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Given the high genetic heterogeneity of inherited retinal degenerations (IRDs), a wide applicable treatment
would be desirable to halt/slow progressive photoreceptor (PR) cell loss in a mutation-independent
manner. In addition to its erythropoietic activity, erythropoietin (EPO) presents neurotrophic characteristics.
We have previously shown that adeno-associated viral (AAV) vector-mediated systemic EPO delivery pro-
tects from PR degeneration. However, this is associated with an undesired hematocrit increase that could
contribute to PR protection. Non-erythropoietic EPO derivatives (EPO-D) are available which allow us to dis-
sect erythropoiesis’s role in PR preservation and may be more versatile and safe than EPO as anti-apoptotic
agents. We delivered in animal models of light-induced or genetic retinal degeneration either intramuscularly
or subretinally AAV vectors encoding EPO or one of the three selected EPO-D: the mutant S100E, the helix A-
and B-derived EPO-mimetic peptides. We observed that (i) systemic expression of S100E induces a signifi-
cantly lower hematocrit increase than EPO and provides similar protection from PR degeneration, and (ii)
intraocular expression of EPO-D protects PR from degeneration in the absence of significant hematocrit
increase. On the basis of this, we conclude that erythropoiesis is not required for EPO-mediated PR protec-
tion. However, the lower efficacy observed when EPO or S100E is expressed intraocularly rather than sys-
temically suggests that hormone systemic effects contribute to PR protection. Unlike S100E, EPO-mimetic
peptides preserve PR only when given locally, suggesting that different EPO-D have a different potency or
mode of action. In conclusion, our data show that subretinal delivery of AAV vectors encoding EPO-D pro-
tects from light-induced and genetic PR degeneration.

INTRODUCTION

Inherited retinal degenerations (IRDs) are common untreatable
conditions leading to blindness, which include retinitis pig-
mentosa (RP) (1), Leber congenital amaurosis (LCA) (2)
and cone–rod dystrophies (3). IRDs are mostly inherited as
Mendelian traits and characterized by high genetic heterogen-
eity. Mutations in 208 genes have been so far identified in
patients with IRDs (RetNet: www.sph.uth.tmc.edu/retnet/).
Independently of the primary causative gene, IRDs share

a common degenerative process in which photoreceptor
(PR: rods and cones) apoptosis represents the final outcome
that leads to vision loss (4,5). However, the specific molecular
mechanisms by which different genetic defects result in PR
apoptosis are not thoroughly characterized. The delivery of
genes or compounds that are able to either inhibit/slow PR
apoptosis or sustain PR function and/or survival could be
used as mutation-independent treatments for IRDs (6–10).

Erythropoietin (EPO), the cytokine that stimulates prolifer-
ation and differentiation of erythroid progenitor cells has many
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extra-erythropoietic functions, such as neuroprotection, anti-
inflammation and regeneration (11), and it has been reported
to protect neurons from cell death associated with acute or
chronic injuries (12,13). Erythropoiesis is promoted by EPO
binding to the homodimeric EPO receptor (EPOR2) (14),
whereas non-erythropoietic functions have been shown to
be mediated by EPO interaction with either EPOR2 (15)
or other poorly characterized EPOR complexes (16–20). So
far, the beta common receptor (bCR or CD131) has been
reported to interact with EPOR (21–24) and to mediate EPO-
protective functions in some tissues (25). However, the role of
the bCR in the EPO-mediated protection is still controversial
and low/no bCR expression has been reported in most neurons
of the central nervous system (26,27), thus suggesting the exist-
ence of other yet unidentified tissue-protective receptor com-
plexes. EPOR (28–31) and bCR (30) have been reported to be
expressed in the retina where they may mediate EPO-protective
functions. Notably, systemically delivered EPO, able to cross the
blood–retina barrier (28,32), protects the retina from light
damage or genetic degeneration (28,33), ischemic injury
(29,34,35) and glaucoma (36); whereas intraocularly delivered
EPO has been shown to protect retinal ganglion cells (RGC)
from axotomy-induced degeneration (37) and experimental glau-
coma (38) and to reduce neuronal and vascular cells apoptosis in
models of retinal degeneration (39) and diabetes (40).

EPO delivery through viral vectors allows sustained and/or
regulatable expression (41,42) that avoids repeated systemic or
intraocular administrations that would be required to treat
chronic and progressive diseases like IRDs. We have pre-
viously shown that systemic adeno-associated viral (AAV)
vector-mediated delivery of rhesus EPO protects the retina
of light-damaged rats and rds mice (33). However, systemic
EPO delivery is accompanied by various side effects such as
a significant hematocrit increase (12,33), increased thrombotic
risk (43) and platelet hyper-reactivity (44,45). Recently,
several non-erythropoietic EPO derivatives (EPO-D) have
been engineered to retain tissue-protective functions while
avoiding EPO-mediated erythropoiesis (46–49) as well as
the other hormone side effects (45). Three of these derivatives
appear particularly promising: the EPO mutant S100E
(S100E) (47), the helix A- (49–52) and B-derived peptides
(48,51,53) defined as EPO-mimetic peptides. The S100E
protein shows drastically reduced affinity for the EPOR2

(47) and protects against experimental focal cerebral ischemia
in vivo (54). The EPO-mimetic peptides derived from helices
A and B protect from ischemic stroke, diabetes-induced retinal
edema and peripheral nerve trauma (48,49,51). EPO-mimetic
peptides do not stimulate erythropoiesis; however, they have
been hypothesized to bind EPOR (48,49,51), thus corroborat-
ing the hypothesis that EPO has separate domains that mediate
neurotrophic and/or erythropoietic functions (48).

In the present work, we sought to (i) establish whether
delivery of non-erythropoietic EPO-D may represent a
mutation-independent treatment for IRDs, safer than EPO
since it lacks EPO’s systemic side effects, and (ii) shed light
on the contribution of the different EPO functions (erythro-
poietic versus non-erythropoietic) to retinal protection. To
this end, we compared the efficacy of systemic versus subret-
inal (SR) AAV-mediated delivery of either EPO or the three
selected non-erythropoietic EPO-D in the following models

of PR degeneration. These include (i) the rat and murine
models of light-induced retinal degeneration (55) and (ii) the
rds (retinal degeneration slow) (56) and the Aipl1 (Aryl hydro-
carbon receptor interacting protein like-1)2/2 (57) mice,
which recapitulate RP and LCA, respectively.

RESULTS

EPOR and bCR are expressed in the retina

We initially set up to analyze the retinal expression profile of
known EPORs to determine (i) whether a local effect can be
exerted following SR AAV-mediated delivery of EPO and
EPO-D, and (ii) which are EPO and EPO-D target cells in
the retina. To date, EPO and EPO-D functions have been
shown to be mediated by two distinct receptor complexes
composed of EPOR and bCR (15,20,25), both reported to be
expressed in the retina (28,30,31). We defined EPOR and
bCR expression pattern by in situ hybridization analysis
(ISH) on retinal sections from 4-week-old CBA mice. ISH
showed that both EPOR and bCR are expressed in RGC, in
the inner nuclear layer and to a lower extent in PR (Fig. 1).
Notably, the major expression of EPORs in ganglion cells
and interneurons (Fig. 1) is consistent with the evidence that
most neurotrophic factors (such as the brain-derived neuro-
trophic factor, the ciliary neurotrophic factor, the basic fibro-
blast growth factor 2 and the glial cell-derived neurotrophic
factor) promote PR survival acting through other retinal cell
types and in particular through interneurons (58,59).

Assessment of hematocrit levels, functional and
morphological PR preservation following EPO and EPO-D
gene delivery in the rat and murine models of light-induced
retinal degeneration

To perform gene transfer, we generated AAV1-based vectors
(AAV2/1), which result in efficient outer retina transduction and
intraocular secretion of therapeutic products (60–62), that
encode EPO or the three selected EPO-D: the mutant S100E
(S100E), the EPO-mimetic peptides derived from helix B
(referred to as NP1, 28 mer) and helix A (referred to as NP2, 18
mer) (Fig. 2). The proper expression of EPO and EPO-D from
our constructs was tested in vitro prior to the generation of
AAV vectors and in vivo use (Supplementary Material, Fig. S1).

Light damage of albino rodents is a useful model of induced
retinal degeneration to test the effect of trophic/antiapoptotic
molecules (55). We injected 4-week-old albino Lewis rats
either intramuscularly or subretinally with AAV2/1 vectors
encoding EPO, S100E, and NP1 plus NP2 (NP1–NP2). Subret-
inal injections of AAV2/1 vectors encoding the enhanced green
fluorescence protein (AAV2/1-EGFP) were used as controls of
the SR treatments. Uninjected rats served as controls for the
animals that received AAV systemically. Four weeks following
vector delivery, we measured EPO and S100E protein levels by
ELISA assay (Table 1) and found them to be significantly
increased in the sera of rats injected systemically and in the
anterior chamber fluid (ACF) of rats injected subretinally com-
pared with controls (Table 1). In addition, detectable levels
of both proteins were measured in the ACF of rats injected
systemically, confirming EPO and S100E ability to cross the
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blood–retina barrier (Table 1). We could not use the ELISA to
measure NP1 and NP2 levels as the commercially available
anti-EPO antibodies do not bind these two short peptides.
Lewis rats that were injected systemically with vectors encoding
EPO showed a significant hematocrit increase compared with
controls (Table 1). Interestingly, rats injected systemically
with vectors encoding S100E showed a slight increase in hem-
atocrit, indicating that the S100E derivative has significantly
lower erythropoietic activity than EPO. A modest, albeit signifi-
cant, hematocrit increase was also observed in rats injected sub-
retinally with vectors encoding EPO, probably due to leakage of
trace amounts of hormone from the eye into the circulation
(Table 1). Subretinal delivery of vectors encoding S100E as
well as systemic or SR administration of vectors encoding
NP1–NP2 did not result in hematocrit variations (Table 1), indi-
cating that the combined delivery of these two EPO-mimetic
peptides is not erythropoietic in vivo.

Electroretinographic analyses (ERG) were used to assess
retinal function. The B-wave amplitude originates from
bipolar cells that are post-synaptic to PR and reflects the
global retinal function, whereas the A-wave represents PR func-
tion (63). Retinal function is not altered by intraocular EPO nor
by EPO-D overexpression; ERG recorded 4 weeks following
SR AAV injection and before light damage are similar to
those of contralateral eyes injected with AAV2/1-EGFP (data
not shown). Systemic delivery of vectors encoding either EPO
or S100E but not of those encoding NP1 and NP2 in combi-
nation significantly preserved retinal function following light
damage (Fig. 3A; Supplementary Material, Fig. S2). Systemic
EPO overexpression, associated with a high hematocrit increase,
resulted in B- and A-wave amplitudes similar to those obtained
following systemic S100E overexpression (Fig. 3A; Supplemen-
tary Material, Fig. S2), which was associated with a minimal
hematocrit variation (Table 1). Notably, a significant preser-
vation of both B- and A-wave amplitudes was observed follow-
ing SR injection of vectors encoding either EPO or S100E (but
not NP1–NP2) when compared with EGFP-injected contralat-
eral eyes (Fig. 3A; Supplementary Material, Fig. S2). Although
this protection was lower than when systemic administration of
vectors was used (Fig. 3A), the PR-protective effect observed
following SR administration of S100E suggested that EPO-

mediated neuroprotection can be exerted independently of ery-
thropoiesis. However, since neuroprotection is more robust
after systemic than intraocular EPO or S100E expression, we
hypothesize that other systemic effects of the hormone may con-
tribute to PR preservation (Fig. 3A).

To further confirm the neuroprotection observed in the func-
tional analysis, we evaluated PR survival counting the rows of
nuclei remaining in the outer nuclear layer (ONL) of the retina
in the various treated groups (Figs 3B and 4). Nine-week-old
Lewis rats kept under physiological 12 h light–dark cycle
present about 10+ 2 rows of PR nuclei, whereas age-matched
light-damaged rats progressively lose PR due to apoptosis.
Treated rats showed significant morphological PR preser-
vation, compared with controls (Figs 3B and 4). Consistent
with the functional preservation, increased PR survival is
associated with either a high or a low hematocrit increase (sys-
temic administration of vectors encoding EPO, or S100E; SR
administration of vectors encoding EPO). In addition, signifi-
cant protection is obtained independently of increased erythro-
poiesis following SR delivery of vectors encoding either
S100E or NP1–NP2 (Figs 3B and 4).

Since different levels of PR protection from light damage by
the same neurotrophic factors have been reported in albino rats
versus mice (6), we tested the protective effect of AAV-
mediated SR delivery of EPO and EPO-D in 4-week-old
BALB/c mice subjected to light damage. Differently from
what we observed in the rat model, significant protection of
PR function from light damage is achieved following SR
delivery of EPO but not EPO-D in the presence of increased
hematocrits (Supplementary Material, Table S2). This could
be explained by the lower levels of S100E than EPO achieved
following SR AAV delivery in albino mice. Indeed, the EPO
doses required to obtain neuroprotection are higher than
those required for erythropoiesis (64).

Assessment of hematocrit levels and PR survival
following EPO and EPO-D gene transfer to the retina
of rds and Aipl12/2 mice

We then tested whether EPO and EPO-D gene delivery pro-
tected from IRD. The rds (also known as Prph2rd2/rd2)

Figure 1. EPOR and bCR expression pattern in the adult murine retina. In situ hybridization on retinal cross-sections from 1-month-old CBA mouse; upper
panel: pictures at 10× magnification (A–C); lower panel: pictures at 40× magnification (D–F). EPOR and bCR sense control probes (A, D). EPOR antisense
probe (B, E). bCR antisense probe (C, F). ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. The blue/violet staining shows that the
corresponding transcript is expressed in various retinal layers.
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mouse is homozygous for a null mutation in the peripherin 2
gene, which encodes for a PR structural protein, that leads to
failure of outer segment disc formation, negligible retinal
function and progressive PR loss (65–67). The Aipl1 knock-
out mouse (Aipl12/2) exhibits absent retinal function and a
fast degeneration of both rods and cones due to the destabili-
zation of PR phosphodiesterases that are enzymes essential for
PR survival and function (57,68,69). rds and Aipl12/2 mice
were injected systemically or subretinally with AAV vectors
during the first post-natal week and were analyzed at post-
natal day (P) 90 and 21, respectively (as described in Materials
and Methods) based on the different timing of PR loss in
each model (57,65). EPO and S100E were detected in the
sera and ocular fluids of rds at P90 and in the sera of
Aipl12/2 at P21, confirming efficient AAV-mediated trans-
duction in the various experimental groups and that both
EPO and S100E cross the blood–retina barrier from the circu-
lation (Table 1). ACF collection is not feasible in Aipl12/2

mice at P21 due to the small eye size. Hematocrits are signifi-
cantly increased in mice injected with vectors encoding EPO
(either systemically or subretinally) and in rds mice injected
systemically with vectors encoding S100E (Table 1). The
lower hematocrit levels observed following systemic S100E
delivery compared with EPO confirms the low-erythropoietic
activity of S100E in vivo (Table 1). The hematocrit increase
we observed in animals receiving SR injections of vectors
encoding EPO is due to EPO leakage into the circulation as
confirmed by the EPO levels measured in the sera of a
subset of mice (Table 1). No significant hematocrit increase
was measured in mice injected either systemically or subretin-
ally with AAV encoding EPO-mimetic peptides NP1 and NP2
or subretinally with vectors expressing S100E (Table 1).

rds mice administered with AAV that encodes either EPO or
its derivatives showed a significantly higher number of PR rows
at P90 than controls, with the exception of those treated systemi-
cally with vectors encoding NP1 and NP2 (Figs 4 and 5A). As
observed in the light-damage study, significant higher levels
of PR survival were observed following systemic rather than
intraocular delivery of either EPO or S100E in the presence of

hematocrit increase, confirming that the systemic activities of
the hormone in addition to its local functions provide the most
robust retinal rescue (Figs 4 and 5A). In addition, we observed
that EPO-D sustained PR survival in rds mice following
intraocular delivery of vectors and that although at lower
levels than after systemic administration, this effect is
erythropoiesis-independent (Figs 4 and 5A).

Finally, no amelioration of retinal morphology was observed
in Aipl12/2 mice treated at P7–8 independently of the transgene
used and of the AAV administration route (data not shown). Sig-
nificant PR preservation was instead achieved treating 4-day-old
Aipl12/2 mice subretinally but not systemically with AAV
vectors encoding either EPO or EPO-D (Figs 4 and 5B). The dis-
crete Aipl12/2 PR protection achieved when gene delivery is
performed at P4 rather than at P7–8 suggests that the extremely
fast and severe Aipl12/2 degenerative process requires the
early- and fast-onset expression of neurotrophic genes which
is presumably obtained more efficiently after retinal than mus-
cular transduction. Indeed, the lower hematocrit increase
measured in Aipl12/2 mice at P21 than in rds mice at P90 and
in Lewis rats at P65 following intramuscular (IM) AAV2/
1-CMV-EPO administration (Table 1) suggests that systemic
EPO did not reach yet its plateau biological effect during the
crucial phases of PR degeneration (i.e. around P12 in
Aipl12/2 mice).

DISCUSSION

EPO is a well-known therapeutic protein widely used in the
treatment of anemia (70,71). Over the past decade, several
studies have shown that in addition to its role in the inhibition
of erythrocyte apoptosis and stimulation of their differen-
tiation, EPO is also a cytoprotective molecule and is produced
in response to injuries or metabolic stress in several tissues,
including the retina (28,34,72). In addition, EPO is able
to protect retinal neurons following exogenous delivery
(29,34–40). We have previously shown that systemic but
not intraocular AAV-mediated rhesus EPO delivery provides
functional and morphological PR protection from degener-
ation (33). Ours and other studies that used EPO and resulted
in hematocrit increase (28) raised the important issue to
determine whether EPO erythropoietic activity or EPO
non-erythropoietic systemic effects (i.e. production of second-
ary systemic effects and/or intermediates acting at the retinal
level) are required for retinal protection. The availability of
EPO-D, which are EPO analogs, lacking erythropoietic
activity, as well as of novel tools for improved retinal gene
transfer, allowed us to address these important questions.
Indeed, the PR protection observed after systemic delivery
of the low-erythropoietic S100E in three different models of
retinal degeneration suggests that EPO erythropoietic activity
is not required to preserve PR from degeneration. This is
further confirmed by the PR protection achieved following
intraocular EPO-D delivery in the absence of any hematocrit
increase. However, the highest levels of retinal protection
were still observed following systemic delivery of EPO or
S100E. Although the contribution of erythropoiesis to neuro-
protection in the animals treated with vectors systemically
cannot be completely ruled out based on a minimal hematocrit

Figure 2. Schematic representation of the expression cassettes containing EPO
and EPO-D. Each expression construct has been cloned between the
AAV2-inverted terminal repeats using the pAAV2.1 plasmid for AAV2/1
vector production. EPO, S100E, NP1 and NP2 CDSs are all of murine
origin. The amino acidic region relative to the murine EPO protein is
shown. CMV, cytomegalovirus promoter; EPO, erythropoietin; EPO SP,
EPO signal peptide; polyA, polyadenilation signal sequence; S100E, EPO car-
rying the S to E mutation at amino acidic position 100 of the mature EPO (cor-
responding to amino acidic position 126 from the ATG start codon).
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increase observed in the animals expressing S100E, the fol-
lowing mechanisms may be responsible for the superior
effect of systemic versus intraocular vector administrations:
(i) non-erythropoietic systemic functions of the hormones
that contribute to retinal rescue enhancing the protective
effect (i.e. activity on endothelial cells) (30,73,74); (ii) tissue-
specific secondary modifications of the proteins following
transduction of the muscle or retina. It is known that different
EPO isoforms are produced by different tissues/cell types
(75,76); thus, it is possible that different EPO isoforms have
different biological activities (75,76); (iii) an inverse relation
between the hormones efficacy and their concentrations with
the highest efficacy obtained at the lowest intraocular concen-
trations. This has been previously observed in models of RGC
and neuronal degeneration (17,77–79). Thus, although we
show that the EPO and S100E doses we achieved using the
constitutive cytomegalovirus (CMV) promoter are neuropro-
tective, the use of a regulatable gene expression system
may be in the future required to define the hormone optimal
therapeutic range.

Notably, we observe that EPO and EPO-D can provide PR
protection following SR AAV-mediated delivery and that the
protective effect mediated by EPO-D is achieved in the
absence of any significant hematocrit increase, thus proving
that a direct, local protective effect from light-induced
degeneration is exerted. In addition, we observed that
neither EPO nor EPO-D overexpression in the rat retina has
detrimental effects on PR electrical activity. Interestingly,
EPO and EPO-D neurotrophic effect seems less robust
in albino mice (BALB/c) than in rats. This interspecies differ-
ence in PR protection from light damage has already been
reported for several other neuroprotective molecules (6).

In the previous work, we did not achieve significant PR
rescue following intraocular AAV-mediated delivery of
EPO. Several crucial points could account for the intraocular
protection we observe here: (i) the serotype: in this study,
we switched from AAV2/2 to the more potent AAV2/1
which preferentially transduces the retinal pigment epithelium
(RPE) and Muller cells (60–62) and may have provided a

source of hormone more similar to the endogenous one,
considering that in the retina EPO is mainly secreted by
ganglion cells, interneurons and, in particular, Muller cells
(29,31,60,80); (ii) differences in the transgene species used:
in the previous study, we used the rhesus EPO protein that
shares 80–82% of amino acidic identity with the murine and
rat proteins, respectively, whereas the murine EPO used here
shares 94% of amino acidic identity and a similar glycosyla-
tion profile to the rat protein (81). Thus, the amino acidic
sequence together with secondary modifications of murine
EPO could have contributed to maximize endogenous receptor
binding and biological activity and in turn to increase the pro-
tective effect observed in this study following intraocular
administration of vectors.

In addition to the light-induced model of PR degeneration,
we tested AAV-mediated delivery of EPO and the selected
derivatives in models of IRDs due to mutations in genes essen-
tial for PR structure and function. In these models, in the
absence of gene replacement, preservation of the PR structure
but not of cellular function is expected from a neurotrophic
treatment as the one we tested here. We observed PR survival
up to 3 months, the last time point of the analysis in rds mice
following AAV-mediated systemic or intraocular delivery of
either EPO or the selected EPO-D. Recently, systemic delivery
of the R103E and S100E EPO-D has been reported to increase
ONL thickness in rds mice (82); however, these EPO-D (82)
were obtained by mutagenesis of EPO amino acidic residues
numbered after the first methionine (82), whereas Leist et al.
(47,83,84) and us mutagenized residues numbered after the
first amino acid of the mature hormone that lacks the signal
peptide. Indeed, the S100E generated by Sullivan et al. (82)
is erythropoietic as EPO.

Importantly, we report for the first time increased PR survi-
val in Aipl12/2 mice, achieved following early SR delivery of
AAV-EPO, -S100E or -NP1–NP2. Interestingly and differ-
ently from what is observed in light-damaged rats and rds
mice, no significant Aipl12/2 PR protection was observed fol-
lowing systemic administration of either vector. This could be
explained by the later onset of AAV-mediated gene expression

Table 1. Serum and intraocular EPO and S100E protein and hematocrit levels in the light-damaged rats and murine models of IRDs

Serum levels (pg/ml) ACF levels (pg/ml) Hct (%)

EPO S100E EPO S100E EPO S100E NP1–NP2
LD CTRL U (20) U (10) 47.2+1.3 (24)
LD IM 90+16 (10) 261+24 (10) 12+6 (10) 17+2 (10) 71.5+5.7 (10)∗ 52.3+5.2 (10)∗ 48.5+5.6 (10)
LD SR 4+2 (4/10) 6+2 (3/10) 2400+750 (9) 4550+1370 (8) 57.8+7.9 (10)∗ 49.8+3.7 (10) 45.4+5.6 (10)

rds CTRL 45+5 (4) U (24) 50.7+1.6 (28)
rds IM 492+26 (3) 507+45 (11) 19+2 (3) 22+4 (3) 88.8+4.2 (3)∗ 60+8 (12)∗ 44.4+5.6 (4)
rds SR 49+26 (3) 73+15 (6) 2375+165 (3) 2900+1200 (6) 52.5+13 (5)∗ 50.5+2.8 (3) 50+2.3 (3)

Aipl12/2 CTRL 15.3+2.5 (7) \ 44.3+3.3 (7)
Aipl12/2 IM 443+59 (3) 532+79 (3) \ \ 53.7+4.4 (3)∗ 47.7+8 (3) 42.1+5.8 (4)
Aipl12/2 SR 53+20 (3) 94+30 (3) \ \ 49.3+6.8 (3)∗ 44.5+2.3 (3) 43.7+5 (4)

LD, light-damaged Lewis rats; CTRL, uninjected animals; ACF, anterior chamber fluid; Hct, hematocrit; \ denotes not measured (due to the small eye size); U,
levels below the ELISA sensitivity which is 0.65 pg/ml for murine EPO and 0.33 pg/ml for rat EPO; SR, subretinal injection; IM, intramuscular injection. NP1 and
NP2 peptide levels cannot be measured by ELISA assay. Measurements were performed at P65 for LD rats, at P90 for rds mice and at P21 for Aipl12/2 mice.
Values are means+SE for the ELISA assay, means+SD for hematocrits.
∗Values significantly increased (P , 0.05) compared with controls.
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from the muscle than from the retina which reaches a plateau
once Aipl12/2 PR degeneration is irreversibly triggered
(60,85). However, the protection provided by SR injections
supports further testing of EPO gene supply with Aipl1 gene
replacement to investigate whether this results in stronger
PR protection than that so far reported with gene replacement
alone (86,87).

Unexpectedly, in all different animal models, we observed
that the combined gene delivery of EPO-mimetic peptides
(NP1–NP2) increases PR survival following SR but not IM
delivery. One possible explanation for this is that NP1 and
NP2 expression, cleavage and secretion from the retina
differ from the muscle. However, this is unlikely since: (i)
our data suggest that both muscular and retinal cells efficiently
recognize and process the EPO signal peptide which is the one
used in our NP1 and NP2 constructs; (ii) short peptides like
somatostatin and other peptidic neurotransmitters are physio-
logically secreted by neurons (Neuropeptide Database: www.
neuropeptides.nl). Alternatively, the lack of retinal protection
following systemic administration of vectors expressing
NP1–NP2 may be due to the peptides short plasma half-life
(48,64). Similar to what is observed in the chronic, neurode-
generative mouse model of Huntington’s disease (88), it is
possible that retinal degeneration with ongoing continuous
pro-apoptotic stimuli cannot be rescued using systemically
administered compounds with such a short plasma half-life,
despite their sustained AAV-mediated expression. Unfortu-
nately, although we demonstrate the expression of NP1 and
NP2 at the mRNA level, we could not test the peptides
expression and secretion due to their small size and lack of
appropriate antibodies, thus we cannot conclude whether the
lack of efficacy of NP1 and NP2 expressed from the muscle
is due to inappropriate expression/secretion or short plasma
half-life.

In conclusion, our data show that EPO protection from PR
degeneration, either induced or inherited, does not require
hormone-induced erythropoiesis and can be exerted by
non-erythropoietic EPO-D systemically or locally delivered
to the retina by AAV. These may represent novel and safe
therapeutic agents for common conditions characterized by
retinal degeneration.

MATERIALS AND METHODS

Generation of the plasmids for AAV vector production

The pAAV2.1-CMV murine EPO (pAAV2.1-CMV-EPO) was
obtained cloning the murine EPO coding sequence (CDS) into
the pAAV2.1-CMV-EGFP3 plasmid (89) using the NotI and
BamHI sites. The S to E amino acidic substitution generating
the S100E protein was achieved by site-directed mutagenesis
of the pAAV2.1-CMV-EPO plasmid using the Quick Change
II XL Site-Directed Mutagenesis kit (Agilent Technologies,
Santa Clara, CA, USA). The sequence analysis of the
pAAV2.1-CMV-S100E plasmid confirmed the AGT to GAA
substitution at codon 126 of the murine EPO CDS which corre-
sponds to the amino acidic position 100 of the mature EPO
protein (S100E), as originally described (47,83,84). NP1 CDS
was generated amplifying two overlapping DNA fragments
from the pAAV2.1-CMV-EPO plasmid by polymerase chain
reaction (PCR) using the following primers: NP1 (NotI-
EPOFw 5′-AAGCGGCCGCCATGGGGGTGCCCGAAC-3′

and EPORev 5′-GGCCTTGCCAAACTTCTATGGCCTGTT
C-3′, for one fragment, or NPFw 5′-GATTCCTCTGGGCCT
CCCAGTCCTCTGTGAACAGGCCATAGAAGTTTGGCA
AG-3′ and BamHI-NP1Rev, for the other fragment). The final
full-length NP1 CDS was amplified using the following
primers: NotI-EPO 5′-AAGCGGCCGCCATGGGGGTGCCC
GAAC-3′ and BamHI-NP1rev 5′-AAGGATCCTCAGGAG
GAATTGGCTAGCAGGGCCTG-3′. NP2 CDS has been
generated by PCR amplification using the pAAV2.1-CMV-
EPO as a template and the following primers: NP2
(NotI-EPOFw and BamHI-NP2rev 5′-AAGGATCCTCACTC
CTTGGCCTCTAAGATGTACCTCTCCAGAACTCGACTG
TCGCAGATGAGGCGACAGAGGACTGGGAGGCCCAG-3′).
Each PCR product corresponding to either NP1 or NP2 CDS was
cloned into pAAV2.1-CMV-EGFP3 using NotI and BamHI
sites.

AAV vector production

AAV2/1 vectors encoding EPO, S100E, NP1, NP2 or EGFP
were generated from the above-described pAAV2.1 plasmids.
AAV2/1 vectors were produced by the TIGEM AAV vector

Figure 3. Retinal functional and morphological protection following AAV delivery in light-damaged albino Lewis rats. (A) ERG maximum B-wave amplitudes.
The maximum B-wave amplitude from age-matched wild-type Lewis rats is 1291.3+92 mV (n ¼ 8). (B) The number of rows of PR nuclei in the ONL. The
number of rows in age-matched wild-type Lewis rats is 11+1.5 (n ¼ 8). (A and B) Values are means+SE. The number (n) of eyes in each group is depicted
under the corresponding bar. CTRL, uninjected rats. Statistical significance has been calculated by ANOVA. ∗P ≤ 0.05. ∗∗P ≤ 0.001. In addition to those
depicted in (A) and (B), significant differences (P , 0.05) were found between the following groups of rats: CTRL versus SR EPO; CTRL versus SR
S100E; IM EPO versus SR EGFP; IM S100E versus SR EGFP; IM EPO versus SR S100E; IM EPO versus SR NP1–NP2.
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core by triple transfection of 293 cells followed by two rounds
of CsCl2 purification (90). For each viral preparation, physical
titers [genome copies (GC)/ml] were determined by dot blot
analysis (91) and by PCR quantification using TaqMan
(Applied Biosystems, Monza, Italy) (92).

COS7 cell transfection and western blot analyses

COS7 cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum and
2 mM L-glutamine (GIBCO, Invitrogen S.R.L., Milan, Italy)
and plated in six-well plates at a density of 1 × 105 cell/

well. Twenty-four hours later, the cells were transfected with
2 mg of pAAV2.1-CMV-EPO, pAAV2.1-CMV-S100E, pAA
V2.1-CMV-NP1, pAAV2.1-CMV-NP2 or pAAV2.1-CMV-
EGFP, using the PolyFect Transfection Reagent (Qiagen
S.P.A., Milan, Italy). Thirty-six hours later, cells were incu-
bated in serum-free DMEM. Medium and cells were harvested
after 12 h for western blot or reverse transcriptase–PCR
analysis. Cells were lysed in 50 mM Tris–HCl, pH 8,
150 mM NaCl, 1% NP40, 0.5% Na-deoxycholate, 1 mM
EDTA, 0.1% sodium dodecyl sulfate (SDS), in the presence
of protease inhibitors (Complete Protease inhibitor cocktail
tablets, Roche, Milan, Italy) and 1 mM phenylmethylsulfonyl

Figure 4. Representative retinal histology in the various animal models following AAV delivery. (A, B) LD; (C, D) rds mice; (E, F) Aipl12/2 mice. LD, light
damage; ONL, outer nuclear layer; INL, inner nuclear layer; WT, wild-type age-matched control animals corresponding to Lewis rats (A and B), CBA/JHsd
(C and D) and C57BL/6 mice (E and F). CTRL, uninjected animals. Picture magnification is 40×.
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fluoride. Both cell lysates and media were separated by 12%
SDS–polyacrylamide gel electrophoresis and immunoblotted
using the anti-EPO antibody (EPO N-19 1:400, sc-1310;
Santa Cruz Biotechnology Inc., Heidelberg, Germany).

RNA extraction, cDNA production and RT analyses

Total RNA was isolated from transfected COS7 cells using the
RNeasy MiniKit (Qiagen). One microgram of RNA was sub-
mitted to DNase I digestion (RNase Free DNase set,
Qiagen), then the cDNA was generated using the QuantiTect
reverse transcription kit (Qiagen). PCR amplification was
performed using 3 ml of cDNA and the following primers:
Fw 5′-CTGCTCTCAGAAGCCATCCTGCAG-3′ and BgHpo-
lyA-Rev 5′-GATGGCTGGCAACTAGAAGGCAC-3′, for the
cDNA encoding NP1; Fw 5′-CATCTGCGACAGTCGAG
TTCTGGAG-3′ and BgHpolyA-Rev, for the cDNA encoding
NP2. The quality of each cDNA sample was checked amplify-
ing the constitutively expressed b-actin with the following
primers: Fw 5′-CAAGATCATTGCTCCTCCTGA-3′ and
Rev 5′-CATCGTACTCCTGCTTGCTGA-3′.

Animal models and AAV2/1 vector administration

This study was carried out in accordance with the Association
for Research in Vision and Ophthalmology Statement for the
Use of Animals in Ophthalmic and Vision Research and the
Italian Ministry of Health regulation for animal procedures.

Aipl12/2 mice (a kind gift from Dr Michael Dyer, St Jude
Children’s Research Hospital, Memphis, TN, USA) and rds
mice (kindly provided by Prof. Robin Ali, University
College London, UK) were bred and housed under physiologi-
cal conditions: 12 h light–dark cycle (maximum light inten-
sity ,100 lux). Albino Lewis rats (LEW/HanTMHsd) and
CBA/JHsd mice were purchased from Harlan Italy SRL
(Udine, Italy), and C57BL/6 and BALB/c mice were pur-
chased from Charles River Laboratories (Calco, Lecco, Italy).

Lewis rat and BALB/c injection. Before AAV vector injection,
4-week-old rats and mice were anesthetized with an intraper-
itoneal injection at 2 ml/100 g body weight of avertin (1.25%

w/v of 2,2,2-tribromoethanol and 2.5% v/v of 2-methyl-2-
butanol; Sigma-Aldrich, Milan, Italy) (93). For IM and SR
injections, rats and mice received, respectively, 100 or 2 ml
of AAV vector, corresponding to the following vector doses:
AAV2/1-CMV-EPO (1 × 1010 GC IM; 1 × 109 GC SR),
S100E (1 × 1011 GC IM; 1 × 109 GC SR), NP1 (1 × 1011 IM;
1 × 109 GC SR), and NP2 (1 × 1011 IM; 1 × 109 GC SR).
NP1- and NP2-encoding vectors were injected in combination.

rds and Aipl12/2 mice injection. Before AAV vector adminis-
tration, newborn rds (P7–8) and Aipl12/2 (P4 or P7-P8) mice
were anesthetized by hypothermia; for IM and SR injections,
mice received, respectively, 10 or 0.5 ml of AAV vector, cor-
responding to the following vector doses: AAV2/1-CMV-EPO
(1 × 109 GC IM; 5 × 108 GC SR), S100E (1 × 1010 GC IM;
5 × 108 GC SR), NP1 (1 × 1010 IM; 5 × 108 GC SR), and
NP2 (1 × 1010 IM; 5 × 108 GC SR). NP1- and NP2-encoding
vectors were injected in combination. Early post-natal admin-
istration was chosen in order to provide the optimal thera-
peutic effect based on the disease progression and PR
apoptotic peak corresponding to P16 in rds and to P12 in
Aipl12/2 mice.

IM administration was performed injecting the vector prep-
aration into three sites of the gastrocnemious using a Hamilton
syringe (Microglass Heim SRL, Naples, Italy), whereas SR
administration, consisting of eye exposure, conjunctival perit-
omy and subsequent vector delivery, was performed passing a
33 G needle (Microglass Heim SRL, Naples, Italy) through the
sclera between the retina and the RPE, as described in detail
elsewhere (94). AAV2/1-CMV-EGFP was injected subretin-
ally in rats and mice as a negative control of the intraocular
treatment. For the systemic treatment, we used animals
either uninjected or injected with AAV2/1-CMV-EGFP.
Since the results from both groups are similar, we show
those from uninjected controls in Table 1, Figures 3–5 and
Supplementary Material, Figure S2. The AAV2/1-CMV-EPO
vector was administered intramuscularly to rats and mice at
a dose 10-fold lower than that of vectors encoding EPO-D
to avoid a fatal hematocrit increase observed when the full

Figure 5. Retinal morphological protection following AAV delivery in rds and Aipl12/2 mice. The number of rows of PR nuclei in the ONL of rds (A) and
Aipl12/2 (B) mice. Values are means+SD. The number (n) of eyes (A and B) in each group is depicted under the corresponding bar. Statistical significance has
been calculated by ANOVA. ∗ and � correspond to P ≤ 0.05; ∗∗P ≤ 0.001. � refers to the comparison of the systemic versus the SR delivery of either EPO or
S100E (A). In addition to those depicted in the figure, significant differences (P , 0.05) were found between the following groups of rds mice: CTRL versus SR
EPO; CTRL versus SR S100E; CTRL versus SR NP1–NP2; IM EPO versus SR EGFP; IM S100E versus SR EGFP (A).
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dose of 1 × 1011 GC of AAV2/1-CMV-EPO/animal was
administered (P.C. and A.A., unpublished data).

Light damage in albino Lewis rats and BALB/c mice

The light-damage protocol was derived from that originally
described by LaVail et al. (55) and subsequently modified
(33,95). Briefly, before AAV injection and during the follow-
ing 4 weeks (Lewis rats) or 2 weeks (BALB/c mice), animals
were reared in physiological 12 h light–dark cycle. Rats (at
P56) and mice (at P42) were housed separately in clear Plex-
iglas cages surrounded by eight 36 W white fluorescent bulbs
(Osram Sylvania, Munich, Germany) and subjected to con-
tinuous light exposure for 48 or 96 h, respectively. During
light damage, animals had free access to food and water.
The average luminance measured in the cages was 2000 lux.
Following light damage, animals were kept again under phys-
iological 12 h light–dark cycle for 1 week and then submitted
to ERG thus performed at P65 for rats and at P54 for mice.

Electrophysiological recordings

For ERG, Lewis rats and BALB/C mice were dark-adapted for
180 min, anesthetized with an intraperitoneal injection of
avertin (1.25% w/v of 2,2,2-tribromoethanol and 2.5% v/v of
2-methyl-2-butanol; Sigma-Aldrich) at 2 ml/100 g of body
weight, accommodated in a stereotaxic apparatus under dim
red light, their pupils dilated with a drop of 1% tropicamide
(Alcon Laboratories, Inc., Fort Worth, TX, USA) and the
body temperature maintained at 37.58C. Electroretinograms
were evoked by 10 ms flashes of different light intensities
ranging from 1024 to 20 cd/m2/s generated through a
Ganzfeld stimulator (CSO, Florence, Italy). To minimize the
noise, three different responses evoked by light were averaged
for each luminance step (the time interval between light
stimuli was 4–5 min). The electrophysiological signals were
recorded through gold plate electrodes inserted under the
lower eyelids in contact with the cornea. Electrodes in each
eye were referred to a needle electrode inserted subcu-
taneously at the level of the corresponding frontal region.
The different electrodes were connected to a two-channel
amplifier. Amplitudes of A- and B-waves were plotted as a
function of increasing light intensities. After completion of
responses obtained in dark-adapted conditions (scotopic), the
recording session continued with the aim to dissect the cone
pathway mediating the light response (photopic). To this
end, the electroretinogram in response to light of 20 cd/m2

was recorded in the presence of a continuous background
light (background light set at 50 cd/m2). For each group, the
mean A- and B-wave amplitudes were plotted as a function
of luminance (transfer curve) under scotopic and photopic
conditions.

EPO and S100E quantification and hematocrit
measurements

EPO and S100E levels (pg/ml) were measured in the serum and
ACF of mice and rats using the Quantikine Mouse/Rat Erythro-
poietin ELISA (R&D Systems, Minneapolis, MN, USA). Rat
and murine EPO proteins are similarly recognized by the

ELISA as reported by the producer. We have indirectly tested
whether the ELISA recognizes with similar affinity EPO and
S100E by transfecting equal amounts of plasmids encoding
the hormones in COS7 cells and measuring their levels in
culture media. Similar amounts of EPO and S100E (4.5 and
4.7 ng/ml, respectively) per microgram of plasmid were
indeed measured. Hematocrit levels were measured by microca-
pillary centrifugation of blood. ACF was collected from Lewis
rats and rds mice using a Hamilton syringe equipped with a
33 G needle (Microglass Heim SRL, Napoli, Italy). Sample col-
lection was performed at P65 for Lewis rats, P54 for BALB/C
mice, P90 for rds mice and P21 for Aipl12/2 mice.

Histological analysis

Histological analyses were performed at P65 for Lewis rats,
P90 for rds mice and at P21 for Aipl12/2 mice. Eyes were
enucleated, oriented by cautery, fixed and embedded in
tissue freezing medium (O.C.T. matrix, Kaltek, Padua, Italy)
as described previously (95). Serial sections (10 mm thick)
of eyes were cut along the horizontal meridian; sections
were progressively distributed on slides so that each slide con-
tained representative sections from the whole eye. Sections
were stained with 4′,6-diamidino-2-phenylindole (Vectashield,
Vector Lab, Inc., Peterborough, UK) or hematoxylin and
eosin (Richard-Allen Scientific, Kalamazoo, MI, USA;
Sigma-Aldrich) according to the standard procedures; PR
counting and global retinal histology were analyzed by fluor-
escent or light microscopy, respectively. To quantify the
number of PR nuclei in the ONL of the retina and assess PR
protection, a minimum of three central sections through the
optic nerve head (ONH) per slide were used. The number of
PR nuclei was counted at 40× magnification in two different
locations on each side of the ONH; the nasal and central on
one side and the temporal and central on the other side. The
nasal, temporal and central counts of three sections/eye were
averaged. The counts from each group were then averaged
and standard errors were calculated. P-values were calculated
using ANOVA. Retinal pictures were captured using a Zeiss
Axiocam (Carl Zeiss, Oberkochen, Germany).

In situ hybridization

RNA in situ experiments on eye sections from CBA mice were
performed as described elsewhere (96). Digoxigenin-labeled
antisense RNA probes for EPOR and bCR were obtained by
PCR using oligonucleotides bearing RNA polymerase-binding
sites. The RNA polymerases used are T3, T7 and SP6 (Roche
Diagnostics, Milan, Italy). The pCMV-Sport6 vector (cDNA
clone MGC: 54669, Invitrogen) or cDNA from the CBA adult
retina were used as templates for EPOR and bCR RNA probes
generation, respectively. The oligonucleotides used are the fol-
lowing: EPOR (T3-Fw: 5′-TAATGATTAACCCTCACTAAA
GGGCACCGCCGGACTCTGCAG-3′; T7Rev: 5′-TAATG
TAATACGACTCACTATAGGGCTAGGAGCAGGCCACA
TAGC-3′); bCR: (Sp6Fw: 5′-TGATTTAGGTGACACTATA
GGCTACAAGAATAGACATGGTCC-3′, T3Rev: 5′-TGATT
TAGGTGACACTATAGTGGATCATGGAGTGCCTGAC-3′).
Retinal pictures were captured using a Leica DM5000B
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microscope and a Leica DFC 350FX camera (Leica Mycrosys-
tems, Milan, Italy).

Statistical analysis

Data sets shown in Figures 3 and 5 and Supplementary
Material, Figure S2, were analyzed by ANOVA to evaluate
statistically significant differences. The Tukey multiple com-
parison procedure (post hoc) was used to make comparison
among groups. Significance at P ≤ 0.05 (∗) or P ≤ 0.001(∗∗)
is indicated in the corresponding figures. P-values depicted
in Table 1 and Supplementary Material, Table S2, were
calculated using Student’s t-test.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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