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Abstract
Tau is the major microtubule associated protein (MAP) of a mature neuron. The other two
neuronal MAPs are MAP1 and MAP2. An established function of MAPs is their interaction with
tubulin and promotion of its assembly into microtubules and stabilization of the microtubule
network. The microtubule assembly promoting activity of tau, a phosphoprotein, is regulated by
its degree of phosphorylation. Normal adult human brain tau contains 2–3 moles phosphate/mole
of tau protein. Hyperphosphorylation of tau depresses this biological activity of tau. In Alzheimer
disease (AD) brain tau is ∼three to four-fold more hyperphosphorylated than the normal adult
brain tau and in this hyperphosphorylated state it is polymerized into paired helical filaments
([PHF) admixed with straight filaments (SF) forming neurofibrillary tangles. Tau is transiently
hyperphosphorylated during development and during anesthesia and hypothermia but not to the
same state as in AD brain. The abnormally hyperphosphorylated tau in AD brain is distinguished
from transiently hyperphosphorylated tau by its ability (1) to sequester normal tau, MAP1 and
MAP2 and disrupt microtubules, and (2) to self-assemble into PHF/SF. The cytosolic abnormally
hyperphosphorylated tau, because of oligomerization, unlike normal tau, is sedimentable and on
self-assembly into PHF/SF, loses its ability to sequester normal MAPs. Some of the tau in AD
brain is truncated which also promotes its self-assembly. Tau mutations found in frontotemporal
dementia apparently promote its abnormal hyperphosphorylation. Thus, the AD abnormally
hyperphosphorylated tau (1) is distinguishable from both normal and transiently
hyperphosphorylated taus, and (2) is inhibitory when in a cytosolic/oligomeric state but not when
it is self-assembled into PHF/SF. Inhibition of abnormal hyperphosphorylation of tau offers a
promising therapeutic target for AD and related tauopathies.
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Introduction
Tau is the major microtubule associated protein (MAP) of a normal mature neuron. The
other two neuronal MAPs are MAP1 and MAP2. Tau is found as six molecular isoforms in
human brain [1]. These isoforms are coded by a single gene on chromosome 17 and are
generated by alternative splicing of its pre-mRNA [2]. To date, the only established function
of tau, a phosphoprotein, is the promotion of the assembly of tubulin into microtubules and
stabilization of their structure [3].
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In Alzheimer disease (AD) and a family of related neurodegenerative diseases, called
tauopathies, tau protein is abnormally hyperphosphorylated and aggregated into bundles of
filaments [4]. In AD brain this tau pathology is seen as intraneuronal neurofibrillary tangles
of paired helical filaments (PHF) sometimes admixed with straight filaments (SF).
Aggregates of abnormally hyperphosphorylated filaments are also seen in dystrophic
neurites surrounding the β-amyloid plaque core, and in the neuropil as neuropil threads [5].
Neurofibrillary degeneration of abnormally hyperphosphorylated tau is apparently required
for the clinical expression of AD and related tauopathies [6-8]. Thus, understan ding the
etiopathogenesis of this pivotal and hallmark lesion of AD and related tauopathies is critical
to developing rational therapeutic treatments of these human CNS diseases. Studies on the
role of tau in neurodegeneration and therapeutic targets based on this pathology have been
the subject of several recent reviews by us and others [9-17]. This article discusses the
relationship between normal and pathological taus found in AD and related tauopathies.

Structure and Function of Normal Brain Tau
In human brain the alternative splicing of the tau pre-mRNA results in six molecular
isoforms of the protein [1]. These six tau isoforms differ in containing three (3R taus) or
four (4R taus) microtubule binding repeats (R) of 31–32 amino acids in the carboxy terminal
half and one (1N), two (2N), or zero (0N) amino terminal inserts of 29 amino acids each; the
extra repeat in 4R tau is the second repeat (R2) of 4R taus. This alternative splicing of tau
pre-mRNA results in the expression of three 3R taus (0N3R, 1N3R, and 2N3R) and three 4R
taus (0N4R, 1N4R, and 2N4R). The 2N4R tau is the largest size human brain tau with a total
of 441 amino acids (tau441) in length. The smallest size tau isoform, which lacks both the
two amino terminal inserts and the extra microtubule binding repeat (0N3R; tau352), is the
only form that is expressed in fetal human brain. Tau has little secondary structure; it is
mostly random coil with β structure in the second and third microtubule binding repeats.

Tau interacts with tubulin and promotes its assembly into microtubules and helps stabilize
their structure [3]. Like MAP1 and MAP2, tau is a phosphoprotein and its biological activity
is regulated by the degree of its phosphorylation [18-20]. Normal brain tau contains 2–3
moles of phosphate per mole of the protein [19], which appears to be optimal for its
interaction with tubulin and the promotion of microtubule assembly. In addition to
phosphorylation, the alternative splicing also affects the biological activity of tau. Both the
extra repeat (Repeat 2) in the 4R taus and the amino terminal inserts (N1 and N2) enhance
the binding of tau to tubulin, which makes 2N4R tau (tau441), and 0N3Rtau (tau352, the fetal
tau) the relatively most and the least effective in promoting microtubule assembly [21, 22].
All six isoforms of tau are highly hydrophilic and are, thus, soluble and heat stable.

In a normal mature neuron tubulin is present in over tenfold excess of tau. The neuronal
concentration of tau is ∼2 μM [23, 24] and it binds to microtubules at a Kd of ∼100 nM
[25], and thus practically all tau is likely to be microtubule bound in the cell. In cultured
cells overexpression of tau can cause microtubule bundling. However, neither in AD nor in
any related tauopathy such a situation has been reported.

Pathological Forms and States of Tau
Abnormal Hyperphosphorylation and Oligomerization of tau

Neurofibrillary degeneration of abnormally hyperphosphorylated tau not only occurs in AD
brain but is also seen in a family of related neurodegenerative diseases, called tauopathies,
such as fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17)
caused by tau mutations, Pick disease, corticobasal degeneration, dementia pugilistica, and
progressive supranuclear palsy. In every one of these tauopathies the neurofibrillary changes
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are made up of abnormally hyperphosphorylated tau and their occurrence in the neocortex is
associated with dementia. In frontotemporal dementia with Parkinsonism-linked to
chromosome 17 and tau pathology (FTDP-17-tau), several missense mutations in tau
cosegregate with the disease [26-28]. Four of these missense mutations, G272V, P301L,
V337M, and R406W, which have been most studied to date, make tau a preferable substrate
for abnormal hyperphosphorylation in vitro [21]. The neurofibrillary degeneration of the
Alzheimer type is primarily seen in human neurodegenerative disorders. To date, in aged
and in cognitively impaired animals the neurofibrillary degeneration of abnormally
hyperphosphorylated tau has been found only sparsely.

To date, not only in AD but also in every known human tauopathy, the tau pathology is
made up of the abnormally hyperphosphorylated protein. In AD brain all of the six tau
isoforms are hyperphosphorylated and aggregated into PHF [4, 29-33]. While
conformational changes [34-36] and truncation of tau [37-39] following its
hyperphosphorylation [40]have been reported in AD, the most established and the most
compelling cause of dysfunctional tau in AD and related tauopathies is the abnormal
hyperphosphorylation of this protein [4, 20, 31].

While in normal brain almost all tau is soluble and is recovered in 200,000 × g cytosol, from
AD brain this protein is recovered in three major states, i.e. soluble, oligomeric, and
fibrillized [19, 31, 41]. There is at least as much normal cytosolic tau in AD brain as in
normal aged brain but the level of total tau in the former is four to eight fold higher and this
increase is solely in the form of the abnormally hyperphosphorylated protein [24]. As much
as 40% of the tau from AD brain is non-fibrillized but oligomeric and sediments at 200,000
× g [19]. These tau oligomers isolated from AD brain, as 27,000 × g to 200,000 × g fraction,
are made up of both abnormally hyperphosphorylated and non-hyperphosphorylated taus,
and the two can be separated by phosphocellulose chromatography [19, 31]. Up until
recently [42] this oligomeric tau was referred to as cytosolic tau, amorphous tau, and
sedimentable cytosolic abnormally hyperphosphorylated tau [19, 20, 31, 41, 43-47]. The
abnormally hyperphosphorylated tau purified from the oligomers is three to four fold more
hyperphosphorylated as the non-hyperphosphorylated/normal tau [19].

Neurotoxic State of Tau
Two major known functions of tau are its ability to promote assembly and to maintain
structure of microtubules [3]. The tau polymerized into neurofibrillary tangles is apparently
inert and neither binds to tubulin nor promotes its assembly into microtubules [45, 48, 49].
As much as 40% of the abnormally hyperphosphorylated tau in AD brain is present in the
cytosol and not polymerized into paired helical filaments/neurofibrillary tangles [19, 31, 41].
The AD cytosolic abnormally hyperphosphorylated tau (AD P-tau) does not bind to tubulin
and promote microtubule assembly, but instead it inhibits assembly and disrupts
microtubules Fig. (1) [20, 50, 51]. This toxic property of the pathological tau involves the
sequestration of normal tau by the diseased protein [20, 44]. The AD P-tau also sequesters
the other two major neuronal microtubule associated proteins MAP1 A/B and MAP2 [43].
This toxic behavior of the AD P-tau appears to be solely due to its abnormal
hyperphosphorylation because dephosphorylation of diseased tau converts it into a normal-
like protein [20, 50-52].

The inhibitory activity of the non-fibrillized abnormally hyperphosphorylated tau has been
confirmed in yeast, drosophila, and in mouse models that express human brain tau. The
expression of the longest human brain tau (2N4Rtau) in yeast produces pathological
phosphoepitopes, assumes a pathological conformation, and forms aggregates. These
processes are modulated by yeast kinases Mds1 and Pho85, orthologues of GSK-3β and
cdk5 [53, 54]. In yeast tau aggregates more when it is more phosphorylated, the mobility in
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SDS-PAGE is slower with increased phosphorylation, and hyperphosphorylated tau isolated
from the stably transfected yeast is able to assemble into filaments, and is able to nucleate
the assembly of the normal non-phosphorylated tau. These yeast studies, like those carried
out previously using AD P-tau, suggest that the hyperphosphorylated tau works as a
nucleation factor that initiates and promotes the aggregation of tau [44, 55].

In wild-type human tau- and mutated human tau-transgenic drosophila, the accumulation of
the abnormally phosphorylated tau in the absence of its fibrillization into neurofibrillary
tangles leads to neurodegeneration [56]. In a P301L tau inducible transgenic mouse model,
cognitive improvement was observed when expression of human tau, which became
abnormally hyperphosphorylated, was suppressed although neurofibrillary tangles continued
to form, suggesting that the accumulation of the cytosolic abnormally hyperphosphorylated
tau, and not its aggregation, was apparently involved in behavioral impairment in these
animals [57]. Reduction of soluble Aβ and soluble abnormally hyperphosphorylated tau, but
not soluble Aβ alone, was found to ameliorate cognitive decline in 3×Tg mice that express
both plaque and tangle pathology [58] Furthermore, in vitro dephosphorylation of
neurofibrillary tangles disaggregates filaments and, as a result, the tau released behaves like
normal protein in promoting microtubule assembly [51]. Thus, two characteristics of AD
abnormally hyperphosphorylated tau are (1) that it sequesters normal MAPs and disrupts
microtubules and (2) that it self-assembles into PHF/SF.

In a recent study methylthioninium chloride (methylene blue dye) has been found to
disaggregate PHF in vitro, reduce the number of tau aggregates in tau transgenic mice, and
show significant inhibition of cognitive impairment in a PHASE II double blind clinical trial
in AD patients [59, 60]. Whether disaggregation of pathological aggregates of tau with
methylthioninium chloride results also in its dephosphorylation and removal remains to be
studied.

Transient and Reversible Hyperphosphorylation of Tau
Hyperphosphorylation of tau, though not to the same level as in AD, is not only associated
with the disease as in tauopathies, but is also employed by the neuron to down regulate its
activity transiently and reversibly where required Fig. (1). For instance, during development
the level of tubulin in the brain is at its highest, i.e., almost 33% of total cytosolic protein,
which is almost 1.5-fold the critical concentration of 4 mg/ml tubulin required for its
polymerization into microtubules [61]. Probably to avoid microtubule bundling, the fetal tau
is transiently hyperphosphorylated during development. However, the level of
hyperphosphorylation of tau in fetal brain is far less than that seen in AD brain. Similarly,
anesthesia and hypothermia induced by hibernation in animals induces transient
hyperphosphorylation of tau [62-65]. The molecular mechanism of the transient
hyperphosphorylation of tau observed during development is, at present, not understood.
However, during hypothermia the activity of protein phosphatase-2A (PP-2A), the major
brain phosphoseryl/phosphothreonyl protein phosphatase activity is transiently and
reversibly reduced and is believed to cause the hyperphosphorylation of tau [62, 63]. In AD
and Down syndrome, the decrease in brain PP-2A activity apparently involves different
molecular mechanisms, and occurs in a non-transient and irreversible manner [66-68]. It is
the non-reversible nature of the abnormal hyperphosphorylation of tau in AD, Down
syndrome, and related tauopathies which results in an involuntary slowing down of neuronal
activity and a consequent chronic progressive neurodegeneration and its clinical phenotype,
the dementia.
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Fibrillization of Abnormally Hyperphosphorylated Tau and Neurodegeneration
Tau has long stretches of positively or negatively charged regions that are not conducive for
intermolecular hydrophobic association [69]. The β-structure in tau is concentrated only in
repeats R2 and R3 which can self-assemble into filaments [70] and co-assemble with
heparin [71]. Both the amino terminal and the carboxy terminal flanking regions to the
microtubule binding repeats in normal tau appear to inhibit its self-aggregation into
filaments and on AD type abnormal hyperphosphorylation, i.e., the phosphorylation of the
amino terminal and the carboxy terminal flanking regions, this inhibition is eliminated,
resulting in the formation of tangles of PHF/SF [21, 46]. The co-assembly of tau with
polyanions such as heparin, heparin sulfate [72-75], tRNA [76], or polyglutamate [77]
appears to involve a mechanism different from what is seen in AD and in tauopathies. The
polyanion-induced assembly of tau is very slow and does not result either in the lateral
association of filaments into tangles nor the formation of any protofilaments seen in AD
PHF. Furthermore, unlike AD and related tauopathies and transgenic animal models, the in
vitro polyanions-induced assembly of tau into filaments is inhibited and not promoted by
phosphorylation [78].

Dephosphorylation of PHF/neurofibrillary tangles isolated from AD brain results in their
dissociation and disaggregation, and the dephosphorylated tau released behaves like normal
tau in promoting microtubule assembly in vitro [51]. Similarly, dephosphorylation of AD
cytosolic abnormally hyperphosphorylated tau with PP-2A inhibits its ability to self-
aggregate into PHF/SF, sequester normal tau, and inhibit microtubule assembly in vitro, and
rephosphorylation of the PP-2A-AD P-tau by several combinations of protein kinases
restores all of its above pathological properties [47, 52].

The abnormal hyperphosphorylation of tau makes it resistant to proteolysis by the calcium
activated neutral protease [51, 52] and turnover of hyperphosphorylated tau is several fold
slower than the normal tau [79]. Most likely it is because of this reason that the levels of tau
are several-fold increased in AD [23, 24]. Some increase in tau level in AD brain can also
result from the activation of p70 S6 kinase which upregulates the translation of tau [80, 81].
It is likely that to neutralize the ability of AD P-tau to sequester normal MAPs and cause
disassembly of microtubules, the affected neurons promote the self-assembly of the
abnormal tau into tangles of PHF. The fact that the tangle-bearing neurons seem to survive
many years [82] and that in AD brain the decrease in microtubule density was unrelated to
PHFs accumulation [83] is consistent with such a self-defense role of the formation of
tangles. Employing an inducible transgenic mouse model that expressed human four-repeat
tau with the P301L mutation, Santacruz and colleagues [57] found that the cognitive
deficiencies correlate with the appearance of soluble hyperphosphorylated tau. In this model
when tau expression was turned off, there was no clearance of the polymerized tau, soluble
phosphotau decreased, and there was improvement in cognition, suggesting that the
polymerized tau was not sufficient to cause cognitive decline or neuronal cell death.
Andorfer et al. [84] showed that in human tau transgenic mice, while there was widespread
neurodegeneration, the PHF-containing neurons, however, appeared “healthy” in terms of
nuclear morphology, suggesting that the polymerization of hyperphosphorylated tau into
fibrils was probably neuroprotective [84]. Thus, all these studies taken together demonstrate
the pivotal involvement of abnormal hyperphosphorylation in neurofibrillary degeneration
and the disruptive properties to the microtubule network of the cytosolic abnormally
hyperphosphorylated tau, whereas AD P-tau polymer remains inert Fig. (1).

Effect of Hyperphosphorylated Tau on Rough Endoplasmic Reticulum and Golgi
There is approximately as much tau in the somato-dendritic compartment as in the axon
[23]. In the somato-dendritic compartment tau is associated with rough endoplasmic
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reticulum and Golgi apparatus [19, 31, 85]. The abnormal hyperphosphorylation of tau and
its accumulation in the somato-dendritic compartment in AD might have been responsible
for the morphological alterations of the RER and the Golgi apparatus and the abnormal N-
glycosylation of tau in AD [86-88]. In AD brain abnormally hyperphosphorylated tau, in
addition to forming neurofibrillary tangles, is associated with granulovacuolar changes [4,
89-91]. Overexpression of tau, which results in its hyperphosphorylation, has been found to
induce fragmentation of Golgi both in neuronal cultures and in neurons in JNPL3 P301L tau
transgenic mice [85]. In P301S tau transgenic mice, which show abnormal
hyperphosphorylation of tau, a selective decrease in mitochondria and RER has been
observed [92]. The chronic accumulation of the hyperphosphorylated tau as a misfolded
protein in the ER could cause neurodegeneration due to protracted ER stress [93].
Hyperphosphorylation of tau might also be involved in neurodegeneration through
alterations of RER and Golgi and a consequent reduction in RER and mitochondria.

Truncation of Tau
In addition to abnormal hyperphosphorylation, conformational changes and cleavage of tau
have also been implicated in the pathogenesis of AD [34, 37, 38, 94]. The
hyperphosphorylation of tau has been found to precede both conformational changes and
cleavage of this protein [40]. Truncation of tau might make it a more favorable substrate for
abnormal hyperphosphorylation. Transgenic rats expressing human tau truncated both N-
and C-terminally tau151–391 show a marked neurofibrillary degeneration of abnormally
hyperphosphorylated tau [95]. Hyperphosphorylation is known to produce conformational
changes in a protein. The late appearance and low abundance of cleaved tau in
neurofibrillary tangles probably represent little more than the unsuccessful attempts of the
affected neuron to turn over the pathological aggregates.

Proteolysis of Abnormally Hyperphosphorylated Tau
In situ hybridization studies have revealed no significant change in the expression of tau
mRNA in AD brain [96]. Thus, the increase in tau level observed in AD brain is probably
mostly due to a decrease in its turnover caused by the hyperphosphorylation [51, 79, 97].
The AD abnormal hyperphosphorylation of tau (AD P-tau) makes tau resistant to both
calcium activated neutral proteases, calpains, and its degradation by the ubiquitin-
proteasome pathway. Unlike normal tau, the AD hyperphosphorylated tau is resistant to
proteolysis by calpains [51].

Subsequent to its hyperphosphorylation in AD neurofibrillary tangles, tau becomes
polyubiquitinated [19, 41, 98-105]. However, the ubiquitination of the abnormally hyper-
phosphorylated tau in neurofibrillary tangles apparently does not lead to its clearance by
digestion in the proteasome. This could partly be due to a faster rate of accumulation of the
ubiquitinated phosphotau than the ability of the proteasomes of the degenerating neurons to
digest it. Inhibition of the proteasome by its inhibitor, lactacystin, increases accumulation of
both normal and hyperphosphorylated taus in rats [106]. Inhibition of the proteasome with
its inhibitor, MG-132, in cultured oligodendrocytes causes ubiquitination and aggregation of
tau [107]. An in vivo cause of impaired proteasome might be the occurrence, in the tangle-
bearing neurons, of the one frame-shift mutation of ubiquitin (UBB+1) which inhibits the
proteasome activity [108]. Another cause of the proteasome inhibition could be the
increased level of BAG-1, an Hsp70/Hsc70 binding partner in the degenerating neurons.
BAG-1 has been shown to inhibit degradation of tau by the 20S proteasome without
affecting the ubiquitination of tau [109].

Overexpression of Hsp70 which interacts with the heat-shock cognate (Hsc) 70-interacting
protein (CHIP), a ubiquitin ligase, causes a reduction of tau in transgenic mice [110]. In AD
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brain levels of both CHIP and Hsp70 are increased and the level of the former is inversely
proportional to that of sarkosyl-insoluble tau [111]. The increase in CHIP might be
protective in the early stages of AD. Interestingly, chronic administration of lithium, a
known GSK-3β inhibitor, has been reported to decrease the tau lesions by promoting their
ubiquitination in a tau transgenic mouse model [112]. Protein kinase B, Akt, which can
hyperphosphorylate tau both directly and indirectly through GSK-3β and PAR1/MARK2,
has been reported to prevent CHIP-induced tau ubiquitination and its subsequent proteolysis
either by regulating Hsp90/CHIP complex directly or by competing as a client protein with
tau for binding [113].

Tau Mutations Found in Frontotemporal Dementia Promote Abnormal
Hyperphosphorylation

Tau mutations, which cause FTDP-17, result either in increase in 4-R:3-R tau ratio or in
missense mutations in the protein. Both 4-repeat tau and the mutated protein are more easily
abnormally hyperphosphorylated than the normal wild-type protein [21, 114]. Four of these
missense mutations, G272V, P301L, V337M, and R406W, which have been most
extensively studied to date, make tau a more favorable substrate than the wild-type protein
for abnormal hyperphosphorylation by brain protein kinases in vitro [21]. These mutated
taus become hyperphosphorylated at a faster rate and self-aggregate into filaments more
readily, i.e., at a phosphorylation stoichiometry of 4–6 as compared to ten or more in the
case of the wild-type protein. These faster kinetics of the hyperphosphorylation of the
mutated tau might explain a relatively early onset, severity, and autosomal dominance of the
disease in the inherited FTDP-17 cases.

The six human brain tau isoforms are differentially sequestered by AD P-tau in vitro [22].
The association of AD P-tau to normal human brain recombinant taus is
2N4Rtau>1N4Rtau>0N4Rtau and 2N3Rtau>1N3Rtau>0N-3Rtau, and 2N4Rtau>2N3Rtau.
AD P-tau also inhibits the assembly and disrupts microtubules pre-assembled with each tau
isoform with an efficiency which corresponds directly to the degree of interaction with these
isoforms. In vitro hyperphosphorylation of recombinant tau converts it into an AD P-tau-like
state in sequestering normal tau and inhibiting microtubule assembly. The preferential
sequestration of 4R taus and taus with amino terminal inserts explains both (i) why fetal tau
(ON3Rtau) is protected from Alzheimer neurofibrillary pathology and (ii) why intronic
mutations seen in certain inherited cases of FTDP-17, which result in alternate splicing of
tau mRNA and consequently an increase in 4R:3R ratio, lead to neurofibrillary degeneration
and the disease. In vitro, at a phosphorylation stoichiometry of 4 and above, the
hyperphosphorylated tau sequesters normal tau, whereas it requires a stoichiometry of 10 or
more to self-aggregate into filaments [21, 45, 50]. On aggregation into filaments, tau loses
its ability to sequester normal tau. Furthermore, AD P-tau, but not PHF, inhibits
regeneration of microtubule network in detergent-extracted PC12 cells, indicating that the
formation of filaments might be initiated as a self-defense response by the affected neurons
[22, 45]. Opposite to FTDP-17, in Pick disease and in Down syndrome (DS) the tau 3R:4R
ratio is very much increased [115-117]. Since the activity of 3R tau is lesser than of 4R tau
in binding to tubulin/microtubules, the unbound 3R tau becomes abnormally
hyperphosphorylated because free tau is a more favorable substrate than tau on microtubules
for phosphorylation [118].

Conclusion
In conclusion, the abnormal hyperphosphorylation of tau seen in AD is different from the
normal and from the transient hyperphosphorylation of this protein that occurs during
development, anesthesia, or hypothermia. The cytosolic AD abnormally
hyperphosphorylated tau (AD P-tau) is sedimentable/oligomeric, and probably causes
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neurodegeneration by sequestering normal MAPs and disrupting microtubule network. Tau
mutations found in frontotemporal dementia may cause neurodegeneration through
promoting abnormal hyperphosphorylation of tau. AD P-tau self-assembles into PHF/SF,
forming neurofibrillary tangles. Tau truncation found in AD brain promotes its self-
assembly into PHF/SF. Unlike AD P-tau, PHF/SF neither sequester normal MAPs nor
disrupt microtubules. Thus, inhibition of abnormal hyperphosphorylation of tau offers a
promising therapeutic target for AD and related tauopathies.
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Fig. (1). A schematic representation of various pathological states of tau originating from normal
brain tau and associated loss of normal and gain of toxic functions
Normal brain tau, which has a stoichiometry of 2–3 moles phosphate/mole of the protein,
stimulates assembly of tubulin and stabilizes the structure of microtubules produced. During
development, anesthesia as well as hypothermia, such as during hibernation, tau is
transiently hyperphosphorylated. During development the level of brain tubulin is >4 mg/ml,
the critical concentration required for its self-assembly into microtubules and the role of tau
for this function is less critical. The hyperphosphorylation of tau during anesthesia and
hypothermia, however, leads to a decrease in microtubule network and the associated
functions.
In AD brain a phosphorylation/dephosphorylation imbalance caused apparently by a
decrease in protein phosphatase-2A activity leads to abnormal hyperphosphorylation of tau.
This AD P-tau on one hand sequesters normal MAPs from microtubules and causes
inhibition and disruption of microtubules. On the other hand, while the binding of AD P-tau
to MAP1 or MAP2 results in amorphous aggregates, the binding to normal tau forms
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oligomers. Unlike normal tau, which is highly soluble, the tau oligomers formed with AD P-
tau can be sedimented at 200,000 × g and self-assemble into PHF/SF in the form of
neurofibrillary tangles.
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