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Abstract
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has
grown in modeling the spiking activity of populations of simultaneously recorded neurons to study
the effects of correlations and functional connectivity on neural information processing. However
any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-
Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating
point-process-based statistical models of single-neuron spike trains. Here we discuss the extension
of the time-rescaling theorem to the multivariate (neural population) case. We show that even in
the presence of strong correlations between spike trains, models which neglect couplings between
neurons can be erroneously passed by the univariate time-rescaling test. We present the
multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure
for applying it towards testing the sufficiency of neural population models. Using several simple
analytically tractable models and also more complex simulated and real data sets, we demonstrate
that important features of the population activity can only be detected using the multivariate
extension of the test.
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1 Introduction
The strongly recurrent topologies of neuronal networks couple the activity of their
component neurons together. Such coupling often manifests in experimentally observable
correlations between the spiking of individual neurons. However the importance of these
correlations, and neuronal coupling in general, for information processing is still strongly
debated. A possible first step towards understanding the computational role of neuronal
correlations is to define and fit statistical models of neural population spiking which include
the effect of possible mutual dependencies between neurons. After effectively characterizing
the population activity through such a model, one can then proceed to ask whether these
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dependencies are in fact important for information processing and/or neural computation.
Numerous models and techniques for fitting them exist, however all models must be
checked for goodness-of-fit. In the case of neural population models it is necessary that the
activity of the population be accurately described, not merely the activity of the individual
neurons. This is important because even if the statistics of the individual neurons are
accurately described, this does not necessarily imply that the collective activity of the
population is. The goal of this paper is to present a practical statistical test applicable to
population models of neural spiking.

A goodness-of-fit measure must be geared towards both the model being tested and the data
to which the model is being fit. In the case of population spiking activity, the data may be
effectively represented as a set of point processes (binarized spike trains). Two main
modeling approaches for such data have recently become popular in the neuroscience
community. In the first, one directly models the joint distribution of spike patterns across
neurons. An example of this approach is the pairwise Ising (maximum entropy) model first
proposed for the analysis of population activity by Martignon et al. (2000) and others
(Schneidman et al., 2006). Using this technique they were able to demonstrate that
significant pairwise correlations are present in at least some neuronal populations. Ising
models treat the neuronal population activity as stationary in time (Tang et al., 2008), i. e.
what is modeled is a time-independent joint probability distribution of the many-neuron
spiking pattern. However, neural population activity is dynamic, highly variable with time
and a classical Ising model cannot capture this1.

A second approach, which is capable of modeling dynamic changes in spiking probability at
arbitrarily fine temporal scales, is the point-process-based Generalized Linear Model (GLM)
technique promoted independently by Brown, Paninski, Pillow and others (Brown et al.,
2001, 2003; Paninski, 2003; Kass et al., 2005; Truccolo et al., 2005; Pillow, 2007). This
method models the time-varying spiking probability (conditional intensity function) of each
neuron in the population independently but conditioned upon the past history of all spikes in
the neuronal population. The assumption being made is one of causality, i. e. due to the time
delays involved in the synaptic transmission of information, neurons do not interact
“instantaneously” but with some slight time lag2. Thus, although the model is independently
defined and fit to the spikes of each neuron, the collection of models describing all neurons
still constitutes a population model. This approach has also been used to characterize
pairwise dependencies in neuronal populations and to demonstrate their importance for
describing the spike statistics of individual neurons (see e. g. Pillow et al., 2008). But what
about the importance of the correlations for the collective spike statistics of the population?

This is the issue addressed by this paper, namely, how can one determine how accurately a
set of single-neuron models describes the population statistics? We describe and present a
practical methodology for such a statistical test, based upon a multivariate form of the time-
rescaling theorem for point processes. In its univariate form, the time-rescaling theorem
states that if the conditional intensity function of a point process is known, then its interspike
intervals (ISIs) can be transformed or “rescaled” as an integral over that conditional intensity
function so that they are independent and exponentially distributed. In contrast, the
multivariate form of the theorem states that the ISIs of a population of point processes can

1It should be noted that Marre and others have extended the Ising model to include spike history dependence by adding spikes in time
bins up to some truncated past to the Ising model and effectively inflating the population size (Martignon et al., 2000; Tang et al.,
2008; Marre et al., 2009). This results in greatly increased model fitting times because for models of the full joint distribution, a
normalization constant (partition function) must be calculated which involves a sum over the probability of all 2K possible patterns
(across K neurons) of spikes. This is extremely computationally intensive and must usually be done using Monte Carlo techniques,
although we note that several mean-field methods have recently been proposed (Broderick et al., 2007; Roudi et al., 2009).
2The size of this lag need to be no more than one time bin, and the bin size may be arbitrarily small.
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be rescaled so that not only are each neuron’s rescaled ISIs exponentially distributed and
independent of each other but are also independent of all other neurons’ rescaled ISIs.

We propose a step-by-step procedure for turning the multivariate version of the time-
rescaling theorem into a goodness-of-fit measure for point-process-based population models.
We demonstrate that even if each neuron’s own spiking activity is sufficiently described by
its conditional intensity function that the collective activity of the population may not be and
that the distinction between the two cases can be made by applying the multivariate test.
Towards this end we apply the tests derived both from the univariate and multivariate time-
rescaling theorem to simplified toy models, more complicated many-neuron models and also
spikes from real neuronal populations recorded in awake monkey V1 during natural scenes
stimulation. Thus, the multivariate extension of the time-rescaling theorem provides a means
for more accurately detecting situations in which couplings between neurons significantly
modulate the population dynamics and are likely to be of importance for neuronal
information processing.

2 Methods
2.1 Point-process based neural models

Data from neurophysiological experiments is often gathered in form of a sequence of
recorded action potentials. It is common to ignore the exact temporal profile of the action
potentials and treat them as discrete events localized in time, or in mathematical terms, as a
point process. One technique for quantifying the statistics of a point process is to describe it
in terms of its “conditional intensity function” λ(t|Ht) (Daley & Vere-Jones, 2002, chapter
7). This generalizes the concept of an instantaneous firing probability (rate) by conditioning
upon the past history of the point process Ht and may be formally written as

(1)

where N(t) is the counting function of the point process, stating the number of events inside
the time interval [0, t). If known exactly, the conditional intensity completely characterizes
the statistical properties of the individual point process under weak assumptions. In practice,
one generally hypothesizes a parametric form (which may be a function of stimuli, the
neurons’ own spiking history and so on) and fits it to the recorded spikes, generally using
maximum-likelihood estimation3. This approach has become standard for simultaneously
quantifying the influence of multiple external covariates (such as stimuli) and also the
neuron’s own spike history upon the output spikes (Brillinger, 1988;Chornoboy et al.,
1988;Kass & Ventura, 2001;Brown et al., 2003;Paninski, 2003;Truccolo et al., 2005;Okatan
et al., 2005;Kass et al., 2005;Rigat et al., 2006;Pillow, 2007;Stevenson et al., 2008;Pillow et
al., 2008;Czanner et al., 2008;Wojcik et al., 2009).

3Fitting the parameters of the conditional intensity function can be accomplished by maximizing the data likelihood which may be
expressed in terms of the conditional intensity function:

(2)

where {tn} is the set of spike times in the interval [0, T ].
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Multiple spike trains from a neural population can be treated as a set of point processes,
where each individual point process can potentially depend upon the others. For such
neuronal population activity, the aim is to find a statistically sufficient description of the
collective activity of the population, not simply the individual spike trains of each neuron.
One obvious extension is to account for mutual dependencies between neurons by
conditioning each neuron’s spiking on the past spiking history {Ht} of all neurons.
Formally, the conditional intensity function of each neuron in the population is now written
as

(3)

The activity of the neural population is described by the set of conditional intensity
functions, one for each of the K neurons in the population:

(4)

Models that only describe activity of a single neuron are referred to as univariate models. In
contrast, models that attempt to explain the firing of a whole population of neurons are
referred to as multivariate models. This distinction is irrespective of whether the models
make use of only the neuron’s own spiking activity Ht or that of other neurons or external
variables.

2.2 The univariate time-rescaling theorem
Regardless of whether a univariate or multivariate model is being considered, it must be
tested for being compatible with the observed data. One possible test applicable to point
process models, such as spike trains, is based upon the time-rescaling theorem. This theorem
and the associated test were introduced by Brown et al. to the neuroscientific community to
evaluate univariate models, i. e. models of single-neuron spike trains (Brown et al., 2002)4.
The theorem is a special case of the theorems discussed by Meyer (1971) and Papangelou
(1972) and has been applied to point process models in other scientific areas since then (e.g.
seismology (Ogata, 1988)). We now briefly review the univariate version of the time-
rescaling theorem before presenting the multivariate version and describing a new procedure
for using the theorem to test multivariate models.

The univariate time-rescaling theorem states that the interspike intervals (ISIs) of an orderly
point process can be transformed, or rescaled, so that the rescaled process is Poisson with
unit rate. That is, the rescaled ISIs are independent and exponentially distributed (Brown et
al., 2002) 5. This rescaling takes the form

(5)

4It appeared as “rate-rescaling theorem” in (Barbieri et al., 2001).
5The time-rescaling theorem applies exactly when continuous time is used and the spikes are defined as instantaneous events. As a
practical matter, most statistical models discretize time into bins and this discretization can cause a well-fitted model to, in certain
instances, be erroneously rejected if the firing rate is too high compared to the bin size. Two of the authors have recently proposed a
discrete-time version of the time-rescaling theorem which eliminates such problems (Haslinger et al., 2010).
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where {tn} is the set of spike times and λ(t|{Ht}) is the conditional intensity function of the
single neuron that is to be modeled. Several proofs of this theorem exist and we refer the
reader to Brown et al. (2002) for details. Although the τn can be compared to the exponential
distribution, it is useful to note that a second transformation will rescale the ISIs to a
uniform distribution:

(6)

General practice is to sort the transformed variables zn into ascending order and plot them
along the y-axis versus the uniform grid of values  where N is the number of
interspike intervals and n = 1,…, N. If the transformed variables zn are indeed uniformly
distributed, then the points should lie along the 45 degree line. Analytically defined
confidence bounds for the maximal deviance from the diagonal can be determined and for
even small sample sizes (N > 35) are well approximated by bn ± 1.36/N1/2 for the 95%
confidence level (Massey, 1951; Brown et al., 2003). Essentially, the cumulative density
function (CDF) of zns is being plotted against the CDF of the uniform distribution (the bns).
It can be thought of as a visualization of a Kolmogorov-Smirnov (KS) test which compares
two CDFs and is usually referred to as a “KS plot”. In practice, the residual zn − bn is plotted
against bn. For this “differential KS plot” the points should be close to the x-axis inside the
horizontal confidence bounds ±1.36/N1/2. See Figure 1B for an example of such a plot.

Beyond being uniformly distributed, the zns also have to be independent from each other.
Since independence of the quantities of a time-series is hard to estimate, analysis is usually
constrained to look for dependencies between subsequent intervals via a scatter-plot or
inspecting the autocorrelation structure of interspike interval lengths (Truccolo et al., 2005).
For a scatter plot, zn+1 is plotted against zn and in case of independence, the points should
uniformly fill the unit area.

Any of these tests is designed to detect a specific departure of the rescaled times from the
Poisson structure. Passing all tests is no guarantee that the rescaled times are indeed
Poissonian. For example, noting that the (linear) autocorrelation between intervals up to a
certain lag is not significantly different from zero does neither imply uncorrelatedness for
arbitrary lags nor independence, since uncorrelatedness is a weaker condition than
independence, hence intervals could be uncorrelated but still dependent (see e. g. the recent
developments on copula models (Onken et al., 2009) as an example of neuroscientific
relevance).

The KS test that is used to test the exponentiality of the rescaled intervals is adapted from
the original work of Brown et al. (2002). However, we note that the KS test is not the only
test suitable to compare a set of samples with a proposed theoretical distribution (for a
review, see e. g. Cox, 1955; Cox & Lewis, 1966; Naus, 1979). One possibility is the χ2-test
that however requires more samples and is less powerful than the KS test (Lilliefors, 1969;
Massey, 1951). An alternative would be to plot confidence bounds based on the probability
of individual data points to deviate from the diagonal, rather than testing the maximal
deviance as in the KS test. More alternatives have been formulated, e. g. by using the
Anderson-Darling (Anderson & Darling, 1952), Kuiper (Kuiper, 1962) or Cramervon Mises
statistics (Anderson, 1962). One may ask why there is such a variety of different tests. The
answer is simple: There are many alternative hypotheses against the null hypothesis which
states that the samples come from a given distribution. Generally, possible deviances are
even more extensive for the hypothesis of a Poisson process. Each test is particularly
sensitive to certain alternative hypotheses. A goodness-of-fit procedure should reject
proposed models across a broad range of possible deviances from the true model. For this
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purpose, the KS statistics has been proven to be robust. If however the expected shape of the
deviance is known, other tests than the KS test might be more powerful (Daley & Vere-
Jones, 2002).

The time-rescaling transformation is turned into a goodness-of-fit measure by designing a
statistical tests that allow the rejection of the null hypothesis that the data from the single
neuron was generated by the proposed model. However, if we are recording from multiple
neurons, a more general version of the theorem applies and more rigorous tests can be
performed.

2.3 The multivariate time-rescaling theorem
Within the conditional intensity function formalism, modeling the activity of several
neurons at the same time amounts to modeling the conditional intensity functions of each
neuron. A conceivable strategy to test such a population model would be to apply the
univariate time-rescaling theorem to each of the neurons separately and reject the model if
any of the individual tests fails (Truccolo et al., 2005; Rigat et al., 2006). However this
strategy may be insufficient since any test of the collective statistics must take into account
the correlations across spike trains. A simple example serves to make this clear. Consider a
unit rate Poissonian spike train and a second spike train which is an exact copy of the first
one, except that all spikes are shifted in time by a constant lag. Each of the spike trains can
obviously be individually described as a unit rate Poisson process and such a population
model would pass the univariate version of the time-rescaling test (apart from false
rejections that are controlled by the significance level of the test). This description strikingly
misses the strong temporally lagged correlation between the two spike trains. The population
model is, in short, wrong. A refined version of this example is more thoroughly discussed in
section 3.1.

Without a test that depends upon the collective statistics it is impossible to determine if all
interactions are correctly described, whether or not the entire population is included in the
conditioning. Since the univariate time-rescaling theorem is not sufficient to test population
models, it needs to be generalized. How does the time-rescaling theorem extend to the
multivariate case? As stated in the original work of Meyer (1971) and Papangelou (1972)
each rescaled point process in the population should be a unit-rate Poisson train which is
independent of all of the other rescaled point processes6. The independence between the
rescaled processes of different neurons is a non-trivial outcome of the generalized theorems.
To our knowledge, this generalized theorem has yet to be applied to neuroscientific data.

It is important to distinguish between the statement of the mathematical theorem and the
statistical tests that are make use of it to validate neural models. Here, assuming then that we
have rescaled each individual spike train with its estimated population-dependent λi(t|{Ht})
according to the theorem, how do we test that these rescaled processes are independent
Poisson processes and how do we design a statistical test that is able to reject the null
hypothesis that the population’s collective activity is generated according to a specific
model? One strategy is to note that if each rescaled spike train constitutes a Poisson process
independent of the others, then their superposition should also be a Poisson process. Along
this line, we now develop the testing scheme that is based on the mathematical formulation
of the time-rescaling theorem and that is shown schematically in Figure 1 and summarized
in section 2.4.

6A more comprehensive proof of the same theorem has been given by Timothy Brown in (Brown & Nair, 1988) or (Vere-Jones &
Schoenberg, 2004). It has also found its way into the textbook literature (Daley & Vere-Jones, 2002, proposition 7.4.VIa).
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First, each of the K spike trains is rescaled according to equation 5, i. e. the transformed
spike times of neuron i are given by:

(7)

According to the theorem, all rescaled processes should be unit-rate Poissonian. Hence, the
first step is to apply the univariate testing procedure to each of the rescaled processes using
the methods described in section 2.2. Since more than one statistical test is performed, an
appropriate multiple-testing correction has to be applied on the significance level. One
common choice is to use Bonferroni-corrected7 significance levels for the individual tests,
e.g. 5/K%. If any of these tests fail, at least one neuron is not properly modeled and the
overall population model has to be rejected.

The next step is to test the independence of the rescaled processes, as required by the
multivariate theorem. To this end, we note that a superposition of Poisson processes on the
same domain leads again to a Poisson process with a rate equal to the sum of the individual
rates. The rescaled processes however have in general different lengths; their domain is

given by: [0, ] with  where T is the length of the trial in the original
process. To obtain support on the unit domain, each transformed spike time of neuron i is

multiplied by a factor of . All processes can now be superposed into a single point process

on the unit domain. To recover unit rate, time is finally rescaled with a factor of .
The Poissonian nature (independent and exponentially distributed intervals) of the
superposed process can be tested with the same tools that are used for the univariate version,
notably the KS test on the intervals and scatter plots of intervals for a qualitative assessment
of the independence of consecutive intervals.

Even if the individual processes and their superposition are Poisson processes, this does not
guarantee the independence of the processes (Jacod, 1975) (but see He & Wang, 1996).
Therefore, as a final test, we define a mark sequence {mk} by placing discrete marks mk on
each spike denoting the corresponding neuron it comes from (mk ∈ {1, 2, …, K}). If the
individual point processes are Poisson and independent, the resulting superposition will also
be a Poisson process with unit rate. Moreover, the marks will form an independent

multinomial series with weights given by . The mark sequence {mk} should be an i.
i. d. sample from a multinomial series, i. e. a random sequence of numbers. One out of many
conceivable tests of this is based on cross-tabulating the pairs of consecutive numbers that

appear in the sequence. Let  denote the sample frequencies (that are based on the
observed number of spikes). If the sequence is random, hence uncorrelated, the frequency of
observing a particular pair of numbers is given by π̂iπ̂j. Let the entries of the cross-table cij
be normalized by the total number of entries. The deviation from the observed and
theoretical frequencies is assessed by a χ2-test whose test statistic is given by

 and follows a χ2 distribution with (K − 1)2 degrees of freedom. The
population model is rejected if either the KS test or the χ2 test reject their null hypothesis
based on a significantly low p-value.

7When a statistical test is repeated K times and the global false positive rate shall be bounded by α, the Bonferroni-corrected
significance levels for each individual tests are given by α/K. Note that in the context of goodness-of-fit evaluation, false positives
correspond to erroneously reject a true model. Another possibility is to control the false discovery rate via e.g. the Benjamini-
Hochberg (Benjamini & Hochberg, 1995) or Simes’ procedure (Simes, 1986).
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2.4 Proposed test procedure

1. Apply the time-rescaling transformation to each spike train. Test each of the K
rescaled processes for its Poissonian structure (using the classical univariate
testing procedure of section 2.2).

2.
Let  be the total rescaled time of each neuron i, i. e. . Denote

by  the ratio of the total rescaled time of neuron i compared to the total
rescaled time of the entire population. Normalize the rescaled ISIs of each
neuron i by 1/πi so that its average rescaled firing rate becomes πi (as opposed to
1).

3. Superimpose all the rescaled processes into a single point process. Place discrete
marks mk at each spike denoting the corresponding neuron it comes from (mk ∈
{1, 2, …, K}).

4. Test that the superimposed process is Poisson with unit rate using the same tests
as were applied for the univariate case.

5. Test the independence of the mark series {mk} using cross-tabulation of pairs of
subsequent marks and a χ2-test.

3 Results
We now present a series of example cases for which a population of neurons passes the
univariate time-rescaling theorem, but not the multivariate extension. These will clearly
show that unless the multivariate version of the tests are used, neuronal models which ignore
interactions may be judged adequate even when the interactions between neurons are in fact
significant and strong. We begin with a simple “toy model” of two neurons that are mutually
coupled. Two more analytically tractable examples are presented in the appendix. Next, we
present results using simulated data generated from a many-neuron model with second-order
couplings. Finally we show results obtained by fitting Generalized Linear Models (GLMs)
with cross-history terms to a population of V1 neurons recorded in awake macaque monkeys
during natural scenes stimulation. Unless otherwise stated, the discrete time version of the
univariate time-rescaling theorem (Haslinger et al., 2010) is used.

3.1 Example: Mutually coupled neurons
Assume a system of two model neurons, each mutually coupled with stochastic synaptic
delays. That means, after neuron one emits a spike, neuron two will spike with a delay
drawn from a stationary probability distribution. As the coupling is mutual, consequently,
the next spike of neuron one is generated after a delay to the second neuron’s spike. The
spike times  and  form a bivariate, simple point process. Formally, this corresponds to
an alternating renewal process, i. e. intervals are drawn from one of two fixed distributions
in an alternating fashion. Let the two delay distributions be normal with means μi and
variances  (with  and truncated at zero to avoid negative intervals). Without loss
of generality, we define the first spike of neuron one to be at t = 0. Figure 2 shows an
example spike train. For the numerical examples, we chose μ1 = 1 s, μ2 = 5 s, σ1 = 0.02 s and
σ2 = 1 s and N = 10000 spikes for each neuron.

If we separately analyze both neurons, we will find that they are each sufficiently described
by a renewal process with interspike intervals that follow a normal distribution with mean μ
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= μ1 + μ2 and variance . Furthermore, subsequent intervals are independent as
they are formed by the independently drawn delay times. An appropriate conditional
intensity function for such a renewal process can be derived, e.g.

(8)

where t* denotes the time of the last spike prior to time t and p(t) denotes the probability
density function (PDF) on the interspike intervals (Brown et al., 2003). In our case, p(t)
equals the PDF of a Gaussian variable:

(9)

For the time period of the spike trains, we can specify the conditional intensities λ(t|Ht)
according to Eq. 8. Using the univariate time-rescaling theorem of Eq. 5, a set of rescaled
spike times is obtained from which the intervals τ for each of the two neurons are formed.
The further transformation z = 1 − exp(−τ) should yield uniformly distributed values in case
of a correct model specification. Note that in the case of Gaussian renewal processes, z can
be directly calculated from the original intervals via

(10)

where Φ(x, μ, σ2) is the c.d.f (cumulative density function) of a Gaussian distribution with
specified mean and variance. The transformation will result in rescaled spike trains which
form unit-rate Poisson processes (up to statistical fluctuations). This can be numerically
confirmed by the KS test (to test exponentiality) and qualitatively using the scatter plots (to
test dependence of subsequent intervals) (see Figures 3a, b and 4a). From this finding, the
null hypothesis of the data being generated by the univariate model cannot be rejected.

However, this model is incorrect, the spike trains of the neurons are not independent.
Following the scheme in section 2.4, we find that the superposed spike train is not
Poissonian as a consequence of the inter-dependence between the two rescaled point
processes. The multivariate KS test, multivariate scatter plots, and χ2 test for independence
of the mark series all fail (see Figures 3c and 4b; KS test KS(N = 20000) = .059, p < .001, p-
value for the linear correlation between intervals p < .001 (Pearson’s ρ = −.05), χ2(1, N =
20000) = 1501, p < .001). Hence, following the multivariate formulation of the time-
rescaling theorem, we have to reject this model which lacks interneuron interactions.

To build a sufficient model, we have to take the interactions into account. The correct
coupled model is:

• For neuron one: The ith spike has a delay to the (i − 1)th spike of neuron two
according to a normal distribution with parameters μ2 and .

• For neuron two: The ith spike has a delay to the ith spike of neuron one according
to a normal distribution with parameters μ1 and .
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Using this model to rescale both spike trains (using the direct transformation of Eq. 10), we
find that the superposed process is indistinguishable from a Poissonian one (see Figures 3b
and 4d, KS(N = 20000) = .0043, p > .05, n. s. (not significant); p-value for the linear
correlation between intervals being zero p > .05, n. s. (Pearson’s ρ = .0048)). Moreover, the
mark distribution is an independent realization of a binomial distribution (χ2(1, N = 20000)
= .96, p > .05, n. s.).

3.2 Correlated many-neuron model
As a more complex example, we present the application of the proposed test to a simulated
data set with many interacting neurons. Several methods have been proposed to generate
spike trains with given (pair-wise) correlational structure (Niebur, 2007; Krumin & Shoham,
2009; Macke et al., 2009; Gutnisky & Josic, 2010). Gutnisky & Josic (2010) describe a
method to generate pair-wise correlated binary vectors by sampling from a multivariate
autoregressive process whose covariance matrix is a function of the desired correlational
structure. We used this method to generate simulated spike trains of length T = 3 s and N =
30 neurons. Each of them is assigned an average firing rate of ν = 20 Hz. A sequence of
binary vectors is generated, representing the activation of each neuron per time bin. We set
the width of the time bin to 1 ms. Exact spike times are sampled according to the procedure
described by Haslinger et al. (2010). This ensures that the point process of the population is
orderly and the multivariate theorem can be applied. The processes are restricted to have no
significant auto-correlation and cross-correlations ρ that decay exponentially in time with a
time constant of τ = 5 ms. The correlations ρ are assumed to be positive and of the same
peak value for all pairs of neurons. By modulating ρ, the overall strength of the introduced
pair-wise correlations can be controlled.

We now construct two models to describe the data. The first model assumes independent
Bernoulli neurons with constant firing rate and uses a logistic regression model with a single
constant term to independently fit each neuron’s spikes:

(11)

This and the following logistic regression models are fitted using standard maximum-
likelihood techniques (McCullagh & Nelder, 1989). Such a model generally passes the
univariate tests irrespective of the actual strength of the correlations. Thus it is not possible
to detect the pair-wise correlational structure using the univariate test. The multivariate test
however is sensitive to the introduced correlations and reliably rejects such an independent
model. To demonstrate this, we generated toy data with varying pairwise Pearson’s
correlation strength, ranging from ρ = 0 up to 0.01. For each condition, 200 trials were
generated, the individual models fitted and validated using with the multivariate test. The
empirical test power is defined as the percentage of repetitions for which the multivariate
test correctly rejected the independent model (rejection is based either on the KS test or the
χ2 test on the mark distribution). We expect the test power to be monotonically increasing
with larger correlations ρ. As can be seen in Figure 5, the multivariate test reliably detects
the departure from an independent model as soon as the average pairwise Pearson’s
correlations are above ρ ≈ 0.004. The typical strength of the correlations is in agreement
with typical values found in experimental recordings (Ecker et al., 2010). Schneidman et al.
(2006) have shown that weak pairwise correlations that are homogeneously present in the
neural population can have a strong effect on the observed global activity pattern. This
might explain the sensitivity of the multivariate time-rescaling theorem and its associated
tests even for rather small absolute values of correlations. Note that the evidence necessary
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to detect such correlations will depend both on the length of the simulated data set as well as
on the number of neurons for which the correlations are present.

In our second model for the population activity we construct a set of logistic regression
models in which the recent spiking activity of other neurons is taken into account. Here, the
spiking probability per time bin t is modeled as a non-linear transformation of a linear sum
of activities of the other neurons:

(12)

The ensemble-dependent part consists of me = 6 basis splines for the history of each other
neuron. Knot points are spaced on a support of up to 15 ms. Let the jth spline be of shape
Aj(Δt), then the contributing term to the above equation is:

(13)

where { } denotes the spike times of neuron i and βj denote the coefficients of the
regression model. All model parameters are estimated using maximum-likelihood. Such a
logistic regression model completely captures the pair-wise cross-correlations present in the
data. If each neuron is modeled this way, the population model is not rejected by the
multivariate test for arbitrary correlation strengths (e. g. for ρ = 0.01: KS test KS(N = 1843)
= .012, p > .05, n. s., χ2(841, N = 1843) = 866, p > .05, n. s.).

3.3 Natural stimulation of macaque V1
Next, we demonstrate the use of the multivariate time-rescaling procedure using spikes from
a population of neurons recorded simultaneously in monkey V1 during a natural stimulation
paradigm. The experimental details are described in the appendix. An analysis from one
recording session containing 42 neurons and 17 trials with a length of 5 seconds each (42749
spikes total) is presented here. We fit two logistic regression models both without and with
cross couplings between neurons. The uncoupled model included a baseline firing rate, a
spike-history term and a stimulus dependency (Truccolo et al., 2005):

(14)

The history-dependent part consists of mh = 11 basis splines. Knot points are spaced on a
logarithmic scale up to 64 ms. Let the jth spline be of shape Aj(Δt), then the contributing
term to equation 14 for neuron i is:

(15)

where { } denotes the spike times of neuron i. The stimulus term is modeled using basis
splines so that the firing rate can vary as a function of the time since stimulus onset. ms = 74
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basis splines Bj(t) splines with an equidistant spacing over the trial length were used. The
stimulus term is thus given by:

(16)

β0, βh;j and βs;j are parameters determined by maximum-likelihood estimation using the
standard IRLS (iteratively-reweighted least-squares) algorithm (McCullagh & Nelder,
1989). All 42 independent neuron models passed univariate KS tests (significance level
5/42%). However the multivariate procedure rejected the set of independent neuron models
as a sufficient model of the collective population activity (see Figure 6a, KS test KS(N =
81085) = .0096, p < .001, χ2(1681, N = 81085) = 1731, p > .05, n. s.).

As a second attempt at characterizing the population activity we constructed a model which
included cross-interaction terms:

(17)

The ensemble contribution is the past activity of the other recorded cells. Only interactions
betweens cells recorded from different electrodes were included. The term gensemble;t is
functionally similar to the self-history term, but sums over all the past histories of the other
neurons:

(18)

In the above, the same spline filters Aj(Δt) were used as with the self-history terms. This
model with cross-couplings yields 100 % performance on the univariate testing, as did the
uncoupled model. This time, however, the multivariate test does not reject the population
model (p-value for interspike intervals of superposed process, KS test KS(N = 81085) = .
0033, p > .05, n. s., χ2(1681, N = 81085) = 1675, p > .05, n. s., see Figure 6b). The cross-
interaction terms thus improve the model performance considerably and would not have
been detected as significant using the univariate test procedure.

4 Discussion
Simultaneous recordings from neural populations have become commonplace. Although
treating neurons in a population as independent is still a popular modeling approach
(Nirenberg et al., 2001; Oram et al., 2001; Petersen et al., 2001; Averbeck & Lee, 2003;
Jacobs et al., 2009), it has become increasingly clear that interactions between neurons
matter, at least for describing the collective spike statistics, and likely for neuronal
computation, although this is still hotly debated. Thus robust multivariate population models
(Iyengar, 2001; Brown et al., 2004; Truccolo et al., 2005) for characterizing such activity are
critical, as are appropriate statistical tests for validating these models. As yet, however, few
tests of the collective statistics are being employed. When modeling neural populations,
most prior studies either neglected any goodness-of-fit analysis (Chornoboy et al., 1988;
Brillinger, 1988; Itskov et al., 2008), or used univariate tests such as the classical time-
rescaling theorem separately for each modeled spike train (Truccolo et al., 2005; Rigat et al.,
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2006). Using both simulated and real data, we demonstrated that this approach is insufficient
because it does not test the collective statistics of the population. We presented a
multivariate version of the time-rescaling theorem and proposed a test methodology suitable
for determining the statistical sufficiency of neural population models. Our methods
generalize time-rescaling-based goodness-of-fit tests to population models and provide one
option for testing their statistical sufficiency, limited only by the finite amount of data and
the statistical power of the tests.

The efficacy of our methods was demonstrated using both simulated (for which the true
neuronal coupling is known) and real data sets (for which it must be inferred). The example
of mutually coupled neurons (section 3.1) and a larger population of neurons (in section 3.2)
show substantial cross-neuron dependencies that might easily be missed if each neuron is
only looked at in isolation. In the Appendices, we present further examples of practical
interest. The example with synchronous triplets covers the case of higher-order spike
patterns. Assessing the significance of higher-order spike patterns has been proven difficult
in other studies (Martignon et al., 2000; Pipa et al., 2007, 2008). Here, a model that fails to
incorporate significant higher-order interactions is likely to be rejected by tests based on the
multivariate time-rescaling theorem. The second example in the appendix represents the
class of common-input models (Kulkarni & Paninski, 2007; Paninski et al., 2010) or more
generally latent variable models in which parts of the network that contribute to spiking are
unobserved (Smith & Brown, 2003; Eden et al., 2004; Jackson, 2004; Nykamp, 2007;
Koyama & Paninski, 2009). Here, the proposed test procedure is able to detect the
dependencies that are introduced by the common input or globally acting latent processes
and is therefore a strong tool for these kind of studies. Finally, we applied our method to a
set of experimental data obtained from the visual cortex of the macaque monkey. It
demonstrates that using the univariate theorem may erroneously indicate a good fit for
independent encoding models. The lack of fit is detected by the multivariate extension and is
(at least partly) corrected for by including additional cross-interaction terms in the GLM.

One has to carefully distinguish the mathematical theorem and the statistical tests that are
performed. The multivariate theorem states that rescaling the individual spike trains with a
proper model intensity results in a set of statistically independent Poisson processes. We
chose a particular procedure to test this hypothesis by superposing all rescaled processes to
obtain again a Poisson process with an independent mark sequence. Since in general, the
superposition of arbitrary independent point processes will asymptotically result in a
Poisson-like point process (but see Lindner, 2006), it is necessary to check that the
individual processes are Poissonian (step one of the test procedure of section 2.4). The time-
rescaling requires not only the superposed, but also the individual processes to be
Poissonian. In addition, through this first step, the univariate version of the time-rescaling
theorem is included and the multivariate test has by definition at least the same test power.
One alternative to the superposition of the processes into a single point process after time-
rescaling is to study the cross-correlations between pairs of the rescaled processes. If the
processes are mutually independent, their cross-correlation vanish for arbitrary lags. While
this procedure is in principle feasible, it requires of the order of K2 tests and only controls
for pair-wise correlations. Our particular choice of the testing procedure has the considerable
advantage that it can detect also higher-order dependencies and the outcome is just a single
point process that has to be tested for its Poisson properties. Hence, the proposed testing
method inherits all the possibilities for tests that are already available for the univariate case.
Although the rescaling and superposition potentially obscure temporal correlations that have
not been properly modeled, we believe that the procedure works well when correlations are
stationary in time and extend over the whole recording time. The additional χ2 test on the
independence of the mark sequence is a simple and well-established statistical test, although

Gerhard et al. Page 13

Neural Comput. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



there are certainly many other statistical tests to assess the randomness of an integer
sequence (for a review, see e. g. Marsaglia, 1985).

The test procedure we have proposed is derived from the multivariate time-rescaling
theorem for point processes and is applicable to all population models based upon the
conditional intensity formalism. Modeling the conditional intensity of a point process covers
a range of model classes that have been used in the neuroscientific context. Inhomogeneous
Poisson processes (Olson et al., 2000; Kass & Ventura, 2001) as well as stationary renewal
processes for the interspike interval distributions (typically involving gamma (Brown et al.,
2003; Maimon & Assad, 2009), log-normal (Barbieri et al., 2001) or inverse Gaussian
distributions (Iyengar & Liao, 1997)) can be described using the conditional intensity.
Moreover, inhomogeneous Markov interval processes (IMI) are a sub-class of conditional
intensity models (Johnson, 1996; Kass & Ventura, 2001; Brown et al., 2002; Muller et al.,
2007; Wojcik et al., 2009). The conditional intensity can also be non-parametrically
estimated (Berry & Meister, 1998; Jacobs et al., 2009). Finally, Poisson- and Bernoulli-
GLMs are inside the conditional intensity framework and therefore amenable to the
proposed goodness-of-fit procedure. Besides modeling spike-history effects, these GLMs
can study the influence of external covariates, such as stimuli or the spiking activity of
neighboring neurons (Harris et al., 2003; Paninski, 2003; Kass et al., 2005; Okatan et al.,
2005; Ventura et al., 2005; Pillow et al., 2008; Stevenson et al., 2008; Lewi et al., 2009;
Toyoizumi et al., 2009). Since the conditional intensity works on the level of point
processes, it cannot be applied to models for continuous data (like modeling neuronal
voltage dynamics or locally averaged electrical activity of a network of neurons). It can
nevertheless be used to measure the influence of local field potentials to the spiking activity
of single neurons (Andersen et al., 2004; Quiroga & Panzeri, 2009).

A distinction should be made between absolute and relative goodness-of-fit measures. For
instance, the classical time-rescaling theorem was designed as an absolute goodness-of-fit
test, yielding a binary decision about a specific model. Another example is the χ2 test on the
deviance of a regression model (Montgomery et al., 2006). Relative goodness-of-fit
measures compare different models and may be useful even if none of the models
corresponds to the true model that generated the data. There are, in general, many measures
available for assessing relative goodness-of-fit of neuronal models. Most commonly, the
likelihood of a part of the data that was not used for fitting is evaluated (Pillow et al., 2008;
Shlens et al., 2009; Itskov et al., 2008). If the experimental paradigm allows it, a model can
be judged based on its ability to decode input stimuli or other conditions (Brown et al.,
2004; Kass et al., 2005; Churchland et al., 2007; Stevenson et al., 2008). Furthermore,
information-theoretic measures like the BIC (Schwarz, 1978) or AIC (Akaike, 1973) can be
used (see e. g. Truccolo et al. (2005); Czanner et al. (2008)). Often the power of a model to
predict times of spiking is quantified (Gerstner & Naud, 2009; Truccolo et al., 2010). In the
case of deterministic models, their predictions can be compared to the observed data set
using spike train metrics (e. g. the G coincidence factor (Kistler et al., 1997; Jolivet et al.,
2008)). In the case of stochastic models evaluations have been made using receiver-
operating characteristics (Truccolo et al., 2010) and, more extensively, the (univariate) time-
rescaling theorem (see e. g. Ogata (1988); Barbieri et al. (2001); Smith & Brown (2003);
Brown et al. (2003); Rigat et al. (2006); Koyama & Kass (2008); Wojcik et al. (2009);
Shimokawa & Shinomoto (2009)). It should be noted that both the classical and the
multivariate extension of the time-rescaling theorem can be used as a relative measure by
ranking models according to the absolute value of KS statistics.

Passing any absolute goodness-of-fit test does not guarantee that one has found the true
model that underlies the data. It merely indicates that the observed data is consistent with a
specific model within the bounds that are set by the power of the employed statistical tests.
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The time-rescaling procedure can be seen as a residual analysis which detects structure in
the data that has not been accounted for by the model. In this way, it serves as a diagnostic
tool: For example, in the first step of the multivariate procedure, each neuron is individually
tested. If one or more models are rejected at this stage, then behavior of these neurons was
not accurately described. If all neurons pass the individual test, but the population model is
rejected based on the interval distribution of the superposed process or the mark sequence,
then dependencies or higher-order interactions are contained in the residual traces and
indicate an incomplete population model. By performing the superposition only on a subset
of neurons, the cause of the model failure may be further localized.

We have, in this paper, provided one possible test of population goodness-of-fit. Our
methodology is simple to implement and builds upon well established univariate tests of
statistical sufficiency. Other techniques (see above) should obviously also be employed as
well, but the multivariate time-rescaling theorem and its derived tests are a powerful
addition to the statistical sufficiency test “toolbox” and as such should be widely applicable.
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Appendix
Here, we give two more simple examples that are analytically tractable. With these, we
demonstrate the need to extend the univariate time-rescaling theorem: Even when we can
estimate the conditional intensities separately for each neuron, the testing for model
sufficiency has to be done in a unified way.

Example: Neurons with synchronous triplets
Consider three neurons that each has its own ground firing rate λ(g). On top of that,
synchronous triplet events are inserted independently with a rate of λ(t). The resulting
processes are again Poisson processes with rate λ(g) + λ(t), however, these processes will be
correlated through the triplet events and are hence dependent. Note that we can summarize
the three processes with one marked, simple point process where a mark S is placed for each
triplet event and {1, 2, 3} for spikes from the corresponding ground processes with rate λ(g).
The observed spike train of neuron i consists of the superposition of the events with marks S
and i.

For the numerical example, we used the same stationary rate of λ(g) = 50 Hz for every
neuron and triplets were inserted with a rate of λ(t) = 10 Hz. The simulated spike trains had a
length of T = 200 s, using a time discretization of Δ = 1 ms. Similar to the example of
section 3.2, exact spike times are sampled using the procedure of the discrete time-rescaling
procedure (Haslinger et al., 2010) so that the resulting point process is simple. The
synchronicity of the triplet events is therefore confined to a temporal window of Δ = 1 ms.
Example spike trains are shown in Figure 7.
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If the univariate test was applied to each neuron individually, then a simple model such as
λi(t|Ht) = λ(g) + λ(t) = const for the activity of the individual neurons would already be
statistically sufficient to describe the spikes (see Figure 8a). A constant-rate model
corresponds to a uniform rescaling of all intervals with a constant factor. However, this
model fails the multivariate test as can be seen in Figure 8b (KS(N = 29316) = .015, p < .
001, χ2(4, N = 29316) = 44.3, p < .001). Time-rescaling the individual spike trains does not
affect the dependencies between the spike trains since all three spike trains are rescaled by
the same constant factor.

A multivariate model which correctly describes the population can be constructed as
follows: Identify the synchronous events in the population recording and model these with a
homogeneous Poisson process with rate λ(t) (the events with mark S). For each spike train,
consider the remaining spikes and model the occurrences of these with a Poisson model of
rate λ(g) each. When time is discretized into small bins of width Δ, we get:

(19)

After time-rescaling, one obtains three processes whose Poisson nature cannot be rejected.
The same holds for the superposed process (KS(N = 29316) = .005, p > .05, n. s., χ2(4, N =
29316) = .48, p > .05, n. s., see Figure 8b).

Example: Neurons with common input
This example is an instantiation of the multiple interaction process (MIP) of Kuhn et al.
(2003): First, a latent Poisson process with constant ground rate λg is generated. The spike
trains of the observed neurons are independently thinned versions of λg, i.e. each spike from
the ground process is included in the spike train of neuron i with probability pi. The resulting
processes are Poisson processes with rate piλg. However, these processes will be correlated,
hence dependent.

For the numerical example, we used a latent ground process with stationary rate of 50 z, and
six neurons with pi = p = 0.2. A possible realization of such a process is shown in Figure 9.
Exact spike times are sampled using the procedure of the discrete time-rescaling procedure
and the resulting point process is simple.

A simple model for the conditional intensity such as λi(t|Ht) = piλg = const for the activity of
the individual neurons would be already sufficient as each daughter process constitutes a
Poisson process itself (see Figure 10a). The time-rescaling procedure scales each spike train
by a constant factor to obtain unit-rate Poisson processes. This would clearly not affect the
dependencies between the spike trains. Using the tests of the multivariate time-rescaling
theorem, however, we reject the independent-neuron population model (see Figure 10b,
KS(N = 5897) = .13, p < .001, χ2(25, N = 5897) = 150, p < .001).

In the correct model, the ground process is known and the conditional intensity of the
daughter processes can be modeled as

(20)
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where Σjδ(tj) is the spike train of the ground process (as a sum of delta functions at spike
times tj).

When time is discretized into small bins of width Δ, this corresponds to:

(21)

Applying the tests based on the time-rescaling theorem, one obtains six processes whose
Poisson nature cannot be rejected. The same holds for the superposed process (KS(N = 5897)
= .013, p > .05, n. s., χ2(25, N = 5897) = 23.1, p > .05, n. s., see Figure 10b).

Experimental details
Data was obtained with one rhesus monkey. Experimental procedures were approved by
local authorities (Regierungspraesidium Hessen, Darmstadt, Germany) and were in accord
with the guidelines of the European Community for the care and use of laboratory animals
(European Union directive 86/609/EEC).

For each trial, fixation was required throughout the trial length of five seconds. Test stimuli
consisted of natural scene movies recorded with a digital video camera (resolution 960 times
720 pixels at 30 frames per second, non-interleaved, Panasonic DVCPRO-HD format).
Video sequences consisted of images of leaves, garden trees, or scenes in our laboratory
obtained after a single panning movement of the camera (i. e. the video sequences always
contained a single predominant global movement component).

All video clips were fully desaturated and converted into bitmap image sequences cropped
to a size of 936 times 702 pixels. The sequences were displayed at 100 Hz (the same frame
was presented twice) using a standard graphical board controlled by ActiveStim (average
luminance, 10 cd/m2).

Recordings were made from the opercular region of V1 (receptive fields centers, 2.0° to 3.0°
eccentricity) and from the superior bank of the calcarine sulcus (10.0° to 13.0° eccentricity).
Electrodes were inserted independently into the cortex via guide tubes positioned above the
dura (diameter, 300 μm; Ehrhardt Söhne, Germany), assembled in a customized recording
device. Quartz-insulated tungsten-platinum electrodes (Thomas Recording, Germany;
diameter, 80 μm) with impedances ranging from 0.3 to 1.0 MΩ were used to record
simultaneously the extracellular activity from four to five sites in both superficial and deep
layers of the cortex.

Spiking activity of small groups of neurons (MUA) were obtained by amplifying (1000X)
and band-pass filtering (0.7 to 6.0 kHz) the recorded signals with a customized 32 channels
Plexon pre-amplifier connected to a HST16o25 headset (Plexon Inc., USA). Additional 10X
signal amplification was done by on-board amplifiers (E-series acquisition boards, National
Instruments, USA). The signals were digitized and stored using a LabVIEW-based
acquisition system developed in our laboratory. Spikes were detected by amplitude
thresholding, which was set interactively after on-line visualization of the spike waveforms
(typically, two to three standard deviations above noise level). Spike events and
corresponding waveforms were sampled at 32 kS/s (spike waveform length, 1.2 ms).

Off-line spike sorting was performed using a dynamic template matching method
implemented in a custom software package. Sorting was initiated by an automatic procedure
which defined up to 12 different clusters. Afterwards, various displays, such as tuning
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curves, autocorrelograms and measurements of recording stability were used to guide
interactively which cluster to merge or delete. Only clusters well-separated in 2D and 3D
plots of spike principal-component-analysis scores were assigned to single-units (SUA) if a
refractory period was confirmed in interspike interval distributions.
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Figure 1.
Procedure to test neural population models based on the multivariate time-rescaling
theorem. (A) First, the individual spike trains are rescaled according to the modeled
conditional intensity. The rescaled processes are normalized to equal lengths and
superposed. The dotted lines indicate the end of the trial. The superposition defines a
sequence of discrete marks. (B) The superposed point process can be tested against the
hypothesis of a unit-rate Poisson process. The test statistic of the KS test together (solid line)
with the number of samples N defines a p-value. This differential KS plot also displays 95%
confidence intervals (dashed lines). (C) The independence of the mark sequence is tested via
cross-tabulation consecutive pairs of marks and performing a χ2 test on the observed
frequencies. The test statistic χ2 together with the degrees of freedom (d. o. f.) define the p-
value for this test.
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Figure 2.
Mutually coupled neurons. Two neurons are mutually coupled and alternatively generate
spikes with stochastic synaptic delays that are drawn from two Gaussian distributions (area
shaded in gray). Example spike trains are shown with model parameters μ1 = 1 s, μ2 = 5 s, σ1
= 0.1 s and σ2 = 0.5 s.
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Figure 3.
Mutually coupled neurons. (A) Residual KS plots for the univariate test. Both plots (solid)
lines lie within the dashed horizontal lines which indicate 95% confidence bounds. Hence,
both neurons seem to be sufficiently modeled by an independent renewal process. (B)
Residual KS plots for the superimposed process of the multivariate test according to the
independent-neuron assumption (solid line) and the coupled, correct model (dotted line).
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Figure 4.
Mutually coupled neurons. (A) and (B): Scatter plots of pairs of subsequent z-values for the
univariate test do not suggest any dependence structure within neurons. (C) Scatter plot of
pairs of subsequent z’s for the superposed spike train of the multivariate test for the
independent-neuron model. A deviance from uniformity is visible. (D) The same scatter plot
for intervals of the superposed process of the correct model. For all plots, only every tenth
pair is shown. Independence is indicated by a uniformly filled unit area.
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Figure 5.
Simulated many-neuron data set. Depending on the pairwise correlation strength (Pearson’s
ρ) in the data set, the test power of the multivariate time-rescaling test is shown. The test
power is defined as the fraction of 200 randomly generated trials for which the multivariate
theorem rejected the independent-neuron model, either based on the KS test or the χ2 test on
the mark sequence. A sigmoidal function with a baseline of 0.05 is fitted to the data points.
The threshold (for which the test power exceeds 50%) is at around ρ = 0.004 (indicated by
the dashed lines). The vertical bars denote 95% confidence intervals on the test power
estimates.
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Figure 6.
Monkey V1 data. (A) Residual KS plot for the superposition of the 42 spike trains using the
independent-neuron GLM. The multivariate test rejects this model as the line crosses the
95% confidence bounds. (B) Residual KS plot for the superposition of the 42 spike trains
using a model with cross-interactions. The rescaled process lies completely within the
confidence bounds.
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Figure 7.
Neurons with synchronous triplets. Three neurons exhibit synchronous triplet events
(indicated by gray boxes) on top of independent Poissonian background processes. Example
spike trains were generated with ground rate of 50 Hz and triplet rate of 10 Hz. Only the first
200 ms are shown.
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Figure 8.
Neurons with synchronous triplets. (A) Residual KS plots for the univariate test. All lines lie
within their 95% confidence bounds. Note that confidence bounds are dependent on the
number of spikes, hence slightly different for each neuron. (B) Residual KS plots for the
superposed process of the multivariate test according to the independent-neuron assumption
(solid line) and the coupled, correct model (dashed line).
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Figure 9.
Neurons with common input. K = 6 neurons receive synaptic input from a common Poisson
process with rate 50 Hz. Neurons fire a postsynaptic spike independently from each other
with probability p = 0.2. Only the first 200 ms of the sample are shown. The spike times of
the latent background process are indicated by gray boxes.
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Figure 10.
Neurons with common input. (A) Residual KS plots for the univariate test. All lines lie
within their 95% confidence bounds. (B) Residual KS plots for the superposed process of
the multivariate test according to the independent-neuron assumption (solid line) and the
coupled, correct model (dashed line).
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