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Generalization Lags behind Learning on an Auditory
Perceptual Task
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Department of Communication Sciences and Disorders and Institute for Neuroscience, Northwestern University, Evanston, Illinois 60208-3550

The generalization of learning from trained to untrained conditions is of great potential value because it markedly increases the efficacy of
practice. In principle, generalization and the learning itself could arise from either the same or distinct neural changes. Here, we assessed these
two possibilities in the realm of human perceptual learning by comparing the time course of improvement on a trained condition (learning) to
that on an untrained condition (generalization) for an auditory temporal-interval discrimination task. While significant improvement on the
trained condition occurred within 2 d, generalization to the untrained condition lagged behind, only emerging after 4 d. The different time
courses for learning and generalization suggest that these two types of perceptual improvement can arise from at least partially distinct neural
changes.Thenotablylongertimecourseforgeneralizationthanlearningdemonstratesthatincreasingthedurationoftrainingcanbeaneffective
means to increase the number of conditions to which learning generalizes on perceptual tasks.

Introduction
Perceptual skills improve with practice, sometimes not just on the
condition that was trained (learning) but also on untrained condi-
tions (generalization). Such generalization is of key importance in
practical terms because it maximizes the benefit received from train-
ing and in theoretical terms because its presence or absence is used to
constrain learning theories. Yet, despite its significance, little is
known about how the underlying changes that govern generaliza-
tion to untrained perceptual conditions relate to those that govern
learning on the trained condition. Here we provide behavioral evi-
dence that the generalization of perceptual learning to an untrained
condition can arise from neural changes that are at least partially
distinct from those that yield the learning itself.

We assessed the relationship between the changes underlying
perceptual learning and generalization by comparing the time
courses of these two types of improvement. A difference in these
two time courses would indicate that learning and generalization
can arise from different changes. We are aware of only one pre-
vious direct comparison of these time courses in human percep-
tual learning. In that report, learning on a visual pop-out
detection task generalized, at least in part, from a trained to an
untrained stimulus orientation in participants who received one
session of training (1400 trials) as well as in those who received
7–15 sessions (Ahissar and Hochstein, 1996). However, those
data are of limited value in addressing the current question for
two reasons. First, the observation of generalization both early
and late in training does not preclude the possibility that the rate

of improvement for the trained and untrained conditions may
have differed between the two time points tested. Second, even if
the temporal trajectory was the same for both conditions, that
correspondence could occur either because learning and gener-
alization on that task derive from the same changes or derive
from different changes that happen to have the same time course.

The results of the current investigation demonstrate that gen-
eralization can emerge more slowly than learning. We examined
learning and generalization on an auditory temporal-interval dis-
crimination task after 2, 4, and 10 daily sessions of training in
three groups of listeners given these different amounts of prac-
tice. The key result is that the generalization of learning to an
untrained stimulus frequency lagged behind the learning on the
trained stimulus. Generalization appeared only well after improve-
ments on the trained stimulus were evident. Thus, the generalization
pattern broadened with increased training. This outcome suggests
that perceptual learning and generalization can arise, in part, from
different underlying changes. It also suggests that increasing the du-
ration of training might be a means to increase the number of con-
ditions to which learning generalizes on some perceptual tasks.

Materials and Methods
Generalization of stimulus learning. The generalization of learning on
perceptual skills follows two primary patterns that are associated with differ-
ent learning types (Ortiz and Wright, 2009). One pattern is characterized by
generalization to all untrained conditions that share general aspects with the
trained condition, such as the testing procedure or the particular judgment
to be made, and therefore is attributed to the learning of conceptual compo-
nents of the trained condition (conceptual learning). The other pattern is
marked by generalization only to untrained conditions that employ stimuli
that share particular features with the stimulus used during training, and
thus reflects learning associated with the trained stimulus itself (stimulus
learning). Of interest here is the generalization of stimulus learning (for an
investigation of the relative time courses of stimulus and conceptual learn-
ing, see Ortiz and Wright, 2010).

Organization of experiment. The experiment consisted of a pretest, a
training phase, and a posttest. During the pretest, we measured naive
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listeners’ temporal-interval discrimination thresholds on a set of condi-
tions, described below. During the training phase, listeners practiced
one of the conditions from the pretest, the same one for all listeners.
Different groups of listeners practiced for 2, 4, or 10 d. Finally, during
the posttest, we retested all listeners on the same conditions as the
pretest. For all three groups, the pretest and first day of training were
on consecutive days, as were the last day of training and the posttest.
The intervening days of training typically occurred on consecutive
weekdays. We refer to improvements between the pretest and posttest
on the trained condition as learning, and on any of the untrained
conditions as generalization.

Conditions and stimuli. For all of the conditions, the task was to deter-
mine which of two pairs of tone pips was separated by a longer temporal
interval (Fig. 1). On each trial, one of the pairs of tone pips, selected at
random, was separated by a standard interval (t), and the other was
separated by a longer comparison interval (t � �t). Listeners indicated
whether the comparison interval came first or second by pressing a key
on a computer keyboard and were given visual feedback as to whether the
response was correct or incorrect after every trial throughout the exper-
iment. The response was not timed. We varied the �t adaptively across
trials to determine the �t needed to achieve 79% correct performance
(see Procedure).

The results for three temporal-interval discrimination conditions
tested in the pretest and posttest are reported here. In the trained condi-
tion, the standard interval was 100 ms, and the frequency of the tone pips
was 1 kHz (100 ms, 1 kHz). In the remaining two, untrained conditions,
either the frequency (4 vs 1 kHz; 100 ms, 4 kHz) or the interval (50 vs 100
ms; 50 ms, 1 kHz) of the standard stimulus differed from the trained
condition. We selected these untrained stimuli because of previous re-
ports that learning on temporal-interval discrimination generalizes from
the trained stimulus to an untrained stimulus frequency, but not to an
untrained temporal interval—a pattern indicative of stimulus learning–
with 10 d of practice (Wright et al., 1997; Karmarkar and Buonomano,
2003). The choice of these stimuli thus allowed us to examine the time
course of improvement, or lack thereof, for an untrained stimulus to
which learning was expected to generalize and to another to which learn-
ing was not expected to generalize with the longest training regimen we
provided. We collected data on three other untrained conditions from
each group, but those conditions differed across groups, so those results
are omitted.

Each tone pip was presented at 86 dB SPL, had a total duration of 15
ms, including 5 ms raised-cosine rise/fall ramps, and was presented in
zero phase. The temporal interval between the two pips was measured
from the onset of the first pip to the onset of the second pip. The onsets of
the first pips of the first and second stimulus presentations were sepa-
rated by 900 ms. We generated the tones digitally using a digital signal-
processing board (TDT AP2, Tucker Davis Technologies), delivered
them to a 16 bit digital-to-analog converter (TDT DD1), followed by an
antialiasing filter (8.5 kHz low-pass; TDT FT5), an attenuator (TDT
PA4), and a headphone buffer (TDT HB6), and then into the left earpiece
of Sennheiser HD625 headphones with circumaural cushions.

Procedure. We measured temporal-interval discrimination thresholds
using an adaptive, two-presentation, forced-choice procedure, with feed-
back. Within each 60-trial block, we adaptively adjusted �t by decreasing
it after every three consecutive correct responses, and increasing it after
each incorrect response. The �t values at which the direction of change
reversed from decreasing to increasing or vice versa are referred to as
“reversals.” After discarding the first three or four reversals from each
block, ensuring that an even number of reversals remained, we calculated
the average of the �t values of the remaining reversals to estimate the 79%
correct point on the psychometric function, denoted as the threshold
(Levitt, 1971). We estimated the threshold from a block of trials only if
there were seven or more total reversals in the block. The initial �t in each
block of trials was always 0 ms, forcing the listener to guess. The step size
was 10% of the standard interval through the third reversal, and 1% of
the standard interval thereafter. Throughout this article, threshold is
expressed as a Weber fraction, �t/t. Thus, a threshold of 0.2 for a stan-
dard interval of 100 ms indicates that the listener could discriminate 120
ms from 100 ms on 79% of trials.

We collected five threshold estimates (300 trials) for each condition in
the pretest and posttest, and completed testing on each condition before
proceeding to the next. During these tests, the conditions were presented
in random order across listeners, but the condition order of the pretest
was always the same as that of the posttest for each individual listener.
The pretest and posttest each took �2 h, including brief breaks between
conditions (approximately every 20 min). During the training sessions,
we collected 15 threshold estimates (900 trials) per day, taking �1 h, includ-
ing a brief break usually between the eighth and ninth threshold estimate.

Listeners. Twenty-seven paid participants (16 females) between the
ages of 18 and 26 years served as listeners. These listeners practiced the
trained condition for either 2 d (n � 11; new data), 4 d (n � 10; new
data), or 10 d (n � 6; pretest and training phase data are from Wright and
Sabin, 2007; posttest results new data). All listeners had normal hearing
and had no prior experience with psychoacoustic tasks. One or more days
before the pretest, all listeners attended a familiarization session in which
they were given a basic hearing screening and introduced to the testing
procedures using listening-in-noise conditions.

Some of the data were omitted from the final analyses. All of the results
of one listener in the 2 d group were excluded because his posttest per-
formance was aberrant, being worse than his pretest performance on four
of the six conditions on which he was tested. For example, on the trained
condition, his posttest threshold was more than 2 SDs higher than the
group mean. All of the data of a 4 d listener were also excluded because
she fell asleep several times during the training sessions. In addition,
if an individual listener’s pretest threshold on any given condition was
more than 2 SDs higher than that of �100 listeners tested previously
on that condition, we omitted all of that listener’s data on that con-
dition. Using this criterion, we removed the data of two listeners, one
from the 2 d group and one from the 4 d group, on the trained condition (100
ms, 1 kHz) as well as of one listener from the 2 d group on the untrained
frequency condition (100 ms, 4 kHz). Removing the data of these two listen-
ers from all of the conditions rather than only from the specific conditions on
which their pretest thresholds were aberrant did not change the statistical
conclusions reached from any of the analyses.

Results
The learning curves of the three groups followed a similar trajectory
(Fig. 2). All three groups improved equivalently on the trained con-
dition from the pretest through the second day of training according
to a three-time (pretest, and training days 1 and 2) � three-group (2,
4, and 10 d) ANOVA, with repeated measures on time (time:
F(2,40) � 16.23; p � 0.001; group: F(2,20) � 0.26; p � 0.78; time �
group: F(2,40) �0.24; p�0.91). The 4 and 10 d groups also improved
equivalently from the pretest through the fourth day of training
(time: F(4,48) � 21.50; p � 0.001; group: F(1,12) � 0.01; p � 0.99;
time � group: F(4,48) � 0.91; p � 0.47). Therefore, the performance
on the untrained conditions by the three trained groups can be
viewed as indicating the extent of generalization at each of three time
points along a common learning curve.

Figure 1. Temporal-interval discrimination task: on each trial, listeners were required to
choose in which of two presentations the time between two brief tone pips was longer. The
duration between the pips was always a standard value (t) in one randomly selected presenta-
tion and a longer, comparison value in the other (t � �t). The �t at which listeners could
discriminate the comparison from the standard stimulus on 79% of trials, termed “threshold,”
was estimated using an adaptive technique.
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The learning on the trained condition only generalized to the
untrained stimulus frequency relatively late in the training phase,
and never generalized to the untrained stimulus interval (Fig. 3).
Between the pretest (open symbols) and posttest (filled symbols),
all three trained groups showed significant learning of similar
magnitude on the trained condition (100 ms, 1 kHz) (Fig. 3, left).
A two-time (pretest and posttest) � three-group (2, 4, and 10 d)
ANOVA with repeated measures on time revealed a significant
main effect of time (F(1,20) � 45.15; p � 0.001) but no significant
time � group interaction (F(2,20) � 1.30; p � 0.30). This learning
was also confirmed in each group individually using paired sub-
jects t tests (all p � 0.03). In contrast, only the 4 and 10 d groups

generalized their learning to the untrained condition with a dif-
ferent frequency from, but the same standard interval as, the
trained condition (100 ms, 4 kHz) (Fig. 3, middle). For this con-
dition, there was a significant main effect of time (F(1,21) � 13.17;
p � 0.001) and a significant time � group interaction (F(2,21) �
6.76; p � 0.005). While the 2 d group did not improve (t test, t(8)

� �0.57; p � 0.58), the groups who practiced more extensively
did improve (4 d: t(8) � 3.41; p � 0.009; 10 d: t(5) � 4.33; p �
0.008). Thus, the generalization to the untrained frequency
lagged behind the learning on the trained condition.

None of the three trained groups generalized their learning to
the untrained condition with a different standard interval from,
but the same frequency as, the trained condition (50 ms, 1 kHz)
(Fig. 3, right). In this case, though the raw values of the posttest
tended to decrease with increased training, there was no signifi-
cant time � group interaction (F(2,22) � 1.18; p � 0.33). The
main effect of time was borderline significant (F(1,22) � 4.19; p �
0.053), but, critically, none of the individual groups showed im-
provement (t tests, all p � 0.13). Therefore, if there was any
generalization to this condition for any of the groups, its magni-
tude was small enough that it required greater statistical power to
be observed than did the generalization to the untrained fre-
quency. There were no significant main effects for group for any
of the conditions (all p � 0.59). All of these statistical conclusions
hold when posttest thresholds are compared across groups using
pretest thresholds as a covariate (ANCOVA), thereby taking in-
dividual differences in initial performance into account.

Finally, the performance patterns identified in the group data
are also evident at the individual level (Fig. 4). Nearly every lis-
tener (symbols) improved on the trained condition, regardless of
the number of days of training (Fig. 4, left). In contrast, for the
untrained stimulus frequency, while only approximately half of
the 2 d listeners improved, all but one of the 4 and 10 d listeners
did (Fig. 4, middle). It is noteworthy that though six of the nine

Figure 2. Learning curves: mean temporal-interval discrimination thresholds (�t /t for 79% cor-
rectperformance)onthetrainedcondition(100ms,1kHz).Resultsareshownforthepretest(Pre)and
posttest (Post) (filled symbols) and for each of the training sessions (open symbols) for the listeners
who received 2 d (n �9; squares, short-dashed line), 4 d (n �8; circles, long-dashed line), and 10 d
(n � 6; triangles, solid line) of training. Error bars indicate 	 1 SEM. All three groups improved
between the pretest and posttest and did so following a similar trajectory.

Figure 3. Generalization: mean temporal-interval discrimination thresholds (�t /t for 79% cor-
rect performance) before (Pre; open symbols) and after (Post; filled symbols) training for the listeners
who received 2 d (n�9 –10; squares), 4 d (n�8 –9; circles), and 10 d (n�6; triangles) of training.
Results are shown for the trained condition (100 ms, 1 kHz), the untrained-frequency condition (100
ms, 4 kHz), and the untrained-interval condition (50 ms, 1 kHz). Asterisks mark the cases in which the
improvement between the pretest and posttest was statistically significant (all p � 0.03); dashes
mark the remaining cases (all p � 0.13). Error bars indicate 	 1 SEM. All three groups improved
between the pretest and posttest on the trained condition, but only the 4 and 10 d groups generalized
that learning to the untrained frequency.

Figure 4. Amount of improvement of individual listeners: The amount of improvement of the
individual listeners (symbols) who received 2 d (squares), 4 d (circles), and 10 d (triangles) of training,
as well as of the mean of each group (bars). Results are shown for the trained condition (100 ms, 1
kHz),theuntrained-frequencycondition(100ms,4kHz),andtheuntrained-intervalcondition(50ms,
1 kHz). The values represent the amount of improvement between the pretest and posttest for each
listener, taking individual differences in starting threshold into account. These values were computed
by adjusting the posttest threshold of each listener using the pretest threshold as a covariate, and then
subtracting the individual adjusted posttest threshold from the pretest threshold averaged across all
listeners on that condition. Nearly every listener improved (a positive value on the figure) on the
trained condition, regardless of the number of days of training. In contrast, while all but one of the 4
and 10 d listeners generalized their learning on the trained condition to the untrained stimulus fre-
quency, only approximately half of the 2 d listeners did.
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2 d listeners learned as much as the six 10 d listeners on the
trained condition, the distributions of the improvement scores
for these two groups were essentially nonoverlapping on the
untrained-frequency condition. Individual performance for the
untrained stimulus interval ranged from worsening in a few lis-
teners to modest improvement in most, with comparable distri-
butions across all three groups (Fig. 4, right). The amount of
improvement on the untrained conditions was not significantly
correlated with that on the trained condition for any of the three
trained groups considered separately, though the correlation be-
tween the improvements on the untrained-interval condition
and the trained condition approached significance for the 4 d
group (r � 0.69, p � 0.058; all others, r � 0.43, p � 0.25).
However, when the data of the 4 and 10 d groups were combined
because both groups had shown generalization to the untrained
frequency, there was a significant correlation in the amount of
improvement between the untrained-frequency condition and
the trained condition (r � 0.55, p � 0.04), but not between the
untrained-interval condition and the trained condition (r � 0.40,
p � 0.16) (also see Wright et al., 1997).

Discussion
The purpose of this investigation was to examine the relationship
between the changes that underlie perceptual learning on a
trained stimulus and its generalization to untrained stimuli by
comparing the time courses of these two types of improvement
on an auditory temporal-interval discrimination task. The idea
was that a difference in these two time courses would indicate that
different changes can underlie learning and generalization. The
time courses did differ. The time course of learning on the trained
stimulus (100 ms, 1 kHz) was relatively rapid, with statistically
significant improvement observed after only two daily 900-trial
training sessions (testing on the third day). However, the time
course of generalization to the untrained stimulus frequency (100
ms, 4 kHz) was considerably longer, with improvements not ap-
pearing until after four training sessions (testing on the fifth day).
Thus, generalization to the untrained frequency only emerged
well after improvements on the trained stimulus were evident.
There was no improvement on the untrained temporal interval
(50 ms, 1 kHz) after any of the three training amounts (2, 4, or
10 d). The different time courses of these improvements indicate
that perceptual learning and generalization can arise from
changes that are at least partially distinct. That the emergence of
the generalization lagged behind that of the learning suggests that
increased training could expand the array of untrained condi-
tions to which learning generalizes (the breadth of generaliza-
tion) on some perceptual tasks.

The present results appear to be unique in demonstrating that
the breadth of generalization in human perceptual learning can
increase with increased training. As mentioned in the Introduc-
tion, in what seems to be the only other direct investigation of the
multiple-session time course of generalization in perceptual
learning, learning generalized to untrained stimulus orientations
on a visual pop-out detection task both early and late in training
(Ahissar and Hochstein, 1996). It has also been noted (Karni and
Sagi, 1993) that learning on a visual texture discrimination task
generalized from the trained to the untrained eye at the end of a
single training session in one investigation (Karni and Sagi, 1993)
but not after 8 –10 training sessions in another (Karni and Sagi,
1991). This comparison suggests that the learning actually be-
came more specific to the trained eye with increased training, a
pattern that is also consistent with the idea that different changes
can underlie learning and generalization (for examples of in-

creasing specificity with increased training in motor-sequence
learning, see Hikosaka et al., 1999; Korman et al., 2003; Park and
Shea, 2003, 2005). However, such across-experiment compari-
sons must be interpreted with caution because small procedural
differences among investigations may have large effects on gen-
eralization. For example, in the case of visual texture discrimina-
tion, others have reported that there is generalization to the
untrained eye with multiple-session training (Schoups and Orban,
1996), suggesting that the specificity of learning may not increase
with increased training on this task.

In contrast to these other investigations, here the breadth of gen-
eralization increased over the course of training because generaliza-
tion only emerged after multiple practice sessions. The only other
example of delayed generalization of perceptual learning of which
we are aware comes from an investigation of learning in honeybees.
Bees who received 21 training trials discriminating between two vi-
sual patterns learned on the trained patterns but did not generalize
their learning to simplified versions of those patterns, while bees who
received 42 training trials learned on both stimulus sets (Stach and
Giurfa, 2005). We also note another recent report of the influence of
training on the ability of humans to identify isolated words in back-
ground noise. Participants improved on this task regardless of
whether they practiced it for 5 or 12–15 h, but the only indication
that this learning generalized to lexically hard sentences occurred in
participants who had received the more extensive training (5 h: 0 of
9 listeners; 12–15 h: 4 of 8 listeners) (Burk and Humes, 2007).

One potential explanation for the increase in the breadth of
generalization with increased training in the current data comes
from the idea that generalization is determined by the inherent
tuning of the particular neural circuitry that is modified during
training (e.g., Karni, 1996; Ahissar et al., 2009). From this per-
spective, the learning on temporal-interval discrimination ulti-
mately was specific to the trained interval but generalized to an
untrained frequency because extensive training modified cir-
cuitry that was tuned to the temporal but not the spectral aspects
of these stimuli. This idea could account for the delayed general-
ization in the present results if the circuitry that was modified
early in training differed from and was more narrowly tuned than
that modified later in training. The possibility that the site of
modification changed over the course of practice receives some
support from reports that the brain regions involved in learning
can differ at different time points during training (e.g., Karni et
al., 1998; Petersen et al., 1998; Atienza et al., 2002; Gottselig et al.,
2004; Takashima et al., 2007) (for review, see Kelly and Garavan,
2005). It is also consistent with a proposal that perceptual train-
ing leads to modifications in different neural processes depend-
ing on which one provides a signal-to-noise ratio sufficient for
performing the trained task at a given time point in training
(Ahissar et al., 2009). The delayed generalization observed here
could also be accounted for in this inherent tuning framework if
the same circuitry was modified throughout the course of train-
ing, but the training affected the extent to which the potential
tuning of that circuitry was revealed. For example, the current
training might have modified circuitry that initially responded
only to a restricted stimulus set but that had some subthreshold
sensitivity to a wider range of stimuli (e.g., Kaur et al., 2004). If so,
generalization would have been delayed if the training first af-
fected the responses of that circuitry to its originally favored stim-
uli and only later strengthened the responses to the wider range of
stimuli as well, thereby ultimately revealing the full inherent tun-
ing capacity of that circuitry.

Another potential explanation comes from the view that gen-
eralization reflects how input from more peripheral circuitry is
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weighted centrally (Mollon and Danilova, 1996; Dosher and Lu,
1998; Petrov et al., 2005). According to this idea, the generaliza-
tion pattern that resulted from 10 d of training on temporal-
interval discrimination arose because learning occurred within
centralized circuitry that weighted more heavily those inputs that
provided information about the temporal compared with the
spectral aspects of the stimulus. This explanation could account
for the broadening of the generalization pattern with increased
training if the relative weights assigned to these two stimulus
dimensions changed over the course of training, being relatively
equal early on to favoring the temporal dimension in the end. By
this account, training consistently affected the same circuitry, but
over time altered how that circuitry weighted incoming informa-
tion. Some recent evidence is consistent with this possibility. A
quantitative model of learning that was based solely on the incre-
mental reweighting of inputs through a Hebbian rule revealed
systematic, task-dependent changes in the weights assigned to
inputs tuned to different stimulus characteristics on a visual
orientation-discrimination task (Petrov et al., 2005). In addition,
physiologically, training-induced behavioral improvements in
the discrimination of visual motion direction in monkeys were
correlated with changes in neural responses in a brain region
associated with decision making, but not in one associated with
sensory encoding (Law and Gold, 2008). However, in that report,
generalization was only assessed along a stimulus dimension for
which generalization was expected to be minimal (from human
data) and in fact was. Therefore, it is not clear whether the time
course and characteristics of the physiological changes observed
in that investigation would result in delayed generalization.

The present demonstration of delayed generalization also has
practical significance. Because generalization maximizes the ben-
efit received from practice, its induction is a goal of most practical
applications of perceptual training. The current data illustrate
that a training regimen that appears to be inadequate in this
regard after a few training sessions may prove to be quite effective
if the number of sessions is simply increased. An awareness of the
potential for the late emergence of generalization therefore could aid
the development and evaluation of practical perceptual-training
schemes. For example, it could inform choices about the number of
training sessions to be provided and influence appraisals of training
effectiveness at different time points in training.

Together, the slower time course for generalization than
learning that is documented here has theoretical, neurophysio-
logical, and practical implications. From a theoretical perspec-
tive, these results suggest that learning and generalization are
distinct forms of improvement that may differ on a range of
characteristics in addition to their time courses. Different re-
quirements for learning and generalization, such as training du-
ration, may help to explain discrepancies as to the generalization
associated with a given trained task. From a neurophysiological
perspective, these data imply that the neural modifications that
result from perceptual training either shift to a different locus or
change in character as training progresses, thereby changing the
range of stimuli that are affected by the modification. Finally,
from a practical perspective, these data show that simply provid-
ing additional training can increase the number of untrained
conditions to which learning generalizes. This offers a potential
means to improve the efficacy of perceptual training used to treat
disorders and enhance normal perceptual abilities.
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(2004) Human central auditory plasticity associated with tone sequence
learning. Learn Mem 11:162–171.

Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S,
Doya K (1999) Parallel neural networks for learning sequential proce-
dures. Trends Neurosci 22:464 – 471.

Karmarkar UR, Buonomano DV (2003) Temporal specificity of perceptual
learning in an auditory discrimination task. Learn Mem 10:141–147.

Karni A (1996) The acquisition of perceptual and motor skills: a memory
system in the adult human cortex. Brain Res Cogn Brain Res 5:39 – 48.

Karni A, Sagi D (1991) Where practice makes perfect in texture discrimina-
tion: evidence for primary visual cortex plasticity. Proc Natl Acad Sci
U S A 88:4966 – 4970.

Karni A, Sagi D (1993) The time course of learning a visual skill. Nature
365:250 –252.

Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Unger-
leider LG (1998) The acquisition of skilled motor performance: fast and
slow experience-driven changes in primary motor cortex. Proc Natl Acad
Sci U S A 95:861– 868.

Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine
breadth of subthreshold frequency receptive fields in primary auditory
cortex. J Neurophysiol 91:2551–2567.

Kelly AM, Garavan H (2005) Human functional neuroimaging of brain
changes associated with practice. Cereb Cortex 15:1089 –1102.

Korman M, Raz N, Flash T, Karni A (2003) Multiple shifts in the represen-
tation of a motor sequence during the acquisition of skilled performance.
Proc Natl Acad Sci U S A 100:12492–12497.

Law CT, Gold JI (2008) Neural correlates of perceptual learning in a
sensory-motor, but not a sensory, cortical area. Nat Neurosci 11:505–513.

Levitt H (1971) Transformed up-down methods in psychoacoustics. J
Acoust Soc Am 49:467– 477.

Mollon JD, Danilova MV (1996) Three remarks on perceptual learning.
Spat Vis 10:51–58.

Ortiz JA, Wright BA (2009) Contributions of procedure and stimulus learn-
ing to early, rapid perceptual improvements. J Exp Psychol Hum Percept
Perform 35:188 –194.

Ortiz JA, Wright BA (2010) Differential rates of consolidation of conceptual
and stimulus learning following training on an auditory skill. Exp Brain
Res 201:441– 451.

Park JH, Shea CH (2003) Effect of practice on effector independence. J Mot
Behav 35:33– 40.

Park JH, Shea CH (2005) Sequence learning: response structure and effector
transfer. Q J Exp Psychol A 58:387– 419.

Petersen SE, van Mier H, Fiez JA, Raichle ME (1998) The effects of practice
on the functional anatomy of task performance. Proc Natl Acad Sci U S A
95:853– 860.

Petrov AA, Dosher BA, Lu ZL (2005) The dynamics of perceptual learning:
an incremental reweighting model. Psychol Rev 112:715–743.

Schoups AA, Orban GA (1996) Interocular transfer in perceptual learning
of a pop-out discrimination task. Proc Natl Acad Sci U S A 93:7358 –7362.

Stach S, Giurfa M (2005) The influence of training length on generalization
of visual feature assemblies in honeybees. Behav Brain Res 161:8 –17.

Takashima A, Nieuwenhuis IL, Rijpkema M, Petersson KM, Jensen O,
Fernández G (2007) Memory trace stabilization leads to large-scale
changes in the retrieval network: a functional MRI study on associative
memory. Learn Mem 14:472– 479.

Wright BA, Sabin AT (2007) Perceptual learning: how much daily training
is enough? Exp Brain Res 180:727–736.

Wright BA, Buonomano DV, Mahncke HW, Merzenich MM (1997) Learn-
ing and generalization of auditory temporal-interval discrimination in
humans. J Neurosci 17:3956 –3963.

Wright et al. • Generalization Lags behind Learning J. Neurosci., September 1, 2010 • 30(35):11635–11639 • 11639


