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Abstract
Two studies are reported that support the hypothesis that categories that require a multiple-unit
representation, as opposed to a single-unit representation, lead to worse initial acquisition but
better generalization. Based on the constraints imposed by the procedural-based learning system
thought to mediate information-integration categorization, we argue that the need to train multiple
units during initial category acquisition slows the procedural-based category learning process and
adversely affects learning performance. However, we speculate that better generalization occurs
because of the increased likelihood that a novel stimulus will activate at least one of the multiple
units needed to represent the category. Relations to other findings in the literature and the
implications of this work for training and clinical assessment are discussed.

INTRODUCTION
Understanding the experimental factors and psychological processes that facilitate
acquisition and generalization has been the focus of psychological research since its
inception. This has implications for education and training at all levels, from formal
classroom training (e.g., reading, writing and arithmetic), to skill learning (e.g., driving,
airline screening, medical diagnosis, radiology, etc.), to rehabilitation and interventions
(e.g., to improve memory and attention, or to reduce drug relapse).

One cognitive skill for which acquisition and generalization processes are critical is
information-integration perceptual classification (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Ashby & Maddox, 2010; Maddox & Ashby, 2004). These are classification
problem for which there is no verbal analog to the optimal rule and for which learning is
gradual and incremental. Some of the most important occupations in our society, such as
airport screening, radiology or medical diagnosis, to name a few, involve classification, and
we spend an enormous amount of time and money devoted to training individuals to perform
these jobs. In a typical classification learning task, participants are presented with a stimulus
and are asked to classify it into a single category. Once a response is made, participants are
provided with corrective feedback. A common assumption in classification research (and
other research areas) is that training regimens that lead to good initial acquisition when
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feedback is presented will also lead to good generalization to novel items within and outside
the range of training items, even when corrective feedback is removed (for a review see
Schmidt & Bjork, 1992; J. D. Smith, Redford, Washburn, & Taglialatela, 2005).

Early learning theorists, however, recognized that this assumption is often false and noted
that experimental factors that improve initial acquisition can either lead to good or poor
generalization once feedback is removed (Estes, 1955; Hull, 1943; Skinner, 1938; Tolman,
1932). Perhaps counter-intuitively, there is evidence in some domains that experimental
factors that lead to worse initial acquisition actually lead to better generalization (Schmidt &
Bjork, 1992). This pattern has been observed in the motor and verbal learning domains
(Balota, Duchek, & Logan, 2007; Bjork, 1994; Bjork & Linn, 2006; Karpicke & Roediger,
2007, , 2008; Landauer & Bjork, 1978; Roediger & Karpicke, 2006). For example, in motor
learning, spaced practice of motor movements leads to worse initial acquisition but better
generalization, whereas massed practice of the same movements leads to better initial
acquisition but worse generalization (e.g., Shea & Morgan, 1979).

Given the important role that classification plays in many real world skills, and given the
fact that good acquisition training does not necessarily imply good generalization, it is
critical to evaluate the efficacy of any training procedure by incorporating a transfer phase
that includes novel items from within and outside the range of training items and for which
feedback is not provided (Schmidt & Bjork, 1992). Although acquisition training usually
involves presentation of a fixed set of items, the true test of generalization lies with one's
ability to classify not only items that are similar to the training items (i.e., items from within
the range of trained items), but also items that are dissimilar from the training items (i.e.,
items from outside the range of trained items) (M.A. Erickson & Kruschke, 1998; M. A.
Erickson & Kruschke, 2002; J. D. Smith, Redford, Washburn, & Taglialatela, 2005). We
take this approach in the current study.

In addition, we use a model based approach to determine how the different training regimens
affect the types of processes people use to perform that task and how those affect the nature
of generalization. To anticipate, the model based analysis turn out to be critical in the
interpretation of the data.

Overview of the Current Study
The overriding aim of the current work is to examine the effects of category range and
category discontinuity on acquisition and generalization to a broadly sampled set of stimuli.
Category range is defined as the breadth of stimulus values along the stimulus dimensions
[often referred to as category variance in the literature (Cohen, Nosofsky, & Zaki, 2001;
Hahn, Bailey, & Elvin, 2005; Rips & Collins, 1993)]. Category discontinuity results when
each category is composed of distinct sub-clusters of stimuli that are separated by
unsampled portions of the stimulus space.

Category range and discontinuity effects have been examined in the literature but often the
two factors are confounded making it difficult to determine their independent impact. For
example, Maddox, Filoteo and Lauritzen (2007; for related work see Kornell & Bjork, 2008;
Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005) examined the effects of continuous
versus discontinuous category training on information-integration acquisition and
generalization. Scatterplots of the exemplars from the (small range) continuous and
discontinuous training conditions for the information-integration categories are displayed in
Figure 1 (along with the transfer items). Maddox et al. (2007) found that for information-
integration categories, acquisition was adversely affected by discontinuous category
training, but that no-feedback transfer performance was better in the discontinuous training
condition than in the continuous training condition. Unfortunately, discontinuity was
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confounded with range making it impossible to determine whether the increased range or
category discontinuity led to the observed acquisition and generalization performance
difference.

Real world categories differ in their range and level of continuity. For example, members of
the category “hand guns” (which an airline screener must learn) are highly similar and thus
have a relatively small category range and are fairly cohesive (i.e., highly continuous). On
the other hand, the category “weapon” is highly variable and contains items such as knives,
bombs, guns, etc. which are highly discontinuous. The differences in continuity and range
between these two categories could have implications for acquisition and generalization
under various training conditions. Thus, it is important to disentangle category range and
discontinuity to understand the affect these factors can independently have on acquisition
and generalization in the real-world.

The current study provides an unconfounded test of the effects of category range and
category discontinuity on information-integration acquisition and generalization across two
experiments. Each study includes a small range continuous, a large range continuous, and a
discontinuous acquisition training condition. Comparison of performance across the small
and large range continuous conditions provides a test of the effects of increased category
range on acquisition and generalization while holding discontinuity constant, whereas
comparison of performance across the large range continuous and discontinuous conditions
provides a test of the effects of category discontinuity on acquisition and generalization
while holding category range constant.

A number of factors that are often left uncontrolled are held constant across our
experimental conditions. These include the number of acquisition training trials, the nature
of the optimal decision bound, and optimal accuracy. A no-feedback transfer phase is also
included that tests performance for items from within the trained portion of the stimulus
space and generalization to items outside the trained portion of the stimulus space.

As the results (presented below) suggest, one study supports the hypothesis that category
discontinuity, and not category range, leads to poor initial acquisition but better
generalization, whereas the other supports the hypothesis that category range, and not
discontinuity, leads to poor initial acquisition but better generalization. Importantly, were we
to focus our interpretation only on these empirical data, we would be left with a
contradictory set of findings. However, by applying computational models, we offer a
unified explanation of these findings that is consistent with the known processing
characteristics of the procedural-based learning system thought to mediate information-
integration classification acquisition (Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Ashby & Ennis, 2006; Cincotta & Seger, 2007; Nomura et al., 2007). To do so, we apply a
procedural-based learning model, called the Striatal Pattern Classifier (SPC; Ashby &
Waldron, 1999), to the data. To anticipate, the model-based analyses suggest that neither
increased category range, nor category discontinuity account for the results. Rather, the
more direct mediator of performance appears to be whether a single-unit or multiple-units
representation best represents each category. We now briefly outline the model based
approach.

Model-Based Approach
The goal of the model-based approach is two-fold. First, we use the models to determine
whether and when participants are using the task appropriate process—that is, a process
consistent with the known characteristics of the procedural-based learning system—or an
alternative process. We focus our analyses on those individuals who used the appropriate
process as they are the ones who will be most telling in regard to the questions we ask.
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Second, we use the models to determine when participants use a multiple-unit representation
and to determine whether these correspond to cases in which a multiple-unit representation
is predicted. Although important for future research, we do not use this report to further
develop the SPC as a formal model of procedural-based classification learning.

The model-based approach involves applying three models separately to the data from each
participant (the details are provided in the Appendix). The first is the SPC that is a
computational model whose processing is consistent with what is known about the
neurobiology of the procedural-based category learning system thought to underlie
information-integration classification performance (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998;Ashby & Ennis, 2006;Ashby & Waldron, 1999;Nomura et al., 2007;Seger &
Cincotta, 2005). The second model is rule-based and instantiates hypothesis-testing
strategies such as the application of uni-dimensional or conjunctive rules. These are
verbalizable strategies that are sub-optimal in the present studies, but are often utilized by
participants. The third model is a random responder model that assumes that the participant
guesses on each trial. The model parameters will be estimated using maximum likelihood
procedures (Ashby, 1992;Wickens, 1982). When the models are nested G2 (likelihood ratio)
tests will be applied to determine the best model. When models are not nested the goodness-
of-fit statistic will be:

where r is the number of free parameters and L is the likelihood of the model given the data
(Akaike, 1974;Takane & Shibayama, 1992). The AIC statistic penalizes a model for extra
free parameters in such a way that the smaller the AIC, the closer a model is to the “true
model,” regardless of the number of free parameters (for a discussion of the complexities of
model comparisons see Myung, 2000;Pitt, Myung, & Zhang, 2002).

Because the focus of this research is on information-integration learning and generalization,
we describe the SPC in more detail. The SPC assumes that stimuli are represented
perceptually in higher level visual areas, such as the inferotemporal cortex. Because of the
massive many-to-one (approximately 10,000-to-1) convergence of afferents from the cortex
to the striatum (Ashby & Ennis, 2006; Wilson, 1995), a low-resolution map of perceptual
space is represented among the striatal units. During acquisition training, the striatal units
become associated with one of the category labels, so that, after acquisition training is
complete, a category response label is associated with each of a number of different regions
of perceptual space. In effect, the striatum learns to associate a response with clumps of cells
in the visual cortex. When all of the stimuli coming from a category are perceptually similar
and form a coherent (or continuous) group, then the category can be represented by a small
number of units. However, when the stimuli coming from a category are perceptually
dissimilar and form a less coherent or even discontinuous group, then a multiple-unit
representation will be needed.

It is important to be clear that the SPC is a computational model that is inspired by what is
known about the neurobiology of the striatum. Because of this fact, the striatal “units” are
hypothetical and could be interpreted within the language of other computational models
(e.g., as “prototypes” in a multiple prototype model like SUSTAIN; Love, Medin, &
Gureckis, 2004). In addition, we do not model learning in the SPC in the sense that we do
not update association weights between units and category labels. Learning models have
been proposed (Ashby, Paul, & Maddox, 2010), but because our focus is on asymptotic
acquisition and generalization (see below) computational versions of the model are adequate
to capture behavior at the end of learning.

Maddox and Filoteo Page 4

Atten Percept Psychophys. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acquisition and Generalization Predictions—If we make the reasonable assumption
that category learning is computationally and biologically more efficient when each category
can be represented by fewer rather than more units, then it follows that the procedural-based
learning system should be more efficient when stimuli coming from the same category form
a coherent (or continuous) group because fewer units might be required. Alternatively it
should be less efficient when stimuli coming from the same category are perceptually
dissimilar and form a less coherent (or discontinuous) group because more units might be
required to represent the categories. In line with this prediction, previous research suggests
that initial acquisition is slower when more units are needed to represent each category, such
as when the decision bound is nonlinear (Ashby & Maddox, 1990, , 1992; Ashby &
Waldron, 1999; Maddox, Filoteo, & Lauritzen, 2007). In fact, Maddox et al. (2007) found
that more units were needed to account for final block acquisition in their discontinuous
condition than in their small range continuous condition.

Although initial acquisition might be slower when a multiple-unit representation is required,
it is reasonable to hypothesize that a more distributed multiple-unit representation might
lead to better generalization. This follows because novel stimuli presented during
generalization would be more likely to activate one of the many units associated with a
multiple-unit representation and would be less likely to activate the one unit associated with
a single-unit representation. Importantly, this prediction holds in cluster models like
SUSTAIN (Love, Medin, & Gureckis, 2004). Taken together this implies that the more
striatal cells involved in representing a category the more difficult category acquisition will
be, but the more likely it will be that a novel stimulus (e.g., stimuli presented during
transfer), will be associated with that category. This leads to two predictions. First, multiple-
unit SPC models should provide better model fits to data collected in generalization
conditions for which a multiple-unit representation was needed during acquisition. Second,
generalization accuracy rates should be higher in these conditions and should be especially
high when a multiple-unit SPC model provides the best account of the data.

We turn now to the Experiments. For each study we will generate performance predictions
based on the category structure and the models. We then use the models to help organize the
results by breaking participants into groups based upon the best fitting model: SPC, rule-
based or random-responder.

EXPERIMENT 1
Experiment 1 used stimuli that were lines that varied in length and orientation across trials.
Scatter-plots of the training stimuli in the small range continuous, large range continuous,
and discontinuous conditions are displayed in Figure 1, along with a scatter-plot of the
transfer stimuli. The transfer block included test items from within and outside the trained
portion of the stimulus space. Each point in Figure 1 denotes a unique stimulus, with each
symbol denoting stimuli from different categories.

Maddox et al.(2007) found that the small range continuous condition required a single-unit
representation for each category whereas the discontinuous condition require a multiple-unit
(specifically, four-unit) representation. They reasoned that because the stimuli in each of the
small range continuous categories were tightly packed around a single central prototype that
a single-unit representation would suffice. They reasoned also that because the stimuli in
each of the discontinuous categories were from discontinuous clusters of stimuli that a
multiple-unit representation would be needed. In the large range continuous condition of
Experiment 1, the stimuli are not tightly packed around a central prototype, but they are
continuously sampled and more importantly are spread evenly around a central prototype.
This makes a single-unit (or at the very least one strong central unit surrounded by other
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weaker units) representation likely in this condition. Thus, for Experiment 1, a single-unit
representation is predicted in the two continuous conditions and a multiple-unit
representation is predicted in the discontinuous condition. This implies that initial
acquisition should be superior in the two continuous conditions but generalization should be
superior in the discontinuous condition.

Methods
Participants—Ninety participants (30 per condition) completed the study and received
course credit for their participation. All participants had normal or corrected to normal
vision. Each participant served in only one condition. All participants met a learning
criterion of 55% in the final acquisition training block.

Stimuli and Stimulus Generation—The stimuli are displayed in Figure 1, along with
the optimal decision bounds. The category distribution parameters are outlined in Table 1
and optimal accuracy was 95%. In the small range continuous condition and in the
discontinuous condition, each category was composed of four “sub-clusters” (16 total) with
30 stimuli being sampled randomly from each for a total of 480 stimuli. In the large range
continuous condition, each category was composed of 9 “sub-clusters” (36 total) with 13
stimuli being sampled randomly from each and 3 additional stimuli being sampled randomly
from each category for a total of 480 stimuli. The random samples were linearly transformed
so that the sample mean vector and sample variance-covariance matrix equaled the
population mean vector and variance-covariance matrix for each sub-cluster. Each random
sample (x, y) was converted to a stimulus by deriving the length (in pixels) as l = x, and
orientation (in degrees counterclockwise from horizontal) as o = 18y/50. These scaling
factors were chosen to roughly equate the salience of each dimension. The resulting 480
stimuli were randomized and divided into five 96-trial blocks separately for each participant.
These were presented during category acquisition training. One-hundred-forty-four stimuli
(36 from each of the four response regions) were used during the no feedback transfer phase
(see Figure 1).

Procedure—Each participant was run individually in a dimly lit testing room with an
approximate viewing distance of 35cm. The participants were informed that there were four
equally-likely categories. They were informed that perfect performance was impossible but
that high levels of accuracy could be achieved. They were instructed to learn about the
categories, to be as accurate as possible and not to worry about speed of responding. On
each trial the stimulus appeared and remained on the screen until the participant generated a
response by pressing one of two keys. The correct category label was then presented on the
screen for 1 second along with the word “wrong” if their response was incorrect or “right” if
their response was correct. Once feedback was given, the next trial was initiated. The
procedure for the transfer trials was identical except that feedback was omitted.

Results
The results section is organized as follows. First, we apply the models to the final
acquisition block and to the transfer block to determine whether each participant is using a
procedural-based, rule-based or random process. Because of concerns with modeling
aggregate data, each participant's data were fit separately (e.g., Ashby, Maddox, & Lee,
1994; Estes, 1956; Maddox, 1999; Maddox & Ashby, 1998; J.D. Smith & Minda, 1998).
Four versions of the striatal pattern classifier (SPC) were fit to the data (SPC-1, SPC-2,
SPC-4 and the optimal model). The SPC-1 assumed one unit per category, the SPC-2
assumed two units per category, and the SPC-4 assumed four units per category. Models
with more units were not examined since, at most, a category contained four clusters of
stimuli. The optimal model assumes that the optimal decision bounds were applied. Each of
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the SPC models assumes that, on each trial the participant determines which unit is closest
to the perceptual effect and gives the associated response-- with the only difference among
the models being the difference in the number of units. If one of these four models provided
the best account of the data then the participant was classified as an “SPC-user”. A number
of conjunctive and uni-dimensional hypothesis-testing models, as well as the random
responder model were also applied to the data (see Appendix). If one of the hypothesis-
testing models provided the best account of the data then the participant was classified as a
“rule-based user”. If the random responder model provided the best account of the data then
the participant was classified as a “random responder”.

Second, and because our main focus is on participants who use procedural-based learning
strategies during the final acquisition block and during the transfer block, we display the
learning curves and transfer performance for participants who were classified as SPC-users
during both the final acquisition block and the transfer block. For these same participants,
we also examine transfer performance in greater detail by examining transfer performance
for items sampled from within the trained portion of the space separately from items
sampled from outside the trained portion of the space. For completeness we also display the
learning curves and transfer performance for those participants who do not use a procedural
based learning strategy in the final acquisition block or in the transfer block. Finally, we
examine the nature of strategy shifts across the final acquisition and transfer block and
performance under various strategy shift conditions. The focus of this analysis is to compare
and contrast performance for single- vs. multiple-unit SPC users.

Learning Curves and Transfer Performance for Participants Best Fit by the
SPC in the Final Acquisition and Transfer Blocks—Figure 2A displays the average
proportion correct for the small range continuous, large range continuous and discontinuous
conditions for each of the 5 acquisition training blocks and the transfer block for only
participants who were SPC-users (i.e., those best fit by the SPC-1, SPC-2, SPC-4 or the
optimal model) in the final acquisition block and the transfer block. To reiterate, it is
important to focus on these individuals because they are using the task appropriate process.
This analysis includes 57%, 73%, and 93% of the participants from the small range
continuous, large range continuous and discontinuous conditions, respectively. A 3 (small
range continuous vs. large range continuous vs. discontinuous) condition × 5 acquisition
block ANOVA was conducted. There was a significant effect of condition [F(2, 64) = 16.99,
p < .001, η2 = .347] that suggested worse acquisition in the discontinuous condition relative
to the two continuous conditions (p's < .001 for both comparisons) with the latter two
conditions showing no significant performance differences. There was a significant effect of
block [F(4, 256) = 29.29, p < .001, ηΠ2 = .314] suggesting that learning occurred, and the
interaction was non-significant (F<1). Thus, category range had no effect on initial
acquisition as suggested by a comparison of performance in the small and large range
continuous condition, whereas category discontinuity had a large attenuating effect on initial
acquisition as suggested by a comparison of performance in the large range continuous and
discontinuous conditions.

We also examined the change in performance from the final acquisition block to the transfer
block. The performance drop was non-significant in the small range continuous condition
but was significant in the large range continuous condition (p < .01). In the discontinuous
condition there was a performance increase that was significant (p < .01).

Figure 2B displays the transfer performance for items from within and outside the trained
region (along with performance in the final acquisition block) for the participants displayed
in Figure 2A. The effect of condition was significant for the transfer items from within the
trained region of the space [F(2, 64) = 6.39, p < .01, η2 = .165] and was characterized by
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significantly worse performance in the small range continuous condition (.70) than in the
large range continuous (.78) or discontinuous (.79) conditions (both p's <.01), with no
performance difference emerging for the latter two conditions (ns). The effect of condition
was nearly significant for the transfer items from outside the trained region of the space
[F(2, 64) = 2.81, p =.068, η2 = .081] and was characterized by significant performance
difference between the small range continuous (.72) and discontinuous (.77) conditions (p
< .05).

For completeness, Figure 2C displays the learning curves and transfer block performance for
the remaining 43%, 27%, and 7% of the participants from the small range continuous, large
range continuous and discontinuous conditions, respectively. These are the individuals
whose final acquisition block or transfer block data was best fit by a rule-based model or the
random responder model. Given the small sample size ANOVAs were not conducted.

Taken together, these data suggest that for SPC-users (those best fit by one of the SPC
models in the final acquisition and transfer blocks), acquisition is worse but transfer is better
in the discontinuous condition than in the two continuous conditions. This supports our
initial claim that discontinuous categories should be more difficult to acquire but should lead
to better transfer. What these data do not tell us is whether this performance pattern is due to
the increased use of multiple-unit representations in the discontinuous condition. To answer
this important question, we turn now to a more detailed analysis that examines performance
separately for single-unit SPC users and multiple-unit SPC users. As outlined in the
Introduction, we predict that a multiple-unit representation will be more likely to provide a
better account of the data in the discontinuous than in the two continuous conditions.

Single- Versus Multiple-Unit SPC Analyses—The percentage of participants in each
condition whose final acquisition block and transfer block of data was best fit by specific
model pairings along with the proportion correct achieved by those participants is presented
in Table 2. Five model pairings are examined. First, we examine performance for
participants whose final acquisition block of data was best fit by the single-unit SPC (sSPC).
These participants were divided into those whose transfer block was also fit by an SPC
(SPC-1, SPC-2, SPC-4 or Optimal) model (sSPC-SPC) or by some other model (i.e., one of
the hypothesis-testing models or the random responding model; SPC-Other). Next, we
examine performance for participants whose final acquisition block of data was best fit by a
multiple-unit SPC (mSPC; SPC-2, SPC-4 or Optimal). These participants were divided into
those whose transfer block was also fit by an SPC (mSPC-SPC) or by some other model
(SPC-Other). Finally, we examined performance for all participants whose final acquisition
block of data was best fit by a rule-based model or the random responder model.

Several comments are in order. First, the proportion of mSPC-SPC participants was largest
in the discontinuous condition (47%) and was smaller in the small range (13%) and large
range (20%) continuous conditions. This supports our hypothesis that discontinuous
training, relative to continuous training, is more likely to lead to a multiple-unit
representation. Second, final acquisition block accuracy was higher for mSPC-SPC
participant than for any other participant groups and this was especially salient in the
discontinuous condition. Finally, transfer block accuracy was higher for mSPC-SPC
participant than for any other participant groups and this also was especially salient in the
discontinuous condition. .

Discussion
These data suggest that discontinuous category training leads to worse initial acquisition but
an increase in performance from the final acquisition block to the transfer block, whereas
continuous category training (even when the range of values is equated with that from the
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discontinuous categories) leads to better initial acquisition but a decrease in performance
from the final acquisition block to the transfer block. The model-based analyses suggest that
discontinuous categories, but not the continuous categories, are more likely to lead to a
multiple-unit representation and that this might explain the finding of worse initial
acquisition but better transfer in the discontinuous conditions. In Experiment 2, we test this
hypothesis against the alternative hypothesis that category discontinuity alone drives the
effect. To achieve this aim we compare discontinuous condition performance against
performance in a continuous condition for which a multiple-unit representation is likely.

EXPERIMENT 2
Experiment 1 examined category range and discontinuity effects in a four-category
information-integration task and found support for the hypothesis that discontinuous
category training leads to worse initial acquisition but better generalization when category
range is held constant. To our knowledge this is the first study to rigorously test these two
hypotheses.

Notice from Figure 1, that the exemplars from each category in the discontinuous condition
are sampled from four sub-clusters of stimuli. Many computational models of categorization
would predict that under these conditions some sort of multiple-unit (e.g., SPC; Ashby &
Waldron, 1999), multiple-prototype (e.g., rational model; Anderson, 1991) or multiple-
cluster (e.g., SUSTAIN; Love, Medin, & Gureckis, 2004) representation would be required
for learning. In other words, each of these sub-clusters of stimuli would be represented by a
separate unit, prototype or cluster with each of these being assigned to a specific category.
When presented with a new item the distance between the item and each unit is calculated
and the item is assigned to the category associated with the nearest unit2. Notice also that the
exemplars from each category in the small range and large range continuous condition are
sampled continuously from the space and are spread evenly around a central prototype. This
makes a single-unit (or at the very least one strong central unit surrounded by other weaker
units) representation likely in this condition. These observations, along with the finding that
acquisition was worse but generalization was better in the discontinuous condition, support
the hypothesis that the need for a multiple-unit representation impedes initial learning but
results in better generalization.

In Experiment 2, we test the generalizability of these findings to a two-category case
(Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005) for which multiple units would likely
be required to represent the categories even though no discontinuity exists. Scatter-plots of
the training stimuli in the small range continuous, large range continuous, and discontinuous
conditions are displayed in Figure 3 along with a scatter-plot of the transfer stimuli. The
transfer block included novel items from within and outside the range of training items to
evaluate generalization. First, notice that each category of training items in the
discontinuous condition is composed of two distinct and dissimilar clusters of items. Thus, a
two-unit representation per category is likely required. Next notice that each category of
training items in the large range condition, although not composed of discontinuous clusters,
is composed of items that are “spread” out parallel along the decision bound. Using
prototype terminology, there is no single prototype or central tendency that adequately
describes the training stimuli. In this case, it is likely that a multiple-unit representation is
also required. Finally, notice that each category of training items in the small range
condition are tightly packed likely yielding a single-unit representation. If the large range

2It is important to point out that we are not necessarily arguing that such representations are formed or used in the manner put forth by
classic “prototype” theory or other theories that suggest a central representation (e.g., SUSTAIN or SPC). How such representations
are computationally implemented awaits further study.
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continuous condition does, in fact, require a multiple-unit representation, then the
performance pattern in that condition should be similar to that observed in the discontinuous
condition, which should yielded poorer initial acquisition but better generalization relative to
the small range continuous condition.

Methods
Participants—Ninety participants (30 per condition) completed the study and received
course credit for their participation. All participants had normal or corrected to normal
vision. Each participant served in one condition. To ensure that only participants who
showed some initial learning during the acquisition phase of the experiment were included
in the analyses, a learning criterion of 55% correct during the final acquisition block was
applied. All but 12 participants met the performance criterion (small range: N = 28; large
range: N = 25; discontinuous: N = 25).

Stimuli and Stimulus Generation—The stimuli are displayed in Figure 3, along with
the optimal decision bounds. The category distribution parameters are outlined in Table 3
and optimal accuracy was 90%. In the small range continuous and discontinuous conditions,
each of the two training categories was composed of two “sub-clusters” (4 total) with 120
stimuli being sampled randomly from each for a total of 480 stimuli. In the large range
continuous condition, each of the two categories was composed of four “sub-clusters” (8
total) with 60 stimuli being sampled randomly from each for a total of 480 stimuli. All other
aspects of the acquisition training stimuli were identical to Experiment 1. One-hundred-
thirty-two stimuli (66 from the A response region and 66 from the B response region) were
used during the transfer phase and were randomized separately for each participant (see
Figure 4).

Procedure—The procedure was identical to that from Experiment 1 except that two
response buttons were used instead of four.

Results
We follow the same data analytic approach in Experiment 2 that we used in Experiment 1.
First, we fit the models to the final acquisition block and transfer block of data and
characterize each participant as an SPC-user, rule-based user or a random responder. Next,
we plot learning curves, overall transfer performance and transfer performance broken down
by trained vs. untrained region for only those participants who were classified as SPC-users
in the final acquisition and transfer blocks. For completeness we include learning curves for
the remaining participants as well. Finally, we examine the nature of strategy shifts across
the final acquisition and transfer block and performance under various strategy shift
conditions. The focus of this analysis is to compare and contrast performance for single- vs.
multiple-unit SPC users. The only caveat is that we do not fit the SPC-4 because at most a
single category is composed of two sub-clusters of stimuli.

Learning Curves and Transfer Performance for Participants Best Fit by the
SPC in the Final Acquisition and Transfer Blocks—The average proportion correct
for the small range continuous, large range continuous and discontinuous conditions for each
of the 5 acquisition training blocks and the transfer block for participants classified as SPC-
users in the final acquisition block and the transfer block is displayed in Figure 4A. This
includes 36%, 88%, and 76% of the participants from the small range continuous, large
range continuous and discontinuous conditions, respectively. A 3 (small range continuous
vs. large range continuous vs. discontinuous) condition × 5 acquisition block ANOVA was
conducted. There was a significant effect of condition [F(2, 48) = 9.77, p < .001, η2 = .289]
that suggested better acquisition in the small range continuous condition relative to the large
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range continuous and discontinuous conditions (p's < .001 for both comparisons) with the
latter two conditions showing no significant performance differences. There was a
significant effect of block [F(4, 192) = 19.34, p < .001, η2 = .2874] suggesting that learning
occurred, and no interaction (F(8, 192) = 1.75, ns). Thus, category range had an effect on
initial acquisition as suggested by a comparison of performance in the small range
continuous condition with the large range continuous and discontinuous conditions, whereas
category discontinuity did not have an effect as suggested by a comparison of performance
in the large range continuous and discontinuous conditions.

We also examined the change in performance from the final acquisition block to the transfer
block. There was a performance increase in all three conditions (all p's < .001). Even so, the
increase was larger in the large range continuous and discontinuous conditions than in the
small range continuous condition (both p's < .05).

Figure 4B displays the transfer performance for items from within and outside the trained
region (along with performance in the final acquisition block) for the same participants. The
effect of condition was non-significant for the transfer items from within the trained region
of the space (F<1.0) and for the transfer items from outside the trained region of the space
(F<1.0).

For completeness, we also plotted the learning curves and transfer block performance for the
remaining 64%, 12%, and 24% of the participants from the small range continuous, large
range continuous and discontinuous conditions, respectively. These data are plotted in
Figure 4C. Given the small sample size ANOVAs were not conducted.

These data suggest that for SPC-users (those best fit by one of the SPC models in the final
acquisition and transfer blocks), acquisition is worse but transfer is better in the large range
continuous and discontinuous conditions relative to the small range continuous condition.
This supports our initial claim that the two larger variance conditions (i.e., the large range
continuous and discontinuous conditions) should be more difficult to acquire but should lead
to better transfer. What these data do not tell us is whether this performance pattern is due to
the increased use of multiple-unit representations in the large range continuous and
discontinuous conditions. To answer this important question, we turn to a more detailed
analysis that examines performance separately for single-unit SPC users and multiple-unit
SPC users. As outlined in the Introduction, we predict that a multiple-unit representation
will be more likely in the large range continuous and discontinuous conditions than in the
small range continuous condition.

Single- Versus Multiple-Unit SPC Analyses—The percentage of participants in each
condition whose final acquisition block and transfer block of data was best fit by the five
model pairings outline in Experiment 1 is presented in Table 2. Two comments are in order.
First, and as predicted, the proportion of mSPC-SPC participants was largest in the
discontinuous (76%) and large range continuous conditions (88%) and was smaller in the
small range continuous condition (32%). Second, final acquisition and transfer accuracy was
higher for these participants then for other groups of participants.

Discussion
These data suggest that a large category range, regardless of discontinuity, leads to worse
initial acquisition but an increase in performance from the final acquisition block to the
transfer block, whereas a small category range leads to better initial acquisition but a smaller
increase in performance from the final acquisition block to the transfer block. Based solely
on accuracy, this finding appears in conflict with that from Experiment 1, but if one
hypothesizes that the two large range conditions (large range continuous and discontinuous)

Maddox and Filoteo Page 11

Atten Percept Psychophys. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



require a multiple-unit representation, which is supported by the model-based analyses, then
these data converge nicely with those from Experiment 1 in that both sets of results suggest
that the pattern of acquisition and transfer observed is not related necessarily to the breadth
or discontinuity of the category structures, but whether multiple units will provide a better
representation of the category structures.

GENERAL DISCUSSION
Previous research suggests that discontinuous category training leads to worse initial
acquisition, an increase in performance from acquisition to generalization blocks, and better
overall generalization (Maddox, Filoteo, & Lauritzen, 2007). However, in this study
discontinuity is confounded with an increase in the range of training items. In this article,
two studies are reported that pit a discontinuity and range explanation of the results against
the hypothesis that categories that require multiple-unit representations, as opposed to
single-unit representations, lead to worse initial acquisition but better generalization. Taken
together the data support the multiple-units hypothesis.

In the remainder of the discussion we address a number of relevant issues.

SPC vs. Other Non-Neuroscience Based Models
The multiple-unit hypothesis converges nicely with predictions from a number of
computational models that share many properties with the SPC, including the grid model
(Ashby & Maddox, 1989), the covering version of Kruschke's (1992) ALCOVE model,
Anderson's (1991) rational model, and Love, Medin and Gureckis’ (2004) SUSTAIN model.
Consider Love et al's SUSTAIN model as just one example. Although the exact behavior of
the model is parameter dependent, across a wide range of parameter settings, SUSTAIN
would predict a multiple-unit (called “clusters” in SUSTAIN) representation in the
discontinuous condition from Experiment 1, and the large range and discontinuous
conditions from Experiment 2. In addition, the model would predict a single-unit
representation in the small and large range continuous conditions from Experiment 1 and the
small range continuous condition from Experiment 2. The model would most likely predict
the immediate generalization advantages mainly because the representation is spread out and
thus the similarity between a trained unit and transfer items would be higher. Thus, the
current findings are congruent with predictions from a popular computational model
(SUSTAIN) as well the neurobiologically inspired SPC model.

Other Generalization Effects in Classification
Identifying training conditions that enhance learning and generalization is a fundamental
problem facing learning theorists. The current study suggests that training on discontinuous
clusters of stimuli can enhance generalization. Other studies have examined this topic and
we briefly review two that are directly relevant. The first is a study by Spiering and Ashby
(2008) who examined the effects of different training sequences on information-integration
category acquisition using categories similar to those from Experiment 2 above. They
compared a condition in which participants began by classifying easy stimuli (far from the
decision bound), then classified intermediate difficulty stimuli (intermediate distance to the
decision bound), then classified difficult stimuli (near the decision bound) (easy-to-hard)
with a condition in which participants began by classifying difficult stimuli, then classified
intermediate difficulty stimuli, then classified easy stimuli (hard-to-easy). This training was
followed by a transfer block that required classification of all of the training items with
feedback. With information-integration categories, they found that transfer performance was
superior when difficult items were trained first as opposed to last. Interestingly, no effects
emerged for rule-based categories. Future work should determine whether this effect holds
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when feedback is removed during transfer, as a true test of the permanence of the learning,
and whether the effect holds across a broader sampling of stimuli that includes those from
within and outside of the trained portion of the stimulus space.

In a related study, Kornell and Bjork (2008) examined the effects of spaced versus massed
observational training on the learning of artist categories. Participants studied multiple
paintings by different artists, with paintings from a given artist being presented sequentially
along with the artist's name (massed training) or randomized with other artist's paintings
(spaced training), with each being accompanied by the appropriate artist's name. A
subsequent transfer test with new paintings from the same artists was administered.
Participants viewed each new painting and were asked to give a categorization judgment
followed by corrective feedback. Transfer was better for spaced as opposed to massed
training. Although initial acquisition performance can not be assessed in this study because
initial acquisition training was observational (i.e., the category label was presented along
with the training stimulus), and thus no response was required, the transfer advantage for
spaced observational training is interesting and is likely related in some sense to the
multiple-unit training used in the current study. As with the Spiering and Ashby result future
work should determine whether this effect holds when feedback is removed during transfer
as a true test of the permanence of the learning. Thus, it appears that generalization
advantages might emerge for other types of acquisition training and might not be
constrained only to cases in which a multiple-unit representation is required. In fact, we
deem this likely.

Training and Clinical Implications
The implications of this work for training, neurorehabilitation, and clinical assessment
should not be overlooked. First, the procedural-based system is critically involved in
acquisition and generalization for complex categorization problems such as the
interpretation of medical imaging, the reading of sophisticated instrumentation, the
diagnosis of complex illnesses, the identification of threats to security, etc, yet little is
known about the effects of different training regimens. The current study takes a first step
toward addressing these issues and suggests that categorization training that builds a
multiple-unit representation facilitates generalization. As just one example, these data
suggest that when training radiologists to identify benign versus malignant tumors it would
be advantageous to select training samples that cluster into disparate subgroups, with x-rays
within each subgroup being highly similar, but dissimilar from x-rays in the other
subgroups. Second, measures of procedural-based categorization are largely absent from
clinical assessment batteries, whereas one popular rule-based categorization task (the
Wisconsin Card Sort Task; WCST) has been used extensively. The lack of procedural-based
categorization measures exists despite the plethora of evidence that striatal functioning is
impacted in Parkinson's Disease, Huntington's Disease, and normal aging (Ashby, Noble,
Filoteo, Waldron, & Ell, 2003; Filoteo & Maddox, 1999, , 2004; Filoteo, Maddox, & Davis,
2001a, , 2001b; Filoteo, Maddox, Ing, Zizak, & Song, 2005; Filoteo, Maddox, Salmon, &
Song, 2005; Filoteo et al., 2005; Maddox & Filoteo, 2001, , 2005, , 2007; Maddox, Filoteo,
Delis, & Salmon, 1996; Maddox, Filoteo, & Huntington, 1998). In fact, in a recent study
(Filoteo, Maddox, Salmon, & Song, 2007) we showed that performance in non-demented
Parkinson's disease patients on an information-integration task that required a multiple unit
representation was highly predictive of future cognitive decline, whereas the number of
perseverative errors on the WCST (a rule-based task) was not predictive. In contrast, their
performance on a task that required fewer SPC units was not predictive of cognitive decline.
Finally, some neuropsychological disorders (e.g., Alzheimer's disease) do not impact the
procedural-based system, which opens the possibility of rehabilitation approaches that
emphasize the intact procedural-based learning system (Schacter, Rich, & Stampp, 1985).
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Thus, a deeper understanding of procedural-based acquisition and generalization could
facilitate the success of neurorehabilitation by identifying the sub-processes that can replace
damaged learning processes in various patient groups (Krakauer, 2006), and the optimal
conditions under which procedural-based learning processes should be implemented. Taken
together, these findings suggest that tasks that tap the procedural-based system might
provide more useful clinical assessment tools than those that are currently used.

Conclusions
Two studies provided strong support for the hypothesis that the need for a multiple-unit, as
opposed to a single-unit category representation lead to worse initial acquisition, a
performance increase from acquisition to generalization, and better no feedback
generalization. We argue that some category structures or more conducive to the need for a
multiple-unit representation and that under these condition initial category acquisition is
slowed but transfer is enhanced. In line with other models, such as SUSTAIN, we speculate
that acquisition is slower because it is more taxing on the system to train multiple units,
however during transfer a multiple-unit representation increases the likelihood that a novel
stimulus would activate at least one of the multiple units needed to represent the category
enhancing transfer performance.

Appendix

Procedural-Based Category Learning Models
The SPC-1, SPC-2, SPC-4, and the optimal model were applied to the data separately from
each participant. The SPC-1 assumes that there is one striatal “unit” in the length-orientation
space for each category, yielding a total of four striatal units in Experiment 1 and two striatal
units in Experiment 2. The SPC-2 assumes that there are two striatal “units” in the length-
orientation space for each category, yielding a total of eight striatal units in Experiment 1
and four striatal units in Experiment 2. The SPC-4 assumes that there are four striatal “units”
in the length-orientation space for each category, yielding a total of sixteen striatal units in
Experiment 1 and eight striatal units in Experiment 2. Because the location of one of the
units can be fixed, and since a uniform expansion or contraction of the space will not affect
the location of the resulting response region partitions, the SPC-1 contains six free
parameters--5 that determine the location of the units, and one that represents the noise
associated with the placement of the striatal units in Experiment 1 and three free parameters
in Experiment 2. The noise parameter estimates the variability associated with the
participant's responding, with large variability estimates being associated with less
deterministic responding and small variability estimates being associated with more
deterministic responding. The SPC-2 and SPC-4 models are the same as the SPC-1 model,
except that the SPC-2 model assumes that each category has two striatal-category units (14
parameters in Experiment 1 and 6 parameters in Experiment 2), and the SPC-4 model
assumes that each category has four striatal-category units (30 parameters in Experiment 1
and 14 parameters in Experiment 2). The optimal model assumes optimal placement of the
decision bounds and contains only the single noise parameter.

Hypothesis-Testing Models
Three conjunctive hypothesis-testing models were applied to the data from Experiment 1.
The conjunctive(1) model assumes that the participant makes one decision about the length
of the line (short or long), a separate decision about the orientation of the line (shallow or
steep), and then integrated this information post-decisionally (i.e., after deciding whether the
line is short or long and after deciding whether the orientation is shallow or steep). The
model assumes that the participant used the following decision rule: Respond A if the line

Maddox and Filoteo Page 14

Atten Percept Psychophys. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



length is short and the orientation is shallow, Respond B if the line length is short and the
orientation is steep, Respond C if the line length is long and the orientation is shallow, and
Respond D if the line length is long and the orientation is steep. This model has three free
parameters--two decision criteria parameters and a noise parameter that estimates the
variability associated the participant's trial by trial memory and application of the decision
criteria. The conjunctive(2) model instantiates an “extreme values” type of decision rule.
This model assumes that the participant sets two criteria along the length dimension that
partitions the length dimension into three regions. The model assumes that the participant
sets a criterion along the orientation dimension that is invoked only when the perceived
length falls into the intermediate length region. The model assumes that the participant used
the following rule: Respond B if the length is short, respond C if the length is long, if the
length is intermediate then respond A if the orientation is shallow, and Respond D if the
orientation is steep. The conjunctive(3) model is similar. This model assumes that the
participant sets two criteria along the orientation dimension that partitions the orientation
dimension into three regions. The model assumes that the participant sets a criterion along
the length dimension that is invoked only when the perceived orientation falls into the
intermediate orientation region. The model assumes that the participant used the following
rule: Respond A if the orientation is shallow, respond D if the orientation is steep, if the
orientation is intermediate then respond B if the line is short, and Respond C if the line is
long. The conjunctive(2) and conjunctive(3) models contain four parameters--three criteria
and the noise parameter.

Two conjunctive and two uni-dimensional hypothesis-testing models were applied to the
data from Experiment 2. Both conjunctive models assume that the participant makes one
decision about the length of the line (short or long), a separate decision about the orientation
of the line (shallow or steep), and then integrated this information post-decisionally (i.e.,
after deciding whether the line is short or long and after deciding whether the orientation is
shallow or steep). One version assumes that the participant responds A to all short, steep
angle lines and B to all other lines, and the second version assumes that the participant
responds B to all long, shallow angle lines and A to all other lines. Both models have three
free parameters. The unidimensional length model assumes that the participant sets a
criterion along length and ignores orientation and generates one response to short lines and
the other response to long lines. The unidimensional orientation model assumes that the
participant sets a criterion along orientation and ignores length and generates one response
to shallow angle lines and the other response to steep angle lines. Both models have two free
parameters.

The random responder model assumes a fixed probability of responding “A”, “B”, “C” and
“D”. In Experiment 1 the model has 3 free parameters to denote the predicted probability of
responding “A”, “B”, or “C” with the probability of responding “D” equal to one minus the
sum for the other three categories. In Experiment 2 the model has one free parameter to
denote the predicted probability of responding “A”.
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Figure 1.
Categorization conditions used for Experiment 1. The x axis denotes the line length in pixels
and the y axis denotes the line orientation in degrees. Filled triangles denote stimuli from
category A, open triangles denote stimuli from category B, open squares denote stimuli from
category C, and filled squares denote category D. The solid lines that form an “x” in the
small range continuous, discontinuous, and large range continuous conditions denote the
optimal decision bound. Small range continuous condition: In the transfer stimulus plot, all
items that lie within the small broken line parallelogram (filled diamonds) denote novel
transfer items from within the range of training items, whereas all items outside this
parallelogram (open diamonds and filled squares) denote novel transfer items from outside
the range of training items. Large range continuous condition and discontinuous condition:
All items that lie within the larger solid line parallelogram (filled and open diamonds)
denote novel transfer items from within the range of training items, whereas all items
outside this parallelogram (filled squares) denote novel transfer items from outside the range
of training items.
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Figure 2.
A. Proportion correct (averaged across participants) from the acquisition training and
transfer phase of Experiment 1 for participants best fit by any of the SPC models in the final
acquisition block and the transfer block. B. Absolute proportion correct for no feedback
generalization transfer items from within the trained region of the space and from outside
the trained region of the space from the same participants shown in panel A. C. Proportion
correct (averaged across participants) from the acquisition training and transfer phase of
Experiment 1 for all participants not included in panel A. Standard error bars included.
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Figure 3.
Categorization conditions used for Experiment 2. The x axis denotes the line length in pixels
and the y axis denotes the line orientation in degrees. Open diamonds denote stimuli from
category A, and filled squares denote stimuli from category B. The solid line in the small
range, large range, and discontinuous conditions denotes the optimal decision bound. Small
range continuous condition: In the transfer stimulus plot, all items (denoted by filled
diamonds) that lie within the small solid line parallelogram denote novel transfer items from
within the range of training items, whereas all items outside this parallelogram denote novel
transfer items from outside the range of training items (open diamonds and filled squares).
Large range continuous condition and discontinuous condition: All items (denoted by filled
diamonds and unfilled diamonds) that lie within the larger solid line parallelogram denote
novel transfer items from within the range of training items, whereas all items outside this
parallelogram (filled squares) denote novel transfer items from outside the range of training
items.
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Figure 4.
A. Proportion correct (averaged across participants) from the acquisition training and
transfer phase of Experiment 2 for participants best fit by the SPC in the final acquisition
block and the transfer block. B. Absolute proportion correct for no feedback generalization
transfer items from within the trained region of the space and from outside the trained region
of the space from the same participants shown in panel A. C. Proportion correct (averaged
across participants) from the acquisition training and transfer phase of Experiment 2 for all
participants not included in panel A. Standard error bars included.
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Table 1

Category Distribution Parameters from Experiment 1

μ x μ y

Small Range Continuous Condition

A 240 54

A 216 78

A 264 78

A 240 102

B 192 102

B 168 126

B 216 126

B 192 150

C 288 102

C 264 126

C 312 126

C 288 150

D 240 150

D 216 174

D 264 174

D 240 198

Large Range Continuous Condition

A 240 6

A 216 30

A 192 54

A 264 30

A 240 54

A 216 78

A 288 54

A 264 78

A 240 102

B 168 78

B 144 102

B 120 126

B 192 102

B 168 126

B 144 150

B 216 126

B 192 150

B 168 174

C 312 78

C 288 102

C 264 126
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Large Range Continuous Condition

C 336 102

C 312 126

C 288 150

C 360 126

C 336 150

C 312 174

D 240 150

D 216 174

D 192 198

D 264 174

D 240 198

D 216 222

D 288 198

D 264 222

D 240 246

Discontinuous Condition

A 240 6

A 192 54

A 288 54

A 240 102

B 168 78

B 120 126

B 216 126

B 168 174

C 312 78

C 264 126

C 360 126

C 312 174

D 240 150

D 192 198

D 288 198

D 240 246

Note: The standard deviation along the x and y dimensions was 10 for all sub-clusters, and the covariance was zero.
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Table 2

Model Results from Experiments 1 and 2 for the Final Acquisition Block and the No-Feedback Transfer Block
(see text for details)

Final Acquisition-Transfer Block Model Percentage of Participants

Proportion Correct

Condition Final Acquisition Generalization

Experiment 1

Small Range Continuous sSPC-SPC 43 0.77 0.73

SPC-Other 27 0.76 0.64

mSPC-SPC 13 0.80 0.74

mSPC-Other 10 0.80 0.67

Rule Based or Random 7 0.86 0.74

Large Range Continuous sSPC-SPC 53 0.79 0.75

SPC-Other 10 0.74 0.66

mSPC-SPC 20 0.86 0.81

mSPC-Other NA NA NA

Rule Based or Random 17 0.73 0.74

Discontinuous sSPC-SPC 47 0.67 0.76

SPC-Other 3 0.68 0.74

mSPC-SPC 47 0.72 0.79

mSPC-Other NA NA NA

Rule Based or Random 3 0.60 0.72

Experiment 2

Small Range Continuous sSPC-SPC 4 0.84 0.90

SPC-Other NA NA NA

mSPC-SPC 32 0.81 0.86

mSPC-Other 14 0.78 0.79

Rule Based or Random 50 0.75 0.78

Large Range Continuous sSPC-SPC NA NA NA

SPC-Other NA NA NA

mSPC-SPC 88 0.72 0.84

mSPC-Other 4 0.65 0.67

Rule Based or Random 8 0.61 0.76

Discontinuous sSPC-SPC NA NA NA

SPC-Other NA NA NA

mSPC-SPC 76 0.75 0.84

mSPC-Other 8 0.75 0.82

Rule Based or Random 16 0.66 0.80

Note: NA = non-applicable because no participants’ data was best fit by that model.
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Table 3

Category Distribution Parameters from Experiment 2

μ x μ y

Small Range Continuous Condition

A 122 150

A 150 178

B 150 122

B 178 150

Large Range Continuous Condition

A 93 122

A 122 150

A 150 178

A 178 206

B 122 93

B 150 122

B 178 150

B 206 178

Discontinuous Condition

A 93 122

A 178 206

B 122 93

B 206 178

Note: The standard deviation along the x and y dimensions was 15 for all sub-clusters, and the covariance was zero.

Atten Percept Psychophys. Author manuscript; available in PMC 2011 May 10.


