
I. Introduction

Sleep is an essential life process in u-health environment 
[1]. It is as important to our well-being as the food we eat, 
the water we drink, and the air we breathe. Lack of sleep is a 
common feature of our society, affecting students and adults 
alike [2]. Problem sleepiness can be deadly. Approximately 
140,000 automobile crashes each year in Korea result from 
drivers who were “asleep at the wheel [3].” The analysis of 
sleep stage based on biosignal is the way to evaluate the 
quality of sleep [4]. Identification of an individual’s sleep 
stage is the first step in sleep studies for clinical diagnosis 
and treatment of sleep disturbances. It is common knowl-
edge that sleep is an essential state of rest and refreshment. 
Sleepiness, trouble concentrating, and increased risk of ac-
cidents are caused by insufficient sleep, which can be better 
understood by interpreting sleep stages and the sleep cycle. 
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The theory of non-linear dynamic systems, also called chaos 
theory, has now progressed to a stage, where it becomes pos-
sible to study self-organization and pattern formation in the 
complex neuronal networks of the brain [5]. The chaotic 
process, correlation dimension (D2) and largest Lyapunov 
exponent (L1), were performed to quantify the complexity 
of physiological phenomena of sleep electroencephalography 
(EEG) at different sleep stages. D2 proved to be very use-
ful for characterizing the brain dynamics in different sleep 
stages. It is found that D2 decrease in deep sleep stages, thus 
reflecting a synchronization of EEG [6,7]. D2 was also used 
for characterizing the brain dynamics doing mental tasks [8-
10]. The D2 was also used for characterizing the nature of 
EEG signal. In principle, converging D2 value point towards 
a non-linear deterministic nature and diverging D2 values 
would stress the interpretation of EEG signals as noise. The 
next section presents the experimental results of the perfor-
mance of nonlinear analysis and discussion. 

II. Methods

1. Experimental Materials
Four healthy young men between the ages of 27 and 29 years 
(mean age 27.5 years) volunteered participate in the present 
study. They did not use any medications and had no sleep 
complaints. The subjects were asked to go to bed between 10 
pm and 12 pm and were permitted to sleep for a maximum 
of 8 hours. All recording were preceded by at least one adap-
tation night in the sleep laboratory. Polygraphic recordings 
of the EEG, electrooculography (EOG) and electromyogra-
phy (EMG) were obtained. EEG electrodes were placed at 
C3 and C4, according to the international 10-20 electrode 
placement guidelines. The ground and reference were placed 
in the right earlobe. The chin EMG was recorded at the 
submental region. The EOG leads were placed on the outer 
cantus of the left and right eyes. For the recording, BIOPAC 
MP150 system was used with a 1 kHz sampling rate and a 
gain of 10,000. The high pass filter was set to 0.5 Hz ad the 
low pass filter to 100 Hz. The 60 Hz notch filter was on at 
all times. All subjects gave written informed consent prior 
to the experiments. Sleep stages were scored visually on a 
computer screen using standard criterion for each 30 second 
epoch. In this study, the sleep stages were divided into four 
stages (wakefulness, stage 1; light sleep 1, stage 2; light sleep 2,  
stage 3; deep sleep 1, stage 4; deep sleep 2, rapid eye move-
ment [REM]). Because stage 1 is a transient state, stage 1 and 
stage 2 together were classified as light sleep. Sleep stage 3 
and stage 4 were called deep sleep. 

2. Methods
The presence of chaos in dynamic systems is quantified by 
measuring the complexity of dimension and characteristic 
exponents which estimate of the level of chaos. Dimension 
gives and an estimate of the system complexity that is solved 
by D2. Largest Lyapunov exponents quantify the exponential 
sensitivity of divergence to initial condition and estimate the 
amount of chaos in a system.

1) Phase space (attractor dynamics)
The first step of chaotic analysis involves reconstructing 
the phase space from a single time series. Phase space is an 
abstract mathematical space in which to view the dynamic. 
This is accomplished by utilizing time delay and embed-
ding dimension. The choice of an appropriate time delay T 
and embedding dimension d is important for the success of 
reconstructing the attractor with finite EEG data. For the 
time delay, T, the first local minimum of the average mutual 
information between the set of measurements X(t) and X(t + 
T) was used [11]. Mutual information measures the general 
dependence of two variables. 
  The minimum embedding dimension in the reconstruction 
producer was estimated using and algorithm proposed by 
Kennel et al. [12]. The algorithm is based on the idea that in 
the passage from dimension d to d + 1, one can differenti-
ate between point on the orbit that are true neighbors and 
those that are false. A false neighbor is a point in the data set 
that is identified as a neighbor solely because of viewing the 
attractor in too small embedding space. When the point in 
the data has achieved a large enough embedding space, all 
neighbors of every attractor point in the multivariate phase 
space will be true neighbors. Mathematically, a reconstruct-
ed phase space can be described as follows

Y(t) = [X(t), X(t + T), X(t + 2T), ……, X(t + (d-1)T)] … (1)

  Where X(t) is the time series from a dynamical system, T 
represents appropriate time delay and d is a proper embed-
ding dimension for phase space reconstruction.

2) Correlation dimension (D2)
D2 describes the dimensionality of the underlying process 
in relation to its geometrical reconstruction in phase space. 
This section estimated the complexity using the approach 
based Grassberger-Procaccia algorithm [13]. It estimate the 
average number of data points within a radius r of the data 
point rij. as
                                                                     ……     (2)
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  Where C(r) is the number of points within all the circles 
of radius r and N represent the number of points in phase 
space, and  is the Heaviside function.

                                                             ……     (3)
                
  And rij is the spatial separation between two points labeled 
i and j, usually given in an m-dimensional time-delay em-
bedding by Euclidean norm. A plot of log(C(r)) versus log(r) 
should give an approximately straight line, whose slope in 
the limit of small r and large N is the correlation dimension.

                                                              ……     (4)

3) Largest Lyapunov exponent (L1): 
The L1 from the EEG signal was evaluated based on Rosen-
stein et al. [14] algorithm. For their method, the L1 can be 
defined using the following equation.

d(t) = Ceλ1t  ……     (5)

  Where d(t) has the average divergence at time t and C is a 
constant that normalizes the initial condition. After recon-
structing the phase space, the algorithms find the nearest 
neighbor of each point in the trajectory. The nearest neigh-
bor, Xj

∧, is found by searching for the point that minimizes 
the distance to the particular reference point, Xj, This is ex-
pressed as

                                                       ……     (5)

  Where dj(0) is the initial distance from the jth point to its 
nearest neighbor, and  denotes the Euclidean norm. 
By taking the logarithm of both sides of example (5), we ob-
tain

                                                            ……     (6)

  Where Δt is the sampling period of the time series, and 
dj(i) is the distance between the jth pair of nearest neighbors 
after I discrete-time steps, i.e, i·Δt  seconds. The example (7) 
represents a set of approximately parallel line (for j = 1, 2, …, 
N), each with a slop roughly proportional to λ1. The largest 
Lyapunov exponent is calculated using a least-square fit to 
the average line defined by

                                                                ……     (7)

Where 〈Indj(i)〉  denotes the average over all values of j.

III. Results

Figure 1 represents the mean D2, standard deviation and the 
sleep stages for entire sleep EEG of each sleep recording sets. 
The most significant finding is the decrease of mean D2 from 
light sleep 1, 2 (stage 1, 2) to deep sleep 1, 2 (stage 3, 4) and 
increased at REM sleep stage. The differences between indi-
vidual subjects are displayed in wakefulness stage.
  The mean values and standard deviations of L1 are shown in 
Figure 2. The results show that the more sleep moves to deep 
sleep 1, 2 (stage 3, 4), the lower L1. Both D2 and L1 displayed 
a similar pattern in entire sleep stages between and within-

Figure 1. The result of correlation dimension (D2) with respect to 
the different sleep stages.  Light sleep 1: stage 1, Light  
sleep 2: stage 2, Deep sleep 1: stage 3, Deep sleep 2: 
stage 4, REM: rapid eye movement.   

Figure 2. The result of Lyapunov exponent (L1) with respect to 
the different sleep stages.  Light sleep 1: stage 1, Light  
sleep 2: stage 2, Deep sleep 1: stage 3, Deep sleep 2: 
stage 4, REM: rapid eye movement.   
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subjects.

IV. Discussion

The aim of the study is to investigate the use of chaotic 
methods for sleep scoring with the single EEG signal. The 
chaotic methods including correlation dimension(D2) and 
largest Lyapunov exponent (L1) are evaluated by the experi-

mental dataset. Both D2 and L1 for the entire sleep EEG per 
30s epochs were calculated. The mean of D2 and L1 decreased 
from light sleep to deep sleep and increased at REM stage. 
These results of D2 are generally consistent with the results 
reported by Roschke and Aldenhoff [6] Because the neurons 
of the brain become more inactive as person goes through 
from one sleep stage to the next sleep stage, until sleep stage 
4, few number of neuron will be available for processing the 

Figure 3. Mean and standard deviation of D2 for wakefulness stage, sleep stage 1-4, and rapid eye movement (REM) stage for each 
recording sets. 
WA: wake, L1: light sleep1, L2: light sleep2, D1: deep sleep1, D2: deep sleep2, REM: rapid eye movement
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information, and as a result the D2 and L1 be decreased. But 
in REM stage, the neurons become active as a result the D2  
and L1 be increased. Individual differences were also found 
in chaotic analysis in Figures 3, 4. D2 and L1 respectively and 
displayed similar patterns between inter-subjects. The results 
show that D2 and L1 decreased from light sleep to deep sleep 
and increased at REM stage. We present experimental results 
of the chaotic methods, and demonstrate the feasibility of 

our approach with a simple measurement of EEG signal that 
involved datasets from four subjects. The results of nonlinear 
analysis show high relationship with sleep status and experi-
mental output. Therefore integrated analysis with traditional 
(linear: Fourier transform) analyzed methods is helpful to 
improve the validity and explore the physiological mecha-
nism of sleep status with various scientific analyses.

Figure 4. Mean and standard deviation of L1 for wakefulness stage, sleep stage 1-4, and rapid eye movement (REM) stage for each 
recording sets. 
WA: Wake, L1: light sleep1, L2: light sleep2, D1: deep sleep1, D2: deep sleep2, REM: rapid eye movement
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