- and stereoselective transformations (2, 3). The catalytic
functions of most plant P450s are unknown. Identifying a P450
that catalyzes a specific biosynthetic transformation poses a
challenge due to the homology shared by P450 genes and the
typical lack of correlation between primary structure and cata-
lytic function (4).
The medicinal plant Catharanthus roseus is currently the

sole source of two anticancer agents subject to widespread clin-
ical use, the bisindole alkaloids vinblastine and vincristine (5).
In C. roseus, the alkaloid tabersonine can be transformed into
the bisindole precursor vindoline, in aerial organs, or 19-O-
acetylhörhammericine in roots (see Fig. 1) (5, 6). Although
hydroxylation at the 16-position of tabersonine ultimately leads
to vindoline, tabersonine can be converted by a P450-depen-
dent 6,7-epoxidase to form lochnericine (7–9) or a putative
P450-dependent 19-hydroxylase to form 19-hydroxytaberso-
nine (10). Both lochnericine and 19-hydroxytabersonine are
proposed intermediates in 19-O-acetylhörhammericine bio-
synthesis (Fig. 1), and minovincinine 19-hydroxy-O-acetyl-
transferase is the only gene in this pathway for which a cognate
cDNA has been isolated and characterized (6). Although alka-
loid biosynthesis in C. roseus involves several biotransforma-
tions known or predicted to be P450-dependent (11), only five
C. roseus P450s have been functionally characterized, namely
flavonoid 3�,5�-hydroxylase (CYP75A8), cinnamate 4-hydrox-
ylase (CYP73A4), geraniol 10-hydroxylase (CYP76B6), secolo-
ganin synthase (CYP72A1), and tabersonine 16-hydroxylase
(T16H;CYP71D12).Only the latter three participate in alkaloid
biosynthesis (12–16). These C. roseus P450 genes were charac-
terized functionally using various techniques, including in vitro
substrate specificity assays and cDNA library screening.
Although such traditional approaches have proven effective for
the functional elucidation of many P450 genes, no versatile
approach exists to identify diverse P450s, particularly those car-
rying out more specialized functions (4). Recently, co-expres-
sion analysis has been used effectively to guide the functional
characterization of P450 genes inArabidopsis thaliana (17, 18).

Here, we describe the use of a C. roseus expressed sequence
tag collection generated by transcriptome sequencing and a
corresponding expression profile data set to facilitate the iden-
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tification and characterization of a unique P450. Hierarchical
clustering of gene expression data identified P450 candidates
that are co-expressed with genes known to be involved in alka-
loid biosynthesis. We developed a whole cell assay to demon-
strate that yeast cell cultures expressing one of these P450 gene
candidates produce a hydroxylated product in the culture
medium when supplemented with tabersonine. This enzyme,
CYP71BJ1, is the first member of a new plant P450 subfamily
and appears to be a tabersonine/lochnericine 19-hydroxylase.

EXPERIMENTAL PROCEDURES
Chemicals—Tabersonine was a generous gift from Viresh

Rawal (University of Chicago, Chicago, IL). Unless otherwise
noted, all other chemicals were obtained from Sigma-Aldrich.
Sequence and ExpressionData—TheC. roseus transcriptome

and expression mapping data were generated by theMedicinal
Plant Genomics Consortium at Michigan State University.
Separate cDNA libraries were constructed frommRNA from
three C. roseus tissues (seedlings, seedlings treated with
methyl jasmonate, and suspension culture cells treated with
yeast extract) using the Illumina mRNA-seq kit (Illumina,

San Diego, CA) and sequenced (single end, 36 bp) on the
Illumina Genome Analyzer II platform at the Michigan State
University Research Technology Support Facility. A custom
Perl script was used to remove reads with low complexity
and low quality regions. Reads with a base with a quality
score �20 or with �2 N bases were considered low quality
and removed. The low complexity threshold was defined as a
read composed of �85% of a single nucleotide. Transcript
assemblies were constructed using the Velvet (version
0.7.61)/Oases (version 0.1.17) de novo transcriptome assem-
bler (19). The hash length for the initial Velvet assembly was
27, and the minimum transcript length cut-off used for
Oases was 200 bp. The final assembly contained 33,992 tran-
scripts with an N50 of 780 bp. The longest transcript from
each contig was selected as the representative transcript, and
reads from the individual libraries were mapped (up to two
mismatches permitted) to the assembled transcriptome
using Bowtie (20). Expression values (reads per kb transcript
per million mapped reads) were calculated with a custom
Perl script.

FIGURE 1. Proposed biosynthesis of tabersonine-derived alkaloids in C. roseus. The major alkaloids vindoline, 19-O-acetylhörhammericine, and echitove-
nine, as well as the tabersonine precursor, are highlighted in gray. Secologanin and tryptamine are biosynthetic precursors of tabersonine. In aerial parts of the
plant, tabersonine is hydroxylated by T16H as the first committed step in vindoline biosynthesis. In roots, tabersonine can be decorated via several pathways
to make alkaloids such as 19-O-acetylhörhammericine and echitovenine. Most of the biosynthetic steps leading toward these root-derived alkaloids are
uncharacterized at the genetic level (dashed arrows).
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Hierarchical Clustering (Co-expression) Analysis—Expres-
sion levels of P450 candidates (as designated by pfam analysis),
and known alkaloid biosynthetic genes, in control and elicited
seedlings, and cell suspension cultures were subjected to hier-
archical clustering analysis using CLUSTER (version 3.0) for
Mac. The resulting dendrogramwas viewedwithTreeview (21).
The expression mapping data and complete Treeview cluster
are reported in the supplemental data. All P450 sequences used
in this analysis have been deposited to GenbankTM.
Plant Material—C. roseus hairy root cultures were grown

according toMorgan et al. (10, 22), andC. roseus seedlingswere
grown and elicited with methyl jasmonate as reported previ-
ously (11).
Gene Cloning—A T16H gene, codon-optimized for expres-

sion in Saccharomyces cerevisiae was synthesized (GenScript,
Piscataway, NJ) with BamHI and XhoI restriction sites for
directional cloning into pYeDP60. The CYP71BJ1 ORF was
amplified from elicited seedling cDNA (6 days after elicitation)
using a sense primer (5�-AAAAAAGGATCCATGTTGTCT
TCA TTG AAA GAT-3�) containing an engineered BamHI
restriction site (underlined) and an antisense primer (5�-AAA
AAAGAATTCTTAAAAAATGGTAACCGGAGTTG-3�)
containing an EcoRI restriction site. The apparent full-length
ORF for candidate “Locus_41747” was amplified using a sense
primer (5�-AAA AAA GGA TCC ATG AAC TTC TCT CTC
ACC TCT CCC ATT TTC C-3�) containing an engineered
BamHI restriction site (underlined) and start codon (boldface)
and an antisense primer (5�-AAA AAA GAA TTC TTA GTT
TCC TTC AAC TAC AGT TGAGATGCT AGG-3�) contain-
ing an EcoRI restriction site. The full-length ORF for CYP81Z1
was amplified using a sense primer (5�-AAA AAA GGA TCC
ATGGAGGTT TCC TTT TTC TACACC TC-3�) containing
an engineered BamHI restriction site (underlined) and an anti-
sense primer (5�- AAA AAA CCC GGG TTA TGG GTT ATT
TTC CAT-3�) containing an SmaI restriction site. Using direc-
tional cloning, the candidate P450 ORFs were cloned into
pYeDP60, sequenced, and transformed into S. cerevisiae
WAT11 (harboring the integrated A. thaliana P450 reductase
ATR1) cells (22).
The 16-hydroxytabersonine 16-O-methyltransferase (16OMT;

GenBankTM accession no. EF444544.1) ORF was amplified
from elicited seedling cDNA using a sense primer (5�- AAT
AAA GGA TCC ATG GAT GTT CAA TCT GAG G-3�) con-
taining a BamHI restriction site and an antisense primer (5�-
ATT TTA TTT TCT CGA GTC AAG GAT AAA CCT CAA
TG-3�) containing an XhoI restriction site. Using directional
cloning, the ORF was cloned into pYES3-CT and sequenced.
Using lithium acetate, the 16OMT-pYES3-CT construct was
transformed into S. cerevisiaeWAT11 cells already containing
the T16H construct (23).
Yeast Strain, Growth, and Whole Cell Assay for Activity—

S. cerevisiaeWAT11 was used as the host strain for the expres-
sion candidate P450 genes and the T16H gene in pYeDP60.
S. cerevisiae harboring the desired plasmid were grown, and
protein expression was induced as reported previously (22).
To functionally characterize CYP71BJ1, a 5-ml S. cerevisiae
WAT11 cell culture expressing thisORFwas grown for 5 h after
induction at 28 °C, at which point, the cell culture was supple-

mented with 147 �M of tabersonine (from a 73.3 mM dimethyl
sulfoxide stock solution). After 24 h, the cells were removed by
centrifugation, and the medium was extracted with ethyl ace-
tate and analyzed by LC-MS.
Isolation of Enzymatic Product—Two 500-ml cultures of

S. cerevisiae WAT11 cells harboring the CYP71BJ1 construct
were grown and induced, and after 5 h of protein expression,
the medium was supplemented with 147 �M tabersonine. Cells
were removed 24 h later by centrifugation at 3810 � g for 15
min. The combined medium was then extracted with 1 liter of
ethyl acetate three times and concentrated. The CYP71BJ1
enzymatic product was purified by column chromatography. A
mobile phase of hexanes:ethyl acetate (1:1) was used for the first
column, and dichloromethane:methanol (99.5:0.5) was used for
the second column. 1H NMR, 13C NMR, COSY, and 1H,13C
HSQC spectra were recorded on a Bruker 400 MHz spectro-
meter. Exactmassmeasurementsweremadeon aBrukerDalton-
ics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Reso-
nance Mass Spectrometer with electrospray ionization.
(R)-19-hydroxytabersonine—1H NMR (CDCl3): � 8.91 (1H,

s), 7.27 (1H, d, J � 6.9), 7.15 (1H, t, J � 7.7), 6.89 (1H, t, J � 7.5),
6.82 (1H, d, J � 7.8), 5.92 (1H, dd, J � 4.9, 10.2), 5.80 (1H, d, J �
9.9), 3.79 (3H, s), 3.47 (1H, dd, J� 4.9, 15.9), 3.30–3.35 (1H, m),
3.23 (1H, d, J� 16.2), 3.06 (1H, t, J� 7.0), 2.89 (1H, dd, J� 15.4),
2.78 (1H, s), 2.73–2.79 (1H, m), 2.49 (1H, d, J� 15.4), 2.07–2.14
(1H, m), 1.83–1.87 (1H, m), 1.55 (1H, d, J� 3.3), 0.88 (3H, d, J�
6.4); 13C NMR (CDCl3): d 168.54, 166.38, 143.03, 137.71,
129.44, 127.81, 126.31, 121.54, 120.93, 109.37, 91.26, 67.00,
66.62, 55.57, 51.29, 51.02, 50.10, 46.31, 43.90, 27.57, 17.36; ESI-
MS(C21H24N2O3

�) m/z calculated: 353.1860 [M�H]�, found:
353.1848 [M�H]�. The UV absorbance maxima are observed
at 229, 296, and 331 nm.
Isolation of Lochnericine and Hörhammericine—C. roseus

hairy roots (5 g) were macerated in 50 ml of methanol followed
by sonication for 1 h. After filtration, the methanol extract was
analyzed on a Beckman Coulter System Gold 125 HPLC
equipped with a model 168 photodiode array detector at 330
nm. Analytes were separated on a Lichrosorb reverse phase
column (Select B, 25 cm � 4.0 mm column, 5-�mparticle size)
using 20–50% acetonitrile:water (0.1% trifluoroacetic acid) for
20 min. Preparative HPLC of lochnericine and hörhammeri-
cine was performed on a Beckman Coulter System Gold
equippedwith a 125 solventmodule, and a 166P detector at 330
nm using the same gradient. Analytes were separated on a
reverse-phase column (Grace Vydac 2.2 cm � 25 cm, 10-�m
particle size). The absorbance maxima and exact mass spec-
trometry data for lochnericine and hörhammericine are listed
in the supplemental data (24, 25).
Preparation of Microsomes, Kinetic Assays, and Substrate

Specificity Assays—Microsomes enriched with CYP71BJ1 or
T16Hwere isolated using the high density procedure according
to Pompon et al. (22). The total microsomal protein content
was determined using a bichinchoninic acid assay by Pierce.
CYP71BJ1 assays were prepared in a final volume of 100 �l
containing 55 �g of microsomal protein, 1 mM NADPH, 4 mM

dithiothreitol, 100 �M ajmaline internal standard, and 100 mM

sodium phosphate buffer (pH 7.0). Assays were initiated by the
addition of 30�M substrate unless otherwise noted. The follow-
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ing substrates were assayed with microsomes: tabersonine,
yohimbine, catharanthine, dihydrotabersonine, norharmane,
lochnericine, 16-hydroxytabersonine (3 �M), 16-methoxytab-
ersonine (300 nM), and vindolinine (5�M). Dihydrotabersonine
was prepared as reported by Liscombe et al. (26). Yeast cultures
co-expressing T16H and 16OMT enzymes were supplemented
with tabersonine (147 �M) to produce 16-hydroxytabersonine
and 16-methoxytabersonine. Assays lacking microsomes or
NADPH served as negative controls. All assays were incubated
at 30 °C for 1 h or overnight, after which 10% of the assay vol-
ume was quenched with 1 ml of HPLC-grade methanol. Assays
were clarified by centrifugation for 5 min in a microcentrifuge
and then analyzed by LC-MS. Ultra-performance liquid chro-
matography andMS analyses were performed according to Lis-
combe et al. (26).
Steady State Enzyme Kinetics—A dimethyl sulfoxide stock

(7.3 mM) of tabersonine was prepared and then diluted with
water to a final concentration of 5.9 mM. Serial dilutions of this
stockwere used for enzyme assays. Enzyme assays (0.1-ml reac-
tion volume) contained 1.2 mg of CYP71BJ1 enriched micro-
somes, 1 �M ajmaline (for an internal standard), 1 mMNADPH
in sodium phosphate buffer (100mM, pH 7.0), and 4mM dithio-
thrietol. Reactions were initiated by the addition of tabersonine
(290 nM, 550 nM, 570 nM, 590 nM, 1.2�M, 2.3�M, 4.8�M, 5.3�M,
6.2 �M, 9.2 �M) and incubated at 30 °C. Time points were cho-
sen such that the rate of product formationwas linear, to ensure
accurate measure of initial rates (between 3 and 15 min after
initiation of the reaction). The reactions were analyzed by
LC-MS and values of Vmax and Km were estimated using non-
linear fitting (OriginPro; version 7.0, Northampton, MA). The
errors reported are based on the 95% confidence of the S.D. of
three independent experiments.
Inhibition Assays—Aqueous stocks of the suicide inhibitor

aminobenzotriazole (ABT) ranging from64mM to 250�Mwere
used for inhibition assays. A concentration of 9.2 �M of taber-
sonine substrate in the presence of 0, 25 �M, 100 �M, 400 �M,
1.6 mM, and 6.4 mM ABT was used. The errors reported are
based on the 95% confidence of the S.D. of three independent
experiments.

RESULTS

Cluster Analysis and Molecular Cloning—To identify genes
encoding cytochrome(s) P450 involved in the oxygenation of
tabersonine in C. roseus, we performed hierarchical clustering
analysis with expression mapping data. Expression profiles of
known alkaloid biosynthetic genes (tryptophan decarboxylase,
geraniol 10-hydroxylase, loganic acid methyltransferase, sec-
ologanin synthase, strictosidine synthase, strictosidine gluco-
sidase, T16H, 16OMT, 2,3-dihydro-3-hydroxytabersonine-
N-methyltransferase, desacetoxyvindoline-4-hydroxylase,
deacetylvindoline acetyltransferase, and minovincinine 19-hy-
droxy-O-acetyltransferase (5, 6, 26)) and putative P450 genes
were included in the analysis. The results of hierarchical clus-
tering were visualized as a heat map, a section of which is pre-
sented in Fig. 2, showing the clusters that we focused on in this
study (supplemental data). Contigs 92197, 80887, 63935, 91544,
and 89777 all represented partial ORFs. However, two contigs
(88716 and 87898) that clustered with minovincinine 19-hy-

droxy-O-acetyltransferase (Fig. 2), which acetylates the 19-hy-
droxyl group ofminovincinine and hörhammericine (Fig. 1) (6),
were determined by manual sequence analysis to represent the
same gene transcript and could be assembled to form the full-
length ORF encoding CYP71BJ1 (supplemental Fig. S1). Two
other apparent full-length ORFs (41747 and CYP81Z1) were
also present in the cluster and were selected for further charac-
terization. The gene candidates were cloned from methyl jas-
monate-elicited seedling cDNA, cloned into the yeast expres-
sion vector pYeDP60, and expressed in S. cerevisiae WAT11
cells, a yeast strain optimized for plant P450 protein expression
(22).
Protein Expression and Whole Cell Assay—We developed a

whole cell yeast assay to functionally characterize P450s. As a
positive control, we cloned a synthetic, yeast codon-optimized
version of the previously characterized T16H gene (16) into the
pYeDP60 vector and transformed the resulting T16H-pY-
eDP60 construct into yeast. Protein expression was induced in
a 5-ml yeast culture for 5 h, at which point the medium was
supplemented with tabersonine. In 24 h, 16-hydroxytaberso-
nine was detected in the yeast medium as evidenced by LC-MS
analysis (Fig. 3). With the success of this positive control, we
used this assay to detect products derived from tabersonine in
yeast cultures expressing CYP71BJ1, 41747, and CYP81Z1 can-
didate P450s.
Yeast cultures that expressed CYP71BJ1 were supplemented

with tabersonine, and after 24 h, the tabersonine startingmate-
rial was completely converted to amore hydrophilic compound
with a mass consistent with hydroxylation or epoxidation (Fig.
3). Notably, the CYP71BJ1 product exhibited a retention time
distinct from that observed for the T16H product, 16-hy-
droxytabersonine (Fig. 3). No enzymatic product was observed
when tabersonine was incubated with yeast cultures harboring
the empty pYeDP60 plasmid (Fig. 3) or those expressing the
other candidate P450s, 41747 and CYP81Z1.

FIGURE 2. Hierarchical clustering analysis to examine putative P450-
dependent enzyme-encoding genes co-expressed with minovincinine
O-acetyltransferase. The sub-cluster that became the focus of this study is
shown. Putative full-length candidates (shown in boldface) were selected for
further characterization. SDLG, aseptically grown seedlings; �MeJ, without
methyl jasmonate treatment; �MeJ, treated with methyl jasmonate; CSC, cell
suspension culture.

Stereoselective Hydroxylase in Plant Alkaloid Biosynthesis

16754 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 286 • NUMBER 19 • MAY 13, 2011

http://www.jbc.org/cgi/content/full/M111.225383/DC1
http://www.jbc.org/cgi/content/full/M111.225383/DC1


We isolated and purified the tabersonine-derived CYP71BJ1
product from 1 liter of yeast culture supplemented with 147�M

tabersonine. The enzymatic product was identified as (R)-19-
hydroxytabersonine, as evidenced by high resolution mass
spectrometry, 1H NMR, 13C NMR, COSY (Fig. 4), and HSQC
NMR (supplemental Figs. S2–S4). TheCOSY spectrum shows a
cross-peak between the doublet at 1.55 ppm corresponding to
the proton in the 19-hydroxyl group and the doublet at 2.78
ppm corresponding to the proton at C19 (Fig. 4). Furthermore,
we observed a cross-peak between the protons at C18 (0.88
ppm) and the proton at the 19-position (Fig. 4).
Substrate Specificity Analysis—Microsomes were isolated

from yeast cultures expressing CYP71BJ1 and assayed with a

variety of alkaloids representing different terpene indole alka-
loid skeletons to determine the substrate scope of the enzyme
(supplemental Fig. S5). Assays lacking NADPH cofactor or
CYP71BJ1-enriched microsomes served as negative controls.
Although neither lochnericine nor hörhammericine are avail-
able commercially, both are known to be present in hairy root
cultures and in the roots of mature C. roseus plants (9, 10, 25).
We could isolate small quantities of lochnericine, a potential
physiological substrate for CYP71BJ1 (Fig. 1), from hairy roots.
Although we could not obtain quantities sufficient for charac-
terization by NMR, the isolated standard exhibited the correct
exact mass and UV signature (24). Moreover, a microsomal
fraction enriched in CYP71BJ1 converted this isolated com-
pound to a product with an exact mass and UV signature con-
sistent with hörhammericine (Fig. 5 and supplemental Fig. S6
and Table S1) (24, 25). Only tabersonine and lochnericine were
transformed by CYP71BJ1.
Enzyme Kinetics and Oxygenase Inhibition—CYP71BJ1-en-

riched microsomes assayed with tabersonine demonstrate
Michaelis-Menten kinetics with an apparentKm of 300� 50 nM
andVmax of 5.0� 0.2�Mmin�1 �g�1 (Fig. 6).We also observed
reduced activity when increasing concentrations of the ABT-
P450 monooxygenase suicide inhibitor was added to the assay.

FIGURE 3. LC-MS selected ion chromatograms (m/z 337 and m/z 353) of
the medium of tabersonine-supplemented yeast cell cultures express-
ing CYP71BJ1, T16H, or empty pYeDP60 vector.

FIGURE 4. COSY correlations for 19-hydroxylation of tabersonine iso-
lated from yeast culture expressing CYP71BJ1. A represents the cross-
peak between the proton at C19 and the 3 protons at C18. B represents the
cross-peak between the proton in the 19-hydroxyl group and the proton at
C19.

FIGURE 5. Selected ion chromatograms from LC-MS chromatograms of
enriched CYP71BJ1 microsomes assayed with tabersonine (m/z 337) and
lochnericine (m/z 353) and C. roseus mature root and hairy root extracts
containing lochnericine and hörhammericine (m/z 369) alkaloids.

FIGURE 6. Steady state Michaelis-Menten kinetics derived from initial
rates of CYP71BJ1-enriched microsomes with tabersonine. Error bars rep-
resent the 95% confidence of the S.D. from three independent experiments.
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CYP71BJ1 activity decreased to�1%when 6.4mMABT is pres-
ent (Fig. 7).

DISCUSSION

Using co-expression analysis, followed by functional charac-
terization with a whole cell yeast assay, we identified a role for
C. roseus CYP71BJ1 in alkaloid biosynthesis. Co-expression
data shows that CYP71BJ1 has an expression pattern similar
to minovincinine 19-hydroxy-O-acetyltransferase, an enzyme
that acetylates the 19-position of hörhammericine or minovin-
cinine to form 19-O-acetylhörhammericine or echitovenine,
respectively. Formation of hörhammericine from tabersonine
requires the catalytic action of two enzymes, tabersonine 6,7-
epoxidase and a 19-hydroxylase. Biochemical evidence strongly
suggests that both of these enzymes are P450-dependent (10,
27). Heterologous expression and subsequent incubation of
CYP71BJ1 with tabersonine revealed that this enzyme stereo-
selectively catalyzes hydroxylation of tabersonine at C19.
Large scale whole cell assays allowed isolation of milligram
quantities of the enzymatic product for complete structural
characterization.
Kutney et al. (9) hypothesize that hörhammericine biosyn-

thesis proceeds either through a 6,7-epoxidation of tabersonine
to yield lochnericine, which is subsequently hydroxylated at the
19-position. Alternatively, hydroxylation at the 19-position can
occur directly on tabersonine to yield 19-hydroxytabersonine,
which then undergoes a 6,7-epoxidation (9, 10). NMR charac-
terization of theCYP71BJ1 enzymatic product revealed that the
absence of the 6,7-epoxide in lochnericine does not alter the
stereoselectivity of the hydroxylation; the 1H NMR chemical
shifts of the enzymatic product of CYP71BJ1 and tabersonine
match those of the previously reported (R)-19-hydroxytaberso-
nine (28, 29). Thus, the order of biosynthetic steps involved
in hörhammericine biosynthesis is still ambiguous because
CYP71BJ1 accepts lochnericine and tabersonine in vitro. The
kinetics of CYP71BJ1 were measured only with tabersonine
since limited amounts of lochnericine could be isolated from
C. roseus hairy root cultures. As a result, it is not clear whether
CYP71BJ1 quantitatively prefers tabersonine to lochnericine in
vitro. However, the low Km value for tabersonine suggests that

19-hydroxylation of tabersonine could occur in planta. Both
lochnericine and 19-hydroxytabersonine are observed in
C. roseus, suggesting that both compounds are plausible bio-
synthetic intermediates. To further explore the qualitative sub-
strate preference of this enzyme, we subjected microsomes
containingCYP71BJ1 to a competition assay.Microsomeswere
incubated with a 1:1 mixture of tabersonine and lochnericine
(55 �M concentration each). After 15 h of incubation, LC-MS
analysis indicated that although both substrates were turned
over by the enzyme, lochnericine appeared to be the preferred
substrate (supplemental Fig. S7). Morgan and Shanks (10)
observed a concomitant reduction in hörhammericine and
accumulation of lochnericine in C. roseus hairy roots after
treatment with the P450 suicide inhibitor ABT. As such, the
ABT sensitivity of CYP71BJ1 provides some further support for
the involvement of CYP71BJ1 in hörhammericine biosynthesis
in vivo, perhaps favoring a biosynthetic route via lochnericine.
Further studies to disrupt the function of CYP71BJ1 in plant
tissue such as RNAi in hairy rootsmight resolve these questions
and provide further insight into the physiological role of
CYP71BJ1.
The substrate scope of CYP71BJ1 seems to be controlled par-

tially by the presence of the 2,3-double bond because dihydro-
tabersonine is not an accepted substrate. Importantly, the
vindoline precursors 16-hydroxytabersonine and 16-O-me-
thoxytabersonine are not hydroxylated by CYP71BJ1. Because
hydroxylation at the 16-position is the first step in the conver-
sion of tabersonine to vindoline, we speculate that the substrate
specificity ofCYP71BJ1may play a role in preventing the 19-hy-
droxylation of intermediates destined for vindoline biosynthe-
sis. Silencing of CYP71BJ1 in C. roseus may therefore improve
themetabolic flux toward the commercially valuable vindoline-
derived bisindole alkaloids.
In summary, we report that CYP71BJ1, the first member of

a new CYP71 subfamily, stereoselectively hydroxylates loch-
nericine and tabersonine at the 19-position. We are currently
assaying more P450 candidates with tabersonine to detect 6,7-
epoxidase activity to further understand how vindoline and
19-O-acetylhörhammericine biosynthesis are regulated.
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345–350
14. Collu, G., Unver, N., Peltenburg-Looman, A. M., van der Heijden, R.,

Verpoorte, R., and Memelink, J. (2001) FEBS Lett. 508, 215–220
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