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Abstract
Purpose: A new gold standard data set for validation of 2D/3D registration based on a porcine
cadaver head with attached fiducial markers was presented in the first part of this article. The
advantage of this new phantom is the large amount of soft tissue, which simulates realistic
conditions for registration. This article tests the performance of intensity- and gradient-based
algorithms for 2D/3D registration using the new phantom data set.

Methods: Intensity-based methods with four merit functions, namely, cross correlation, rank
correlation, correlation ratio, and mutual information (MI), and two gradient-based algorithms, the
backprojection gradient-based (BGB) registration method and the reconstruction gradient-based
(RGB) registration method, were compared. Four volumes consisting of CBCT with two fields of
view, 64 slice multidetector CT, and magnetic resonance-T1 weighted images were registered to a
pair of kV x-ray images and a pair of MV images. A standardized evaluation methodology was
employed. Targets were evenly spread over the volumes and 250 starting positions of the 3D
volumes with initial displacements of up to 25 mm from the gold standard position were
calculated. After the registration, the displacement from the gold standard was retrieved and the
root mean square (RMS), mean, and standard deviation mean target registration errors (mTREs)
over 250 registrations were derived. Additionally, the following merit properties were computed:
Accuracy, capture range, number of minima, risk of nonconvergence, and distinctiveness of
optimum for better comparison of the robustness of each merit.

Results: Among the merit functions used for the intensity-based method, MI reached the best
accuracy with an RMS mTRE down to 1.30 mm. Furthermore, it was the only merit function that
could accurately register the CT to the kV x rays with the presence of tissue deformation. As for
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the gradient-based methods, BGB and RGB methods achieved subvoxel accuracy (RMS mTRE
down to 0.56 and 0.70 mm, respectively). Overall, gradient-based similarity measures were found
to be substantially more accurate than intensity-based methods and could cope with soft tissue
deformation and enabled also accurate registrations of the MR-T1 volume to the kV x-ray image.

Conclusions: In this article, the authors demonstrate the usefulness of a new phantom image
data set for the evaluation of 2D/3D registration methods, which featured soft tissue deformation.
The author’s evaluation shows that gradient-based methods are more accurate than intensity-based
methods, especially when soft tissue deformation is present. However, the current nonoptimized
implementations make them prohibitively slow for practical applications. On the other hand, the
speed of the intensity-based method renders these more suitable for clinical use, while the
accuracy is still competitive.

Keywords
2D/3D registration; image-guided therapy; gradient; intensity; rendering; ray-casting

I. INTRODUCTION
In modern health care, medical imaging has become the technique of choice for patient
treatment planning to reduce the invasiveness of either a surgical intervention or a
radiotherapy treatment. However, the patient position in the treatment room might not be
directly comparable to the orientation of the preinterventional images. The patient anatomy
might also have changed in the time lapse between planning and treatment. For instance, the
patient might have lost weight or a tumor might have shrunk in the case of radiotherapy.
One or more intrainterventional 2D projective images are then usually acquired and a spatial
transformation between the 2D images and the 3D preinterventional images is calculated in
order to map the planning situation to the actual conditions. It is then possible to adapt the
treatment planning if necessary or in the case of minimally invasive interventions display the
actual position of the surgeon’s instruments relative to the planned trajectory and thereby
avoid critical anatomical structures. Such a mapping between 2D and 3D images is referred
to as 2D/3D image registration.

A variety of different 2D/3D registration methods were proposed in the past. The methods
can be classified according to a number of criteria.1 For 2D/3D registration, the
classification according to image dimensionality and nature of registration basis is the most
reasonable and unambiguous. The image dimensionality criterion is defined by the strategies
to achieve spatial correspondence of images. In the case of 2D/3D registration, the 2D and
3D image information (image intensity or features) have to be brought in spatial
correspondence, which can be achieved by three different strategies: Projection,
backprojection, or reconstruction.1 On the other hand, 2D/3D registration methods can also
be classified according to the nature of registration basis, which yields extrinsic, intrinsic,
and non-image-based methods. In this paper, we are only concerned with the intrinsic 2D/
3D registration methods that rely solely on images of patient anatomy to achieve
registration. The intrinsic methods can be further divided into three classes: Feature-based,
intensity-based, and gradient-based methods.1 Feature-based 2D/3D registration methods
determine the transformation that minimizes the distances between 2D features of the
intrainterventional image(s) and the corresponding 3D features, extracted from the
preinterventional image or a model of the image.2-5 On the other hand, intensity-based 2D/
3D registrations rely solely on the information contained in voxels and pixels of 3D and 2D
images, respectively. In contrast to feature-based methods, instead of the distance, the
similarity measure, calculated using pixelwise comparison, defines the correspondence
between 2D intrainterventional and 3D preinterventional images.6-10 Finally, gradient-based
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methods use a direct relationship between 2D and 3D gradient vectors computed from 2D
and 3D images, respectively, to achieve registration.11-13 Each of these classes of methods
can be further divided according to the strategy to achieve spatial correspondence discussed
earlier. By far the most popular and reported group of 2D/3D registration methods are the
intensity-based methods. They use the projection strategy based on simulated x-ray
projection images called digitally reconstructed radiographs (DRRs).6-10,14,15

2D/3D registration was applied in various medical fields like radiotherapy,8,10,16

radiosurgery,9 orthopedic surgery,12,17,18 interventional radiology,3,19 and kinematic
analysis.20,21 To demonstrate the validity of a 2D/3D registration method for clinical use, a
rigorous evaluation experiment must be performed. However, due to different applications,
data sets, validation metrics, failure criteria, and implementation details, the results obtained
from evaluation studies are not directly comparable. Furthermore, as sharing of image data
sets in the research community is almost non-existent, additional comparison studies with
other registration methods are not possible. To enable objective evaluation and comparison
of different registration methods, publicly available standardized evaluation methodologies
with image data sets, corresponding reference registrations, evaluation criteria, evaluation
metric, and evaluation protocol are required. In the field of 2D/3D registration, two such
standardized evaluation methodologies were proposed in the past.22,23 Both featured a spine
bone phantom with little soft tissues attached. Most recently, a new standardized evaluation
methodology based on the Visible Human data set was presented. The data set features real
3D CT images of the spine and pelvis regions and synthetic 2D images, depicting soft
tissues and outliers.24 Although they represent valuable contributions to the field and enable
standardized evaluation and comparison studies, the clinical realism is captured only to a
limited extent.

In order to overcome the limitations of the precited evaluation data sets, we proposed a new
gold standard image data set using a porcine head with attached fiducial markers,25 which is
described in the first part of this paper. The image data set features x-ray, CBCT, CT, and
MR images acquired using the latest generation of medical imaging equipment for
diagnostic radiology and image-guided radiation therapy. In this paper, the new data set was
used to compare the performance of several intensity- and gradient-based 2D/3D registration
methods.

II. MATERIALS AND METHODS
II.A. Merit functions

In this paper, six merit functions were compared. The first four merits belong to the group of
the so-called intensity-based merit functions. In this case, a simulated x-ray image—a DRR
—is derived from a CT volume by simulating the attenuation of virtual x rays. The DRR
image is then compared to the x-ray image by means of a merit function (or similarity
measure). Translational and rotational parameters (tx,ty, tz,ωx,ωy,ωz) yielding the rigid
position of the volume T are iteratively generated by the optimizer in order to find the
transformation of the volume for which the rendered DRR best matches the x-ray image. In
this evaluation, four computationally efficient merit functions were used: Cross-correlation
(CC),6 mutual information (MI),26 correlation ratio (CR),27 and rank correlation (RC).10

The last two measures belong to the group of the so-called gradient-based merit functions.
These methods are based on the fact that rays emanating from the x-ray source that point to
edges in the x-ray images are tangent to the surfaces of distinct anatomical structures.
Intensity gradients calculated from the 2D images are put into correspondence with the
gradient field from the 3D image. In this paper, the methods presented by Tomaževič et al.,
11 the backprojection gradient-based (BGB), and rather recently by Markelj et al.,13 the
reconstruction gradient-based (RGB), were used. Since all methods were already described
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in literature, readers are referred to precited publications and to the review written by
Markelj et al.1 for additional information on the merit functions.

II.B. Standardized evaluation methodology
In order to assess the accuracy of 2D/3D registration methods, we followed the methodology
proposed by van de Kraats et al.23 Thereby, the mean target registration error (mTRE)
metric, which is the mean of the distances between target points transformed by the ground
truth and by the transformation obtained with the registration method, was used.28,29 Points
spread evenly over the volumes were used as targets. We used 454, 362, 405, 366, 372, and
366 target points for the CBCT big field of view (FOV), CBCT small FOV, CT, MR-T1,
MR-T2, and MR-PD images, respectively. The starting positions were offsets of the gold
standard position composed of three translational and three rotational parameters resulting in
mTREs from 0 to 25 mm with a step of 1 mm. Ten starting positions were computed for
each 1 mm mTRE interval, resulting in 250 starting positions altogether. We chose to report
the accuracy by using only registrations with an accuracy better than a manually determined
failure threshold of 5 mm and also by using all the registrations. The final accuracy was
given as the root mean square (RMS), the mean, the standard deviation, and the median of
the mTRE values after the registration. If a failure criterion was used, success rate, defined
as the portion of successful against all registrations, was also computed to demonstrate the
reliability of a method in reference to the chosen failure threshold. In order to further test the
robustness of the merit functions, we computed the following properties introduced by Skerl
et al.:30 Accuracy (ACC), capture range, number of minima (NOM), risk of nonconvergence
(RON), and distinctiveness of optimum (DO). However, in this way, the robustness cannot
be completely evaluated for the RGB method. This is due to a mechanism of establishing
correspondences along normals to anatomical structures using the RANSAC algorithm,
which enables a more reliable and robust registration that is used in addition to the
optimization of the similarity measure. Therefore, although the similarity measure of the
RGB method may not be very robust by itself, the method can be nevertheless be very
reliable due to the aforementioned mechanism. We also followed the protocol from Skerl et
al.30 for the sampling of the parametrical space. Since the 2D/3D registration methods must
be adapted to the time and resource constraint in a clinical environment, the execution times
of the methods were also reported.

II.C. Image data sets, image preprocessing, and masks
The comparison study of the 2D/3D registration methods was performed using the data set
of the porcine head phantom. This data set consists of CBCT big FOV, CBCT small FOV,
CT, MR-T1, MR-T2, and MR-PD 3D images and two pairs of kV and MV images taken
from the lateral (LAT) and anterior-posterior (AP) views. The CBCT volumes and the x-ray
pairs were acquired with a LINAC system. As none of the evaluated methods yielded useful
results for the registration of MR-T2 and MR-PD images to x-ray images, these registrations
were not included in the paper. The registrations were performed using the kV and then the
MV image pairs. Since the LINAC system is regularly calibrated, the transformation matrix
from the LAT view to the AP view of the x-ray images can be determined entirely by the
system parameters, i.e., by the isocenter to flat panel distances and rotation of 90° from one
to the other view.

As the porcine head phantom features a significant amount of soft tissue, which is also
deformed between the acquisition of the kV and MV x-ray and CBCT images and the
acquisition of CT and MR images, we defined a centered circular region of interest (ROI)
with a diameter of 200 pixels on the x-ray images. The ROI avoids deformed soft tissue
anatomical regions [Figs. 1(a) and 1(b)]. Using a ROI is a common approach in rigid 2D/3D
registration to initialize and speed up the registration.6,8,31-34 However, in this study, it was
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used primarily to evaluate the robustness of the 2D/3D registration methods to the soft tissue
deformation by performing registration experiments with and without the use of the ROI.

Another encountered problem was the visibility of markers used to achieve the ground truth
registration. To prevent registration bias, special masks were used to avoid the region of the
markers while computing the merit functions for the intensity-based method or calculating
the intensity gradients of the 2D image and the 3D gradient field of image intensity gradients
for the gradient-based methods. The masks used in 2D images are shown in Figs. 1(c) and
1(d).

The implementation of the intensity-based method also required the intensities of the CT
volume to be scaled to grayscale values in the range of 0–255 and windowed in order to
have similar image content between DRRs and x-ray images,35 while the x-ray images were
resampled to an isotropic resolution of 1 mm. Only the intensities above a threshold value
were used to render the DRR image. For the CBCT images, threshold values of 30 and 25
for the registrations with kV and MV images were used, respectively, while for the CT
images, threshold values of 50 and 30 for the registrations with kV and MV images were
used, respectively. For the MR images, no threshold was applied. The DRRs are generated
using the ray-casting algorithm implemented on the graphical processing unit (GPU).36 The
bounding structures of the objects in the volume were refined using the cuberille algorithm.
37 Using this approach, a DRR from a volume size of 326×326×330 can be rendered in as
low as 20 ms on an NVIDIA Quadro FX 570M graphics card with 512 MB video memory.
36

To calculate the 3D gradient field of image intensity gradients with high gradient
magnitudes for the gradient-based methods, a Gaussian filter with a standard deviation of
0.5 mm for the CT and CBCT images and 1 mm for the MR images was used. The lower
and the upper thresholds tl and tu of the 3D Canny filter were set as given in Table I. In the
preprocessing step of the 2D images, the size of the Gaussian filter was set to 1 mm for the
CT, CBCT big FOV, and MR-T1 images, and 0.5 mm for the CBCT small FOV image. The
RGB method required also the size of the distance weighting parameter σd, which was set to
15 mm for the CT and CBCT images and to 10 mm for the MR images.

II.D. Software and hardware
The program used for intensity-based 2D/3D registration was developed in C++ using gcc
4.3 under Ubuntu 9.10. The minimizer chosen for the optimization was the NEUWOA
software proposed recently by Powell.38 The GPU parts were programed through OpenGL
interface and Cg language. The program was run on a standard personal computer equipped
with an Intel Core 2 Duo CPU of 3 GHz each and an NVIDIA GeForce 8800 GTS series
graphics card with 640 MB RAM.

The software for the gradient-based methods was developed in C++ under MICROSOFT
WINDOWS XP and was not optimized for speed. For both gradient-based methods, the
original Powell optimizer was used.39 The experiments were performed on an Intel Core 2
Duo, 2.13 GHz computer without the aid of a graphics card.

III. RESULTS
As defined in Sec. II B, the accuracy of the 2D/3D registration methods was calculated by
using only registrations below a predefined failure threshold of 5 mm and also by using all
the registrations. The results obtained by using a failure threshold are given in Table II as
RMS mTRE values and success rates, while the results using all the registrations are given
Table III as mean and standard deviation mTRE values. The results considering all the
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registrations are also given as plots of mean, standard deviation, and median mTREs in Fig.
3 to indicate the distribution of the registration errors. The registration results for the MR-T1
image were not included in Fig. 3 since the substantially larger mTREs would make the
results of the CBCT and CT images very hard to read and interpret. The merit function
properties ACC, capture range, NOM, RON, and DO are given in Table IV. Figure 4 finally
presents individual registration results for the CT volume obtained with MI and RGB merit
functions with the kV x-ray images with and without a ROI.

The results obtained for the accuracy and reliability can be grouped according to the level of
difficulty to perform a registration. For the present porcine image data set, such distinction is
provided by the 3D images used for the registration. The least challenging registration is
expected between the CBCT and the x-ray images. For this group of registrations, the
intensities of the 3D and 2D images have a strong relationship due to the use of the same
imaging equipment and imaging physics, although different x-ray energies are used,
especially for the MV images. Furthermore, no soft tissue deformation exists between the
3D and 2D images since the porcine head was in the same position for the CBCT and x-ray
acquisitions. Therefore, the x-ray images with and without the ROI should not have a great
effect on the registration results. A more difficult registration can be expected between the
CT and the x-ray images where the physical process of the image acquisition remains the
same, although different photon energies and imaging devices with different detector
characteristics are used. However, in this case, significant soft tissue deformation exists
between the 2D and 3D images (Fig. 2). The registrations of the x-ray images with a ROI
focus on the region with little or no tissue deformation and should therefore give better
registration results concerning accuracy as well as reliability than the registrations with the
entire x-ray images. Finally, the registrations performed between the MR-T1 and the x-ray
images are the most challenging since in this case a multimodal registration must be
performed. In addition, soft tissue deformation between the 3D and 2D images is also
present. Better registration results should be obtained when a ROI is applied on the x-ray
images.

The registration results for the intensity-based method in Tables II-IV and Fig. 3 reflect the
grouping according to the difficulty of registration. The best results were obtained with the
CBCT images, especially when ROIs were used on the x-ray images, while accuracy was
worse for the registrations with the CT images. It is clear from Table IV that overall ACC
and capture range of intensity-based measures were lower with the CT than with CBCT
images, while the NOM and RON were significantly higher, meaning a better robustness of
the merits with CBCT images. Overall, the registration with the CBCT big FOV gave the
best performance since it is the only volume that could be accurately registered by all merit
functions when the entire x-ray images are considered. As known from the literature, the
intensity-based method cannot deal with multimodal registrations like MR-T1 image to x-
ray image registrations. For MR-T1 image, the amount of successful registrations were 0%
(except for CR, which showed a very low rate (4%)), and the similarity properties were poor
for this image (Table IV). In this evaluation, MI was the best merit function regarding the
accuracy. If results obtained with the CBCT big FOV image are not considered, it was also
the only merit function that provided accurate results when a ROI was not applied to the x-
ray images. The accuracies for the successful registrations (given as the RMS of mTRE)
with the kV images were between 1.33 and 2.19 mm, while the MV-based registrations gave
accuracies between 1.30 and 3.24 mm (Table II). However, from Table IV, the capture range
was globally the lowest of the intensity-based measures with highest NOM and RON. MI
was the most accurate but least robust of the intensity-based merit functions. Good overall
results could be observed for the CR and RC merit functions, which performed well in all
registration experiments using kV and MV x-ray images with a ROI. In the experiments
using these images, the accuracies of successful registrations for the CR merit function were
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between 1.40 and 1.67 mm and between 1.28 and 3.83 mm, respectively, while for the RC
merit function, the accuracies of successful registrations were between 1.27 and 2.19 mm
and between 1.74 and 3.55 mm, respectively (Table II). CR showed higher capture range
and lower NOM and RON, revealing a better robustness than RC merit. CC gave reliable
results only for registrations with the kV x-ray images using a ROI, except when
registrations were performed with the CBCT big FOV images. The CC kV-based
registrations with a ROI resulted in accuracies of successful registrations between 1.97 and
3.88 mm (Table II). However, it was the most robust merit with the highest capture range,
lowest NOM, and RON. In Table IV, it can be observed that for registration of CBCT
images with entire kV x-ray images, the CC, RC, and CR similarity measures had excellent
convergence properties according to capture range, NOM, and RON parameters, while at the
same time the registration results were very poor (Table II). This is also true for CR
similarity measure and the registration of MR-T1 volume to the entire kV x-ray images. This
is due to the fact that capture range, NOM, and RON parameters are determined in relation
to the maximum of the lines of the sampled space (cf. Ref. 30), which was, in these cases,
away from the gold standard and therefore lead to poor registration results.

The gradient-based methods performed very accurately for the CBCT big FOV, CBCT small
FOV, and CT images. As expected from the literature,13 the RGB method gave the more
reliable results (Fig. 3), while the accuracies of successful registrations of the two gradient-
based methods were overall similar, except for the registration of CT to MV x-ray images
without a ROI. For the BGB and RGB methods, the registrations with the kV images led to
accuracies of successful registrations between 0.56 and 1.63 mm and between 0.70 and 1.41
mm, respectively, while the accuracies of successful registrations with the MV images were
between 0.99 and 2.77 mm and between 0.71 and 1.72 mm, respectively. The overall
accuracies given in Table III exhibited larger differences between the methods due to the
smaller robustness of the BGB method. The introduction of the ROI in the x-ray images
improved the accuracy of the BGB method, but not the RBG method, accuracies of which
were not significantly affected by the deformations of the soft tissue. The gradient-based
methods enabled also accurate multimodal MR-T1 image to kV x-ray image registrations
with accuracies of successful registrations ranging from 1.35 to 2.05 mm when ROI was
applied and from 2.96 to 3.51 mm when the entire x-ray images were used. However, for
multimodal registrations, the reliability was significantly reduced (Tables II and III) with the
rate of successful registration falling down to 22.4% and 21.2% for BGB and RGB methods,
respectively. Table IV also demonstrated that the similarity measure of the RGB method
was globally more robust than that of the BGB method. The capture ranges were overall
similar, but for the BGB similarity measure, the NOM and RON parameters were always
better (except for CBCT small FOV and kV images), while the DO parameter was worse
than in the case of the RGB similarity measure.

If considering the results of the intensity-based registrations and gradient-based methods,
putting aside results with MR-T1 images, Table IV showed a better robustness for the
intensity-based registrations with a capture range up to 79.20 against 26.14 at best for
gradient-based methods and lower NOM and RON. However, the gradient-based methods
were always more accurate with ACC down to 0.11 against 0.68 at best for intensity-based
method and they featured better DO and mTRE statistics (Tables II and III and Figs. 3 and
4). The differences in accuracy were emphasized for the CT to x-ray registrations, where the
accuracy of successful registrations between CT and kV x-ray images for the intensity-based
methods was approximately 1.50 mm at best, while the accuracy of the gradient-based
method was always below 1.63 mm (Table II).

The results of the time requirements for computing a registration in Table V exhibit a
significant advantage of the intensity-based method over the gradient-based methods. While
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the mean time to compute an intensity-based registration using a GPU was between 1.21 and
8.21 s, the gradient-based methods required between 45 and 100 s and between 63 and 214 s
for the BGB and RGB methods, respectively. Although similar hardware was used to
perform the registrations, one could argue that these results are not directly comparable
since the speedup of intensity-based methods received a lot of attention over the past years
and numerous approaches to this end were proposed,8,15,40-42 some of which were applied
to speed up the intensity-based method used in this paper. Furthermore, as fast DRR
generation is also a research topic of other research communities, a lot of effort was put into
software and hardware solutions to make it as fast as possible. On the other hand, only a
handful of gradient-based methods were proposed,11-13 none of which focused on the speed
of the registration. Gradient-based methods used in this paper could be accelerated in a
number of ways, for instance, by optimal coding and by the parallelization of finding the
point-to-point geometrical correspondences to mention just two. Nevertheless, due to current
state-of-the-art implementations of the intensity-based methods, the presumption that the
intensity-based methods are time consuming due to the DRR generation must be
reconsidered as their execution approaches real time.27,43

IV. DISCUSSION
Image registration is an important enabling technology of image-guided interventions that
provides image guidance by bringing the preintervention data and intraintervention data into
the same coordinate frame.44,45 However, integration of medical image registration into
larger medical systems affects the clinical decision making process. Therefore, before any
registration algorithm can be used in the medical theater, a rigorous performance assessment
process, typically using a gold standard data set, must be performed to satisfy several
requirements. The most important are those that concern accuracy, reliability, robustness,
computation time, and invasiveness of intraoperative data acquisition.46-49

In this paper, intensity- and gradient-based methods for 2D/3D registration were compared
using a new gold standard data set, which was devised using a porcine head with attached
fiducial markers. An intrinsic feature of the phantom presented is the fact that it contains a
considerable amount of soft tissue and mobile skeletal structures (mainly the surprisingly
large mandible). From a histogram of the minimum enclosing cuboid of the cadaver
specimen in the CT scan, one can see that 31% of the volume is soft tissue within a range of
−750–100 HU, whereas the remaining voxels in a range of 100–2272 HU only comprise
20.5% of the tissue. This can be explained by the considerable amount of musculature, fat,
and salivary gland tissue in the neck and mandible region and the small intracranial volume.
Therefore, we conclude that the phantom cannot be compared to a human skull, but is more
similar in terms of tissue composition and mobility to anatomical regions like the human
pelvis. In conclusion, the phantom is closer to a realistic clinical situation than previously
available phantoms made of sections of the spine22,23 and the data set based on the images
from Visible Human project.24 Moreover, the data set encompassed images of various
modalities with state-of-the-art imaging devices. Therefore, the porcine head phantom
allowed the comparison of the merit functions in a more complex situation which underlined
the strength and weakness of each method.

The evaluation study of the intensity-based methods showed MI as the more accurate but
less robust merit function, while CR proved very reliable and accurate with kV as well as
MV x-ray images when a ROI was used and therefore when no significant soft tissue
deformation was present between the 3D and 2D images. RC performed very similar to CR,
while CC performed well only for registrations using kV x-ray images with a ROI. In this
evaluation, the merit functions gave results that are in agreement with their theoretical
limitations.6,10,50,51 CC performed well only when an approximately linear relationship
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existed between the intensities of images undergoing registration, while CR and RC
methods, designed to be more robust to the differences in the distribution of image
intensities, extended their performance to registrations of MV x-ray images, however, met
their limitation when soft tissue deformation was introduced in the 3D image. Finally, MI
seems to have overcome the difficulty of the sparse histogram population known from the
literature,6,26,51 due to the large size of the specimen and the registration using two views,
and performed reasonably well also for registrations of CT to kV and MV x-ray images with
and without the ROI. An interesting thing to note is also that the intensity-based registration
gave the best overall performance for the registrations using CBCT big FOV images, which
outperformed registrations with the CBCT small FOV images, e.g., when the entire x-ray
images were used for registration (Tables II and III).

The evaluation of the gradient-based methods has shown high accuracy to soft tissue
deformation. This is especially true for the RGB method, which achieved similar registration
accuracy regardless of the presence of the soft tissue deformations. The BGB method, on the
other hand, exhibited more accuracy than intensity-based registration using MI, although it
was significantly less robust (Table IV). The gradient methods performed especially well for
the registration of the CT to kV as well as MV x-ray images. Furthermore, when
registrations failures occurred, large mTRE standard deviations demonstrate large
registration errors, which enable straightforward identification of misregistration (cf.
registrations of CBCT big FOV images to kV and MV x-ray images using a ROI in Fig. 3).

The comparison study performed with the proposed gold standard data set and the
standardized evaluation methodology between the intensity- and gradient-based 2D/3D
registration methods is the second such study in literature we are aware of. The first was
performed by van de Kraats et al.,23 although on a smaller scale. They used only one merit
function for the intensity-based method and compared it to the BGB gradient-based method.
Furthermore, only kV x-ray images were used, although experiments using only one x-ray
image were also performed. When using two x-ray images, they found the gradient-based
method more accurate than the intensity-based method. The present study confirmed their
conclusions. An important advantage of gradient over the intensity-based methods is also
that accurate registrations with the MR-T1 images can be obtained (Table II). However, the
gradient-based methods are not without its flaws. First, the gradient similarity measures
demonstrated less robustness in the sense that they are more sensitive to the increase in the
number of local minima when the initial displacement is increased. Then, while in the
evaluation performed by van de Kraats et al.23 the BGB gradient-based method was faster
than the intensity-based method, our evaluation has shown that a state-of-the-art
implementation of the intensity-based method using the GPU significantly outperforms the
BGB and especially the RGB gradient-based methods in terms of the speed of registration.
Furthermore, the intensity-based method is far better suited for the registration of a 3D
image to a single x-ray image, where an accurate and reliable registration can be obtained,
3,6,10,42 which is not the case for the gradient-based methods.23 However, the reported
differences between the two groups of methods are also due to the specific implementations
of methods used in our evaluation. While the intensity-based method was designed for
intrafractional tumor position monitoring during radiotherapy,10,52 the gradient-based
methods used in this paper were not designed for a specific application. Therefore, the
implementations of the intensity-based method focused on speed, while the implementations
of the gradient-based methods focused more on the accuracy.

V. CONCLUSIONS
A comparison study between the intensity-based registration method with four different
merit functions and two different gradient-based methods using two x-ray views was
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conducted. A new clinically realistic gold standard image data set with the standardized
evaluation methodology that features kV and MV x-ray images and CBCT, CT, MR-T1,
MR-T2, and MR-PD images of a porcine cadaver head phantom with all relevant soft tissue
was used.

Concerning the intensity-based methods, MI similarity measure exhibited the best accuracy
and enabled registrations of CBCT and CT images to kV as well as MV x-ray images even
when soft tissue deformations between CT and x-ray images were present. However, MI
was also the less robust intensity-based merit with lower capture range and higher NOM and
RON. CR and RC also enabled registrations of CBCT and CT to kV and MV images, but
failed when soft tissue deformations were introduced. Finally, CC enabled only registrations
with kV x-ray images with no deformations. As shown in other studies,13,23 both gradient-
based methods outperformed the intensity-based method in terms of accuracy and enabled
also MR-T1 to x-ray registration. Although the similarity measure used by the RGB
methods was less robust, the mechanism of establishing correspondences along normals to
anatomical structures using the RANSAC algorithm nevertheless enabled reliable and robust
registration. However, the RGB method is very time consuming and requires at least two x-
ray images.

To the best of our knowledge, this is the largest comparison study of intensity- and gradient-
based methods and the first evaluation study of the gradient-based methods with the MV x-
ray images in literature. Due to acquisition of image data set with state-of-the-art
radiotherapy equipment, the results of the study are of special interest for image-guided
radiotherapy applications, although valuable also for image-guided surgery, radiosurgery,
and interventional radiology.
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Fig. 1.
kV x-ray images with the ROI for LAT (a) and AP (b) views and the corresponding masks
for LAT (c) and AP (d) views. Pixels in white were used to compute the merit functions and
the intensity gradients of the 2D image.
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Fig. 2.
kV x-ray in the LAT view (a) and a DRR generated from the CT volume at the gold
standard position (b). The black ellipse highlights the differences between the x-ray and the
DRR image due to the deformation of the soft tissue of the jaw and the positioning of the
phantom during imaging with different imaging devices.
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Fig. 3.
Plots of mean, standard deviation, and median mTREs of registrations of CBCT big FOV,
CBCT small FOV, and CT images to kV and MV x-ray images with and without a ROI for
the intensity-based method using four different merit functions (CC, RC, CR, and MI) and
the gradient-based BGB and RGB methods. All registrations were considered for the
calculation of accuracy statistics.
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Fig. 4.
Plots of individual registration results of CT volume obtained with MI (circle) and RGB
merit functions (cross) with the kV x-ray images with (left column) and without (right
column) a ROI. The top row shows the individual results over the entire range of the final
mTRE, the bottom row shows a zoom of the top plots in the range of 0–5 mm of the final
mTRE.
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Table I

Lower and upper thresholds tl and tu of the 3D Canny filter applied to extract the 3D gradient field for the
gradient-based methods for different 3D modalities.

3D modality tl tu

CBCT big FOV 0.022 0.066

CBCT small FOV 0.02 0.06

CT 0.11 0.33

MT-T1 0.10 0.30
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