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Abstract

Single nucleotide polymorphisms (SNPs) are the most commonly used polymorphic markers in genetics studies. Among the
different platforms for SNP genotyping, Luminex is one of the less exploited mainly due to the lack of a robust (semi-
automated and replicable) freely available genotype calling software. Here we describe a clustering algorithm that provides
automated SNP calls for Luminex genotyping assays. We genotyped 3 SNPs in a cohort of 330 childhood leukemia patients,
200 parents of patient and 325 healthy individuals and used the Automated Luminex Genotyping (ALG) algorithm for SNP
calling. ALG genotypes were called twice to test for reproducibility and were compared to sequencing data to test for
accuracy. Globally, this analysis demonstrates the accuracy (99.6%) of the method, its reproducibility (99.8%) and the low
level of no genotyping calls (3.4%). The high efficiency of the method proves that ALG is a suitable alternative to the current
commercial software. ALG is semi-automated, and provides numerical measures of confidence for each SNP called, as well
as an effective graphical plot. Moreover ALG can be used either through a graphical user interface, requiring no specific
informatics knowledge, or through command line with access to the open source code. The ALG software has been
implemented in R and is freely available for non-commercial use either at http://alg.sourceforge.net or by request to
mathieu.bourgey@umontreal.ca
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Introduction

A single nucleotide polymorphism (SNP) is a DNA sequence

variation that occurs at a single nucleotide position in the genome. As

genotyping has become less expensive, it has become common to

attempt to map disease genes via genome-wide scans [1]. Moreover,

SNPs are the most commonly used polymorphic markers to identify

candidate genes for complex diseases in genetic epidemiology studies

[2,3]. Genotyping errors are inherent to both family-based and case-

control genetic association studies [4,5,6] and can lead to biased

allelic and genotypic frequencies and thus either increases type I error

rates [4,7,8] and decreases in power [9,10]. In the case of candidate

gene studies, the LuminexH 100/200 xMap technology (Austin, TX)

is relatively inexpensive and easy to operate and maintain. With 100

separate identifiable beads available, a theoretical maximum of 50

different mutations can be assayed simultaneously on this platform

[11]. This medium throughput SNP Genotyping system is ideal in

clinical facilities for all sorts of genotyping applications, including

pharmacogenomics [12,13,14] and medical genetic applications

[15,16] as well as population genetics [17,18].

On the other hand, an important limitation of the Luminex

genotyping platform is the lack of a freely available automated

genotype calling software. The commercial STarStation/STar-

Base SNP or MasterPlex GT V2.3 analysis softwares can be

purchased respectively from Applied CytometryH (Sheffield, UK)

and MiraiBioH (San Francisco, USA); otherwise, genotypes must

be called manually, which could incur substantial increases in time

and in genotype errors due to user subjectivity and human error.

In response to the need for additional Luminex genotype calling

software, we have developed the Automated Luminex Genotyping

(ALG) software package that allows for extensive genotype calling

from Luminex assays using either a friendly graphical user

interface (GUI) or a command line interface in R. As we describe

here, the ALG software is efficient and provides internal quality

controls, and is an ideal alternative to the current commercial

software. These properties have been confirmed by the blind

analysis of a childhood leukemia dataset.

Results and Discussion

ALG was used to genotyped a set of 95 SNPs in a cohort

consisting of 300 childhood acute lymphoblastic leukemia patients

and 329 healthy controls from the province of Quebec. Of these,

84 SNPs yielded distinct genotype clusters that were subsequently

validated by manual inspection, providing a 88% SNP to assay

conversion rate. We selected 3 SNPs based on the presence of

independent sequence analysis (Sanger sequencing) in order to

allow comparing genotypes obtained by ALG methods to those

coming from the sequencing experiment considered as true

genotypes. These 3 SNPs, rs2267437, rs828907 and rs11685387

were analyzed at blind. Genotypes were called twice, firstly in a

process totally automated by ALG using defaults setting and

secondly genotype calls were done manually. Manual calls can be

easily made by adjusting settings of the software using the GUI

(figure 1) based on graphical plot (figure 2) inspection of the data

clustering. Two of the SNPs were also genotyped in two
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independent experiments to allow testing the reproducibility of

calls. At the end the performance analysis consisted in approxi-

mately 9000 genotypes called.

Figure 3 provides an example of automated versus manual

genotype calling experiment. The fully automated method (when

the settings used are the default ones) is underestimating genotype:

at 95% confidence interval the NA calls (corresponding to no call)

are excessively high. Changing 95% to 99.99% had a huge impact

on the number of no-calls. Manually overwriting the automatic

cut-off for the SNP rs2267437 was necessary to get the proper

Figure 1. Graphical user interface provided in ALG. The Graphic User Interface (GUI) provided in the Automated Luminex Genotyping software
(ALG) allows effective management of the genotype calling process. The main interface of the GUI (a) is dedicated to input and output file
determination and to parameter selection. The confirmation interface (b) is used to verify parameter selection and to run the ALG analysis. The final
interface (c) informs the user of analysis completion.
doi:10.1371/journal.pone.0019368.g001

ALG: Luminex Genotyping Software
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genotyping. Decrease in the overall mean intensity below the

minimal threshold could be influenced by the nucleotidic

composition surrounding the SNP which in turn could reduce

probe specificity. Chemistry of the beads in conjunction with

specific sequence can give shifted MFI (mean fluorescence

intensities) values. Nevertheless, a quick visual inspection of the

graph provides enough flexibility to obtain robust genotypes out of

these experiments. Table 1 gives a summary of the genotyping of

ALL data. Using a manual management of parameters ALG

reached an overall accuracy of 96.1% and a reproducibility of

94.1%. Here, the 4% of genotypes not correctly called is as a

majority composed of genotypes that are not called (2.6% of NA

and 0.8% of THR calls). Additionaly we compared 1100 calls

made by ALG on these three SNPs to those obtained using the

commercial MasterPlex GT suiteH (MiraiBio Group of Hitachi

Software Engineering America, Ltd. http://www.miraibio.com/

masterplex-gt/gt-overview.html). MasterPlex software gave an

overall accuracy of 89% whereas ALG reached 98% when the

software is used with a manual management of parameters. Thus

when a genotype is called by ALG, this call is highly accurate

(99.6%) and reproducible (99.8%). These high levels of reproduc-

ibility prove the robustness of the method to experimental

variations. Moreover they emphasized an important point where

experimental variation that can not be caught by the method will

lead to no calls and not to genotyping errors. Despite that manual

setting gives more accurate results than the use of default settings,

approximately 90% of results show similarity between the two

settings. Globally default settings developed based on our

experiments are sufficient to provide efficient calls (86.7% of

reproducibility and 93.9% of accuracy). However, we recommend

users to manually manage parameters: confidence level, threshold

value and cut-off value. At the end of the call procedure, it is also

possible to manually call unknown genotypes (no call). But once

manual adjustments are defined for a SNP, they can be

automatically re-used for the genotype call of other samples/

plates for the same SNP. The relevance of genotypes called by

ALG has been shown in a recent replication study [19].

Actually no freely available software has been proposed to

automate the genotype calling on the Luminex platform. In order

to overcome this situation, we propose the accurate ALG

clustering tool. ALG is semi-automated, requiring no prior

manual inspection of the microassay Luminex data, and provides

numerical measures of confidence for each SNP called, as well as

an effective graphical plot (Figure 2) of the data clustering for

visualization, optimization or troubleshooting purposes. As shown

by genotypes calls in leukemia cohort, ALG is highly accurate,

provides a very low no call threshold and performs very well when

compare to commercial software. Note that no-calls are mainly

affected by the confidence value and the cut –off definition. In

some cases, poor DNA quality will increase the level of no-call. But

in most cases, three well defined clusters were obtained leading to

accurate genotype calls.

Materials and Methods

Study subject
We investigated ALG performance by genotyping the Quebec

childhood acute lymphoblastic leukemia (ALL) cohort. The study

population has been previously described [20,21]. Our cohort

includes 189 boys and 132 girls with a median age of 4.7 years, all

French-Canadian from the province of Quebec, Canada. Parental

DNA was available for 203 of the probands. Healthy controls

(n = 329) consisted of French-Canadian individuals. The CHU

Sainte-Justine Research Ethics Board approved the research

protocol and written consent was obtained from all participants

and/or their parents. DNA was isolated from buccal epithelial

cells, peripheral blood or bone marrow in remission as previously

described [22]. SNPs were genotyped using the Luminex xMAP/

Autoplex Analyser CS1000 system (Perkin Elmer, Waltham, MA).

Genetic variants were amplified using allele-specific primer

extension in multiplexed assays and hybridized to Luminex

MicroPlex TM –xTAG Microsperes as per Koo et al. [23].

Primer sequences for PCR amplification and for ASPE hybrid-

ization are given in Table S1 and S2 respectively. Amplification

conditions and reaction conditions are available upon request.

Implementation
Luminex assay analysis gives quantitative values that measure

the mean intensities of fluorescence of each allele. So for a SNP

marker with alleles A and B, which will give three possible

genotypes: AA, AB and BB, the mean intensities are vA and vB.

Individuals with genotype AA are expected to have high vA value

and low vB value. By contrast, individuals with genotype BB are

expected to have high vB value and low vA value. Individuals with

genotype AB are expected to have similar vA and vB values. vA

and vB values obtained for the 3 SNPs on a subset of the cohort

are given in the Table S3. To facilitate the genotype call, we

created a normalized value of intensity Q computed from vA and

vB value. Q is the ratio of vA reported on the sum of vA and vB:

Q~
vA

vAzvB
ðAÞ

Individuals with genotype AA will have an Q close to 1; an Q close

to 0 will correspond to individuals with BB genotype and

individuals with AB genotype will have an Q of approximately

0.5. Following genotyping of a large amount of individuals, this

approach will provide three clusters corresponding to pools of

individuals with the same genotype.

Figure 2. Graphical plot of data clustering. Data representation is
given as a plot of sum of luminosity on a log scale as a function of the
normalized luminosity for a C/T SNP genotyped in 91 individuals. The X
axis represents the normalized intensity Q, whereas the Y axis
represents the sum of the mean intensities of both probes, on a log
scale. Each point represents an individual genotype and points are
clustered in three groups based on genotype: CC (blue); CT (black); TT
(green); no-calls are shown in red. The brackets represent the
confidence interval boundaries for a type 1 error of 0.01. The silhouette
score (0.979) and HWE p-value (0.782) are also reported.
doi:10.1371/journal.pone.0019368.g002

ALG: Luminex Genotyping Software

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e19368



ALG: Luminex Genotyping Software

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e19368



In such case, genotyping will consist of defining the boundaries

of each cluster and determining the individuals that belong to

them. An accurate definition of clusters will allow unbiased genetic

analyses. Ambiguous individuals located outside of clusters will be

automatically considered as no call. Four main features could

influence the clustering: (1) the cut-off definition allows groups to

be created with similar Q values; (2) the definition of the group

boundaries using the mean value and confidence interval method

to determine call accuracy; (3) each group of calls must undergo

quality controls to verify that there are no experimental or

mathematical aberrations that have biased the calling procedure;

(4) this approach must be applicable also to multi-allelic SNPs.

Defining the cut-offs. The cut-offs are two numerical values

(CoD and CoU) that are used to separate the possible range of

normalized values in three intervals: low values [0; CoD[,

intermediates values [CoD; CoU[and high values [CoU; 1].

High values will allow assignment of AA genotypes, intermediate

values for AB genotypes and low values for BB genotypes. The

ALG software provides two methods to compute cut-off values.

The first method is an arbitrary definition of the cut-offs where

CoD is equal to 0.3 and CoU to 0.7. The principle behind this

definition is to strictly follow the mathematical definition of

genotypes and do not consider experimental variations. In this

scenario one expects QAA values to be close to 1, QBB values to be

close to 0 and QAB values to be around 0.5 in order for the

intervals created by the arbitrary CoD and CoU values to

correctly discriminate between the three groups.

However, if experimental variation occurs, then the position of

three clusters can be skewed. For example a distribution of

clusters, where QAA values are close to 1, QBB values are around

0.3 and QAB values are around 0.75, is possible if the probe of the

A allele is more luminescent. In that case the theoretical definition

of cut-offs (0.3 and 0.7) is not accurate. So we develop in ALG a

second cut-off computation method that takes into account

experimental variability. For each SNP, the cut-off computation

is based on the maximum and the mean of the fluorescence

intensities measured for the two alleles as such:

CoU~
max vAð Þ

max vAð Þzmin max vAð Þ,max vBð Þ,mean vA,vBð Þ½ �

CoD~
min max vAð Þ,max vBð Þ,mean vA,vBð Þ½ �

max vAð Þzmin max vAð Þ,max vBð Þ,mean vA,vBð Þ½ �

Max(vA) is the maximal vA value. The min[max(vA),max(vB),

mean(vA,vB)] term represents the minimal value of either the

maximal vA value, the maximal vB value or the mean value

computed on all vA and vB values (mean(vA,vB)). For the usual

situation in which all three genotypes are present, we expect that

a sufficient proportion of vA values are higher than vB values (for

AA genotypes) and a sufficient proportion of vB value are higher

than vA values (for BB genotypes). In that case, the range of vA

and vB is large and the mean of the overall value should be lower

than the maximum of both vA and vB. So the min[max(vA),-

max(vB),mean(vA,vB)] value will correspond to mean(vA,vB)

term. Thus cut-off values will be correlated to the ratio of the

global mean reported on the maximum of vA (mean-max ratio).

If measures are normally distributed and if probes has equivalent

fluorescent level, this ratio will be close to 1/2 (the mean is half

the maximum) and cut-off values close to 2/3 and 1/3 for CoU

and CoD, respectively. In that case, the experimental based cut-

off definition will approximate the arbitrary values (0.7 and 0.3).

However, if experimental specificities provide variation in the

mean-max ratio, the cut-off will follow this variation. For

example, if the mean-max ratios are equal to 1/3, 2/3 or 1 the

CoU values are 3/4, 3/5 and 1/2, respectively, showing the

limitation of arbitrary values. Note that the most important factor

that can influence the cut-off definition is the probe intensity

balance, a variation in the strength of intensity between the two

probes of a same SNP. In that case the default cut-off definition

will provide the most accurate estimates. On the other hand this

method will provide skewed cut-off values when genotyping

monoallelic SNPs and in that case the theoretical definition of

cut-off (0.7 vs 0.3) should be more appropriate. Finally, as

experimental variation can be unpredictable, the software also

Table 1. Summary of ALL data analysis.

Analysis information Count Overall %

Default vs. Manual 4013 4473 89.7

Reproducibility 1 - Default 1004 1330 75.5

Reproducibility 1 - Manual 1251 1330 94.1

Reproducibility 2 - Default 986 1137 86.7

Reproducibility 2 - Manual 1234 1236 99.8

NA calls - Default 142 4473 3.2

NA calls - Manual 118 4473 2.6

THR calls - Default 220 4473 4.9

THR calls - Manual 37 4473 0.8

Accuracy 1 - Default 3860 4473 86.3

Accuracy 1 - Manual 4299 4473 96.1

Accuracy 2 - Default 3860 4111 93.9

Accuracy 2 - Manual 4299 4318 99.6

Results represent a pooled analysis of the 3 SNPs comparing calls made using
either the default or manual settings of the software. The genotypes that can
not be called are sub-divided in two classes: NA calls which correspond to an
inappropriate normalized fluorescent value outside of confidence intervals and
THR calls, which correspond to raw fluorescence under the minimal threshold.
Accuracy, which represents the percent of ALG calls similar to the calls obtained
by sequencing experiments, and reproducibility are measured in each
condition. Reproducibility and accuracy are measured when all calls are taken
into account (1) or when only genotypic calls are considered (2, no Na and THR
calls). Measures are reported in terms of number of SNPs specifically called, the
overall number of SNPs called and the corresponding percentage.
doi:10.1371/journal.pone.0019368.t001

Figure 3. Manual versus automated genotype calls. An example of manual versus automated genotype calls obtained from the same assay is
provided for SNP rs2267437 (a and b), rs828907 (c and d) and rs11685387 (e and f). The X axis represents the normalized intensity Q, whereas the Y
axis value represents the logarithm of the sum, of the mean intensity of both probes. Automated calls (a, c and e) were obtained using the default
parameters of ALG: confidence a= 0.05; minimum luminescent threshold = 300 and default cut-off definition method. These parameters yield cut-off
values of 0.8/0.4, 0.6/0.3 and 0.7/0.2 respectively for rs2267437, rs828907 and rs11685387. Manual calls (b, d and f) were obtained with the following
user-defined parameters: confidence a= 0.0001; minimum luminescent threshold = 300; default cut-off definition method. These parameters yield
cut-off values of 0.6/0.3 and 0.7/0.2 respectively for rs828907 and rs11685387. Cut-off values for the SNP rs2267437 were set to 0.9/0.4 after visual
inspection of the results.
doi:10.1371/journal.pone.0019368.g003

ALG: Luminex Genotyping Software

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19368



includes the option of manually specifying the cut-off values by

inputting a cut-off value file.

Defining the cluster boundaries. Using the two cut-off

values (CoU and CoD), normalized mean of intensity values Q are

separated into three groups: lower, median and higher. To ensure

that clusters are accurately defined, we computed confidence

intervals under a standard normal distribution using the following

formula:

IC1{a~ �XX+ U
1{a=2

� s Xð Þffiffiffi
n
p

� �

X represents the sample of intensities in each of the three groups

formed by the two cut-off values, �xx is the mean of X, s is the

standard deviation of X, n is the total sample size, a is the type I

error rate and U1-a/2 is the standard normal value for the quantile

1-a/2. As the normalization step shown in equation A induces

upper and lower limits of 0 to 1 for the range of Q values,

confidence intervals used to define the clusters in each group have

the same natural limits. Taking into account these limits, the lower

boundary of the lower group (BB genotypes) is limited at 0 and the

upper boundary of higher group (AA genotypes) is limited at 1.

Therefore confidence intervals are measured only for one

boundary of the AA group and for one boundary of the BB

group, whereas both upper and lower confidence interval

boundaries are computed for the median BA group. Thus we

can define the cluster boundaries for each genotype using the

confidence interval formula and removing the sample size term:

AA1{a~ �XX up{ U1{a � s Xup

� �� �
; 1

� �

AB1{a~ �XX med{ U1{a � s Xmedð Þ½ �; �XX medz U1{a � s Xmedð Þ½ �½ �

BB1{a~ 0; �XX downz U1{a � s Xdownð Þ½ �½ �

By default the type I error rate is 0.05, corresponding to the

commonly used threshold of significance. However, users are

allowed to modify a to reduce or increase the cluster stringency.

Note that normalized intensities were approximated with a normal

distribution. This implies that for analysis to be performed, certain

conditions (such as independency and identical-distribution with

finite variance) should be met. We considered that the conditions

are met when the normalization was done on sample of a size

higher or equal than 30 individuals for each SNP (the principle of

the central limit theorem). For smaller sample size, normalized

intensities will not follow a normal distribution implying that both

cut-offs and confidence intervals could not be applicable. In that

case, ALG software will still provide genotyping calls but they will

come with warning messages that inform users of the possible non-

normality of the data.

Quality controls. We further developed the software to

control for quality of genotype calls. ALG currently offers six

quality control tools. First, ALG controls the minimum threshold

of fluorescence, which represents the minimum measure for each

individual to be considered as a potential call. For a given SNP, if

the sum of the mean intensity for each probe is lower than a

minimum threshold of fluorescence, then the genotype calling of

these individuals will not be considered in the analysis and the

value THR (for minimum threshold) is returned as call. Based on

experimental tests the minimal threshold has been fixed to 300 by

default; however users are allowed to adjust it in function of their

specific experimental conditions.

The next quality control tool of ALG is used only when more

than 80% of individuals are found in the same cluster. Using this

tool, ALG has the power to investigate whether experimental

artefact has biased the analyses. To do so, we perform a second

round of computations of the cut-off values and confidence

interval boundaries using only the individuals found in this cluster.

Clustering of these individuals validates the first round of

computation, which indicates that the initial clustering was

correct. Grouping of the individuals in different clusters shows

that individuals are not homogeneous and need to be divided into

different groups. This cancels the first analysis and we continue the

analysis using the second cut-off values. New confidence interval

boundaries are computed using these new cut-off values and all the

individuals used for the first analysis.

ALG also contains mathematical quality control tools. During

the analysis, it is important to avoid overlap in different clusters.

Overlapping cluster will result in two different genotypes for an

individual and thus lead to a no call genotype. In case of overlap,

the boundaries of the two clusters are moved to create flanking

confidence intervals. The break point between the two clusters is

determined as the point located at equidistance from the old

overlapping boundaries. Limiting the cut-off deviation from the

expected 0.3 and 0.7 values is crucial for the analysis. To consider

the presence of three possible clusters, the CoU is limited to values

higher than 0.6 and CoD to values lower than 0.4. These

mathematical controls are essential in order to both limit the

accumulation of no calls and to avoid extreme values created by

experimental variation that can bias the analysis.

Finally, the software has quality control tools that are post

calling controls that verify the robustness of the genotype calls.

These controls correspond to the computation of both the

Silhouette scores [24] and Hardy-Weinberg equilibrium tests.

Using a Silhouette calculation, we can determine the distance from

each data point in a cluster to all other data points within the same

cluster and to all data points in the closest cluster. Thus this

calculation provides a measure of how well a data point is classified

when it is assigned to a given cluster according to both the

tightness of the clusters and the separation between them [25].

The Silhouette score condenses the cluster quality for each SNP

assay into a single measure that ranges from 1 to -1. It is

recommended to accept the results from SNP assays with

Silhouette scores .0.65, to fail the whole assays if the Silhouette

scores is ,0.25 and to manually inspect the assay results if the

score is included in the [0.25; 0.65] interval. ALG also performs a

Hardy-Weinberg equilibrium test. This test is a Pearson’s chi-

squared test, using the observed genotype frequencies obtained

from the genotype calling and the expected genotype frequencies

under Hardy-Weinberg proportions. The quality of the data is

reported in terms of type I error. As the Hardy-Weinberg

equilibrium test could be biased in the case where SNPs chosen to

be genotyped are correlated to the sample ascertainment, the

Hardy-Weinberg quality controls is only given for information

purpose and the corresponding rejection of SNPs must results

from detailed inspection of the data and of the assay design. Note

that a bias in Hardy-Weinberg equilibrium is possible when one

tries to genotype SNPs associated to a disease in a set of individuals

that have develop the disease. In which case, we would expect the

genotype distribution in individuals not to follow the Hardy-

Weinberg proportion due to the correlation between the SNPs and

the disease. Thus, to reduce this possible bias we recommend

mixing cases and controls in the same assay.

ALG: Luminex Genotyping Software
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Multiple alleles. An important limitation in most genotype

calling algorithms is dealing with multi-allelic SNPs. Ignoring

multi-allelic SNPs could leads to bias genetic association studies

[26]. Multi-allelic SNPs represent approximately 1% of SNPs

found in Ensembl release 43. In ALG multi-allelic SNPs are

processed in a very simple manner. ALG creates subgroups of

individuals based on the two most fluorescent probes. Then each

subgroup is analyzed based on genotyping a biallelic SNP. For

example, if one genotype a SNP with three alleles A, B and C,

ALG creates three subgroups of individuals: 1) individuals who are

analyzed for alleles A and B (genotypes AA, AB and BB); 2)

individuals who are analyzed for alleles A and C (genotypes AA,

AC and CC) and 3) individuals who are analyzed for alleles B and

C (genotypes BB, BC and CC). Figure 4 shows an example of

Figure 4. Genotype calls of the multi-allelic SNP rs2069416. ALG analysis of the multi-allelic SNP rs2069416. SNP rs2069416 has three alleles A,
T and G leading to three independent genotype calling procedures: A vs T, A vs G and G vs T. The procedure in which an individual is analyzed
depends on its two most luminescent probes. The X axis represents the normalized intensity Q, whereas the Y axis value represents the sum of the
mean intensity of both probes on the log scale. Genotype calls are obtained using user-specific parameters of ALG: confidence a= 0.05; minimum
luminescent threshold = 200; default cut-off definition method. These parameters give cut-off values of 0.6/0.3 and 0.7/0.4 respectively for A vs G and
G vs T procedures. Cut-off values for the A vs T were set to 0.7/0.3 after visual inspection of the results.
doi:10.1371/journal.pone.0019368.g004
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genotype calls for the multi-allelic SNP rs2069416. This simple

method to deal with multi-allelic SNPs is very accurate because

each individual carried only two alleles and probes other than the

two most fluorescent ones can be consider as background noise. As

multiple allele procedure does not consider the entire set of

individuals in the same analysis, Hardy-Weinberg quality control

was not applied. Note that the method is limited by the minimal

sample size (30 individuals) required for each sub-group to stay

under the normality assumption that validate cut-offs and

confidence intervals computation.

Availability and Future Directions
Additional improvement should be done to both increase the

efficiency of software and reduce the manual management of the

software parameters. The high efficiency of the ALG algorithm,

proven by the analysis of real data, makes also conceivable to

adapt it to other genotyping platforms. The ALG package

provides an implementation of this tool in the open source R

programming environment that will promote additional develop-

ment either by actual developers or by external users. Finally the

ALG GUI allows a user friendly interface to input data and run

analyses without specific informatics knowledge. ALG is actually

available for both windows and Linux/Unix operating systems at

the project home page: http://sourceforge.net/projects/alg.

Supporting Information

Table S1 PCR amplification primers. The PCR amplifi-

cation primers and the size of the fragment generated using these

primers are given for the 3 SNPs included in the performance

analysis.

(DOCX)

Table S2 ASPE hybridization primers. The ASPE hybrid-

ization primers and the corresponding bead number on the assay

are given for the 3 SNPs included in the performance analysis.

The lowercase sequence represents the part of the primer

sequence specific to the bead whereas the uppercase sequence

characterises the SNP locus. The SNP allele corresponds to the last

base of the primer sequence represented here in bold. * indicates

uppercase sequences designed from the reverse strand.

(DOCX)

Table S3 Median FMI values and genotype call. The

median MFI values obtain from the Lunminex analysis with

standard sensitivity are provided for the 3 SNPs included in the

performance analysis. The values are available for a subset of 38

control individuals. For each SNP and each individual the median

MFI values are given for both the reference and the variant

probes. The corresponding individual’s genotype determined by

the ALG software is represented through the background colour of

the cells. Blue cells indicate homozygote reference calls, pink cells

represents homozygote variant calls and orange cells correspond to

heterozygote calls. White cells are used to identify no-calls (THR;

NA call or blank negative controls).

(DOCX)

Acknowledgments

We thank Ekat Kritikou and Jasmine Healy for reviewing the manuscript.

Author Contributions

Implemented software: MB. Tested software: ML CR. Conceived and

designed the experiments: MB ML CR DS. Performed the experiments:

CR. Analyzed the data: MB. Wrote the paper: MB DS.

References

1. Weeks DE, Lathrop GM (1995) Polygenic disease: methods for mapping

complex disease traits. Trends Genet 11: 513–519.
2. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of

biological, computational and technological advances. Nucleic Acids Res 37:
4181–4193.

3. Lin Y, Tseng GC, Cheong SY, Bean LJ, Sherman SL, et al. (2008) Smarter
clustering methods for SNP genotype calling. Bioinformatics 24: 2665–2671.

4. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, et al. (2005)

Population structure, differential bias and genomic control in a large-scale, case-
control association study. Nat Genet 37: 1243–1246.

5. Gordon D, Finch SJ (2005) Factors affecting statistical power in the detection of
genetic association. J Clin Invest 115: 1408–1418.

6. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors:

causes, consequences and solutions. Nat Rev Genet 6: 847–859.
7. Gordon D, Heath SC, Liu X, Ott J (2001) A transmission/disequilibrium test

that allows for genotyping errors in the analysis of single-nucleotide
polymorphism data. Am J Hum Genet 69: 371–380.

8. Moskvina V, Craddock N, Holmans P, Owen MJ, O’Donovan MC (2006)
Effects of differential genotyping error rate on the type I error probability of

case-control studies. Hum Hered 61: 55–64.

9. Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size
calculations for case-control genetic association tests when errors are present:

application to single nucleotide polymorphisms. Hum Hered 54: 22–33.
10. Mote VL, Anderson RL (1965) An Investigation of the Effect of Misclassification

on the Properties of Chi-2-Tests in the Analysis of Categorical Data. Biometrika

52: 95–109.
11. Strom CM, Janeszco R, Quan F, Wang SB, Buller A, et al. (2006) Technical

validation of a TM Biosciences Luminex-based multiplex assay for detecting the
American College of Medical Genetics recommended cystic fibrosis mutation

panel. J Mol Diagn 8: 371–375.
12. de Leon J, Arranz MJ, Ruano G (2008) Pharmacogenetic testing in psychiatry: a

review of features and clinical realities. Clin Lab Med 28: 599–617.

13. King CR, Porche-Sorbet RM, Gage BF, Ridker PM, Renaud Y, et al. (2008)
Performance of commercial platforms for rapid genotyping of polymorphisms

affecting warfarin dose. Am J Clin Pathol 129: 876–883.
14. Tian F, Wu Y, Zhou Y, Liu X, Visvikis-Siest S, et al. (2008) A new single

nucleotide polymorphism genotyping method based on gap ligase chain reaction

and a microsphere detection assay. Clin Chem Lab Med 46: 486–489.

15. Sylvester JE, Kron SJ (2010) A Bead-Based Activity Screen for Small-Molecule

Inhibitors of Signal Transduction in Chronic Myelogenous Leukemia Cells. Mol

Cancer Ther.

16. Washington C, Metzgar D, Hazbon MH, Binn L, Lyons A, et al. (2000) A

Multiplexed Luminex xMAP Assay for Detection and Identification of Five

Adenovirus Serotypes Associated with Respiratory Disease Epidemics in Adults.

J Clin Microbiol.

17. Yao Y, Shi L, Matsushita M, Yu L, Lin K, et al. (2009) Distribution of HLA-A,

-B, -Cw, and -DRB1 alleles and haplotypes in an isolated Han population in

Southwest China. Tissue Antigens 73: 561–568.

18. Ivanova M, Ruiqing J, Matsushita M, Ogawa T, Kawai S, et al. (2008) MBL2

single nucleotide polymorphism diversity among four ethnic groups as revealed

by a bead-based liquid array profiling. Hum Immunol 69: 877–884.

19. Healy J, Richer C, Bourgey M, Kritikou EA, Sinnett D (2010) Replication

analysis confirms the association of ARID5B with childhood B-cell acute

lymphoblastic leukemia. Hematologica.

20. Healy J, Belanger H, Beaulieu P, Lariviere M, Labuda D, et al. (2007) Promoter

SNPs in G1/S checkpoint regulators and their impact on the susceptibility to

childhood leukemia. Blood 109: 683–692.

21. Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D (1999) Susceptibility to

childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6,

GSTM1, and GSTT1 genetic polymorphisms. Blood 93: 1496–1501.

22. Baccichet A, Qualman SK, Sinnett D (1997) Allelic loss in childhood acute

lymphoblastic leukemia. Leuk Res 21: 817–823.

23. Koo SH, Ong TC, Chong KT, Lee CG, Chew FT, et al. (2007) Multiplexed

genotyping of ABC transporter polymorphisms with the Bioplex suspension

array. Biol Proced Online 9: 27–42.

24. Lovmar L, Ahlford A, Jonsson M, Syvanen AC (2005) Silhouette scores for

assessment of SNP genotype clusters. BMC Genomics 6: 35.

25. Rousseeuw JP (1987) Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied Mathe-

matics 20: 53–65.

26. Huebner C, Petermann I, Browning BL, Shelling AN, Ferguson LR (2007)

Triallelic single nucleotide polymorphisms and genotyping error in genetic

epidemiology studies: MDR1 (ABCB1) G2677/T/A as an example. Cancer

Epidemiol Biomarkers Prev 16: 1185–1192.

ALG: Luminex Genotyping Software

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19368


