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Abstract
In this article, we applied a marginal structural model (MSM) to estimate the effect on later drug
use of drug treatments occurring over 10 years following first use of the primary drug. The study
was based on the longitudinal data that were collected in three projects among 421 subjects and
covered 15 years since first use of their primary drug. The cumulative treatment effect was
estimated by the inverse-probability of treatment weighted estimators of MSM as well as the
traditional regression analysis. Contrary to the traditional regression analysis, results of the MSM
showed that the cumulative treatment occurring over the 10 years significantly increased the
likelihood of drug use abstinence in the subsequent 5-year period. From both the statistical and
empirical point of view, MSM is a better approach to assessing cumulative treatment effects,
considering its advantage of controlling for self-selection bias over time.
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Introduction
Research on drug addiction reveals that drug treatment is rarely a one-time event. Instead,
many drug-dependent individuals are involved in treatment multiple times over their
addiction careers, with treatment episodes being of varying lengths of stay (Hser, Grella,
Anglin, Longshore, & Prendergast, 1997). In addition to examining the effects of individual
single treatment, researchers have also been interested in whether cumulative treatment
effects exist, that is, if beneficial treatment effects result from the multiple treatments
accumulated over time (Hser et al, 1997; Hser, Grella, Chou, & Anglin, 1998).

The challenge in assessing cumulative treatment effects in observational studies is that those
multiple treatment episodes generally do not stand alone over the life course. Multiple
treatments are often the result of drug use and related problems; even though a given
treatment may reduce drug use, subsequent drug use may result in additional treatment. As a
result, different treatment profiles of subjects may represent or be the result of different
dynamic processes. We use Figure 1 to better illustrate this idea.

In Figure 1, Ai1, Ai2,…, Ai10 denote the amount of treatments received by the ith subject at
each time point, while Di1, Di2,…, Di10 denote the amount of drug use by the subject at each
time point. Some studies have shown that treatment history is an important predictor of
subsequent treatment entry (Hser, Maglione, Polinsky, & Anglin, 1998; Schutz, Rapiti,
Vlahov, & Anthony, 1994). Other studies showed that drug use and treatment often
intertwine with each other into a cyclic career (Hser et al., 1997). As illustrated by the
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arrows in Figure 1, for the ith subject, the probability of receiving treatments at any given
time point (e.g., Ai2) may depend on treatments and drug use at the previous time points
(e.g., Ai1, Di2, Di1), while drug use at a previous time point (e.g., Di2) may depend on
treatments and drug use at or before that time point (e.g., Ai1, Di1). In addition, across time,
the likelihood of receiving treatment at any given time point may also be influenced by some
time-invariant variables, such as gender, primary drug type, or age of first arrest. As a result,
the variables measured at baseline, as well as treatment and drug use at each time point,
influence the likelihood of treatment involvement and form different treatment profiles of
subjects observed in studies.

This dynamic process of drug use and treatment participation over the life course is a
realistic reflection of typical addiction careers. However, it poses challenges in statistical
methodology when assessing the cumulative effect of those past treatments on drug use
outcome (e.g., abstinence) at a later time. One standard approach to this problem is to apply
regression analysis to predict the mean of drug use outcome at a later stage as a function of
those past treatments. Robins (1986, 1997) has shown that this standard approach may be
biased, whether or not one further adjusts for past drug use history or covariates in the
analysis, when:

C1 – conditional on past treatments, a time-dependent variable is a predictor of the
subsequent mean of the outcome and also a predictor of subsequent treatments;

C2 – past treatments are independent predictors of the time-dependent variable.

In this article, we refer to variables satisfying C1 and C2 as time-dependent confounders.
For example, for the case illustrated in Figure 1, drug use history (e.g., Di2) is a time-
dependent confounder for cumulative effect of treatments on drug use outcomes at a later
stage since it predicts not only subsequent drug use outcomes (e.g., Di3) but also subsequent
treatments (e.g., Ai2, Ai3), and past treatments (e.g., Ai1) are independent predictors of Di1.
Thus, standard regression methods that predict the mean drug use outcome at a later stage
using a summary of past treatments up to that stage may produce biased estimates of the
causal effect of cumulative treatment whether or not one adjusts for drug use history in the
analysis.

To overcome the limitations of this standard approach, Robins and his colleagues developed
the marginal structural model (MSM; Robins, 1997, 1999; Robins, Hernan & Brumback,
2000). The advantage of MSM is that it can be adapted to unbiasedly estimate the causal
effect of cumulative treatments on later drug use outcomes in the presence of time-
dependent confounders that are themselves affected by past treatments (Robins, 1986, 1997;
Robins et al., 2000).

Our article is organized as follows. We first review the definitions of causal effect and
confounding based on counterfactual outcomes. Then the MSM framework will be
introduced and applied to a 15-year longitudinal dataset. The results of MSM will be
compared with results from traditional regression analysis and discussion will be presented
at the end of the article.

Statistical Background of Marginal Structural Model
To better understand MSM models, we first present a formal definition of causal effect and
no unmeasured confounding. Let  and  respectively
denote the potential and observed treatment profiles by the ith subject where ait and Ait
respectively are the potential and observed amounts of treatment received by the ith subject
at the tth time point in Figure 1. By this definition, the observed treatment profile  is the
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realization of  observed for the ith subject. Let Yi denote the observed drug use outcome of
the ith subject after the 10th time point in Figure 1 and let  denote the potential or
counterfactual drug use outcome of the ith subject with a treatment profile  after the 10th

time point. Then the subject’s observed outcome Yi is the counterfactual drug use outcome
 for the treatment profile  that the ith subject did indeed receive (consistency

assumption). The counterfactual outcome , even though generally unobserved, represents
a subject’s outcome if the subject, possibly contrary to fact, had been treated with  rather
than his or her observed treatment .

In statistical literature, the concept of counterfactual outcomes has been introduced and
advocated for causal inference by many people (e.g., Neyman, 1923; Robins, 1986; Robins
et al., 2000; Rubin, 1974). By this concept, treatment has a causal effect on a subject’s
outcome if the counterfactual outcomes of the subject under two or more treatment profiles
are different. For example, if treatment has no effect on the drug use outcome of the ith
subject, then  for all āi, where  is the outcome when the ith subject had been treated
with profile āi, 0̄ denotes a specific treatment profile with no treatment involved at all and y0̄
is the outcome when the subject had been assigned to that specific treatment profile 0̄. On
the other hand, when treatment effect exists, the difference  is the causal effect of
treatment profile āi relative to 0̄. Similarly,  is the average causal
effect of treatment profile āi relative to 0̄ in the population. In addition, by the concept of
counterfactual outcomes, no unmeasured confounding is defined as

for all āi, where Fi0 denotes those covariates at baseline having the significant effect on
treatment participation across time points, and Fi1 denotes all other available covariates at
baseline not having such an effect. That is, prior treatment history is independent of the
counterfactual outcome given a set of baseline covariates.

Given the definitions, suppose now we have such a model for the mean of 

(1)

where , and β0, β1, β2, and β3 are the parameters for estimation. The model
in (1) is our marginal structural model (MSM) adapted from Robins et al. (2000) and used
for our analysis. It is a “marginal” model because it describes the effect of treatment profile
āi on the marginal distribution of the corresponding counterfactual outcome  and is a
“structural” model because models like (1) are called structural in the social and behavioral
sciences (see Robins et al., 2000). By (1), we see that the average causal effect of treatment
profile āi relative to 0̄ is , which under our MSM model in (1) is
β1Cum(āi). Given that no other unmeasured confounding (as defined above) and model
misspecification are present, the parameter β1 has a causal interpretation as the mean change
of later drug use outcome caused by the cumulative treatment.

Unlike the MSM model in (1), the traditional regression model for the investigation of
cumulative treatment effect can be expressed as
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(2)

where  and . Notice that since the model in (2) is
conditional on , it follows from the consistency assumption mentioned before that .
So a standard regression model is a model for the conditional mean of  given .
Robins et al. (2000) called the model in (2) “standard crude analysis” and pointed out that γ1
in this analysis will generally not have a causal interpretation like β1 in (1), even if the
model in (2) is further adjusted by some other variables (e.g., drug use history and a set of
baseline covariates in our case). This is because  depends on a subject’s entire
treatment history including ai1 = Ai1, and ai1 = Ai1 may affect the time-dependent
confounders, like Di2, as defined by C1 and C2 before. Thus, given that the fitting model is
correctly specified, the standard regression in (2) adjusted for covariates could provide an
unbiased estimate of γ1 but a biased estimate of the causal parameter β1 because the outcome

 is confounded with the past treatment history  in this “standard crude analysis” (see
Robins et al., 2000).

Robins et al. (2000) provided the inverse-probability of treatment weighted (IPTW)
estimators for β1 in (1). Let  denote the probability of the ith subject’s
treatment profile ( ), given the drug use profile at the same period ( ) and some
relevant covariates (Fi0). Let a weight wi to be defined as

(3)

for the ith subject. Robins et al. (2000) suggested that an unbiased estimation of β1 can be
obtained by using SAS Proc Genmod to fit the standard regression model in (2) with the
weight specified as wi in (3). By performing such model fitting, each subject was assigned a
weight wi equal to the inverse of the conditional probability of receiving his or her own
treatment profile.

Robins et al. (2000) provided an intuitive explanation for the rationale of the adjustment
described above. It was suggested that the effect of weighting in Proc Genmod is to create a
pseudopopulation consisting of wi copies of the ith subject. That is, if, for a given subject
with wi = 4, the subject contributes four copies of him or herself to the pseudopopulation.
Thus this weighting will increase the number of replicates of the subject in the
pseudopopulation when the subject has a lower probability of receiving his or her
corresponding treatment profile and thus a larger wi. On the other hand, the weighting will
reduce the number of replicates of the subject in the pseudopopulation when the subject has
a higher probability of receiving his or her corresponding treatment profile and thus a
smaller wi. Robins et al. (2000) argued that this new pseudopopulation has the following two
important properties. First, in the pseudopopulation, unlike the actual population,  is
unconfounded by the measured variables (e.g.,  or Fi0). Second, the expectation  in
the pseudopopulation is the same as in the true study population so that we can unbiasedly
estimate the causal effect by a “standard crude analysis” in the pseudopopulation.

Although this explanation is intuitive, Robins et al. (2000) noticed that the weight wi in (3)
can lead to extreme weights that would result in estimates of β1 with large variance and
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wider confidence intervals around estimates of β1 in practice. With this instability, they
suggested a stabilized weight swi, which was defined as

(4)

The numerator of the weight, which does not depend on the measured variables (e.g.,  or
Fi0), was added to minimize the difference between the numerator and denominator.
Suppose  is not confounded by the measured variables (e.g.,  or Fi0), the numerator and
denominator will be equal to each other and swi = 1. Then each subject contributes the same
weight. When  is confounded, swi would vary around the number 1 and tend to be less
variable than wi. As a result, the estimates of β1 would have smaller variance and the
confidence intervals of the estimates would become narrower.

In practice, to estimate swi, Robins et al. (2000) specified

where swit is the stabilized weight at the tth time point, P(ait = Ait|Ai(t−1), Ai(t−2)) is the
individual probability of ait = Ait given Ai(t−1) and Ai(t−2), and P(ait = Ait|Ai(t−1), Ai(t−2), Dit,
Di(t−1), Di1, Fi0) is the individual probability of ait = Ait given Ai(t−1), Ai(t−2), Dit, Di(t−1),
Di1, and Fi0. Similarly, the non-stabilized weight wi can also be expressed as the
multiplication of wit over time points. In practice, the individual probabilities above can be
estimated from data by some parametric models (e.g., cumulative logit model). In this
article, we followed Robins et al (2000) and adapted cumulative logit model to estimate
these individual probabilities. Our cumulative logit models took the following forms

and

where 1 ≤ j ≤ kt − 1 and kt is the total number of categories of Ait (see Appendix for the SAS
syntax for these models). Then the individual probabilities can be estimated from the sample
and used to calculate swit or wit at each time point and the weights in (3) and (4).
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Methods
Data Source

Analyses were conducted based on data from three studies that collected self-reported
longitudinal information from substance abusers using the Natural History Instrument (NHI,
described below). All studies were conducted in California. We relied on projects with the
NHI data to maximize coverage of the drug use and treatment careers, and we selected from
each study those subjects who were observed for 15 or more years since first use of their
primary drug. Projects included the Methamphetamine Natural History Study (METH;
N=155), the Treatment Process Study (TPROC; N=175), and the Treatment Utilization and
Effectiveness study (TUE; N=117). The primary drug (i.e., the drug for which the subject
was in treatment at the baseline assessment) was methamphetamine for the METH study.
The TPROC and TUE studies included subjects recruited from non-treatment settings
(emergency rooms, sexually transmitted disease clinics, and jails) and the primary drug type
was self-identified. While many of these subjects reported use of drugs other than their
primary drug, a separate analysis showed that use of other drugs was generally at a much
lower level than the primary drug (Brecht, Huang, Evans, & Hser, 2008).

When data were pooled, 121 subjects (27%) entered treatment within 10 years following
first use of their primary drug, while over the same time period, 326 subjects did not enter
treatment at all (73%), constituting a total of 447 subjects. In addition, 26 subjects had
missing values on the covariate, age at first arrest. When these subjects were omitted, a total
of 421 subjects were included in the analysis.

Instruments
The NHI was adapted from instruments designed by Nurco and colleagues (Nurco, Bonito,
Lerner, & Balter, 1975) and has been used with various drug-abusing populations. The
instrument consists of a set of “static” and a set of “dynamic” forms that permit the capture
of longitudinal, sequential data on drug use, drug treatment, employment, criminal
involvement, and other behaviors over the life course of the subjects (see McGlothlin,
Anglin, & Wilson, 1977, for detailed description). The static forms collect background
information on the subject and are administered once during each interview. The dynamic
forms are used to collect retrospective and current data on the drug-use history of the
subjects as well as data on events that might have shaped or have been shaped by drug use
(e.g., drug treatment, crime, incarceration, employment). The dynamic part of the interview
consists of the repeated administration of these forms for as many life segments (defined by
major changes in behaviors or life events being assessed) as necessary. The NHI has been
shown to have generally high reliability; correlation coefficients of inter-variable
relationships, based on 46 variables measured at two interviews 10 years apart, ranged as
high as 0.86 and 0.90 (Chou, Hser, & Anglin, 1996; Hser, Anglin, & Chou, 1992).

Measures
Our longitudinal data provided a monthly record of primary drug use and treatment
participation since age at first use of the primary drug. For our analyses, we aggregated by
each year the number of months of primary drug use and drug treatment that were self-
reported for the 10 years following first primary drug use to form the drug use and treatment
profiles,  and  respectively, for each subject. Our outcome variable Yi is the logarithmic
transformed total drug use abstinence of the ith subject and  is its counterfactual
counterpart. The total drug use abstinence here was defined as the total number of months of
no primary drug use and no incarceration (incarceration may force abstinence, but is not an
indicator for a voluntarily favorable outcome) between the 11th and 15th year of observation.
We performed logarithmic transformation on it because of the nonnormality of raw data. To
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control baseline covariates, Fi0 in (1) and (2) included gender, primary drug type, and age at
first arrest. Preliminary logistic regression showed that each of those covariates individually
had a significant effect on treatment participation during the 10 years following first primary
drug use. In addition, Fi1 for our analysis included other available covariates at baseline:
project, race/ethnicity, employment status at baseline, education level at baseline, and age at
first use of the primary drug.

Results
Throughout this article, we used .05 level of significance for testing any effect or parameter.
Before applying the MSM model, we used our data to verify the time-dependent
confounding of drug use over the first 10 years as specified in C1 and C2. First, the total
number of months of primary drug use in each year (from the 2nd to the 10th year) was
regressed on the total number of months of primary drug use and treatment in the previous
year. In this regression with robust standard errors, the primary drug use in the previous year
always significantly predicted the primary drug use in the next year. At the same time, the
treatment participation in the first and second years significantly predicted the primary drug
use in the next years. Second, the total number of months of treatment in each year (from the
2nd to the 10th year) was regressed by cumulative logit model on the total number of months
of treatment in the previous year and the interaction between the total number of months of
treatment and primary drug use in the previous year. In this logistic regression, the toal
number of months of primary drug use in the second, fifth, and seventh years significantly
interacted with the total number of months of treatment in these years to predict the
treatment participation in the next years.

Using the unweighted GEE method with  specified as a normal variable and an
independent working correlation matrix specified for robust standard errors, the estimate of
the regression parameter γ1 in (2) for cumulative treatment effect was .013 and the
corresponding 95% confidence interval (CI) based on the robust or sandwich-type standard
errors was (−.003, .029) when the covariates at intake, Fi0 and Fi1, were excluded from the
standard regression model in (2). When Fi1 and Fi1 were included, they became .015 and (−.
001, .031) respectively (see Table 1). Similarly, for our MSM model in (1) with a normal
assumption of , the stabilized weights and an independent working correlation matrix
specified for robust standard errors, our IPTW causal estimate of the parameter β1 was .035
and the corresponding 95% robust CI was (.007, .063). When the non-stabilized weights
were used, they became −.008 and (−.031, .015), respectively (see Table 1).

The point estimates, robust standard errors, and 95% robust CIs for each of the parameters
of our final MSM are presented in Table 2 (see Appendix for the SAS syntax for our final
MSM model). In Table 2, the parameter of the primary drug type (Heroin vs. Cocaine) was
significant in addition to the cumulative treatment effect, while all others were not
significant. To examine the effect of those nonsignificant covariates on the estimation
precision of our final MSM model, we eliminated all covariates with p>.30 and re-estimated
the model with stabilized weights (see Bodnar, Davidian, Siega-Riz, & Tsiatis, 2004). We
found that the effects of treatment and primary drug type (Heroin vs. Cocaine) were still
significant and in the same direction.

The outcome of our final model is the logarithmic transformed total drug use abstinence in
the later five years. This implies that change of the value of covariates (e.g., cumulative
treatment in first 10 years or the primary drug type) in the final model would predict a
percent change for the total drug use abstinence (see Morris & Rolph, 1981, p. 98). For
example, the cumulative treatment effect estimate by our MSM model with stabilized
weights was .035. Given that e.035 is equal to 1.036, an additional month of treatment in the
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first 10 years would predict a 3.6% increase in the total drug use abstinence in the later five
years. Similarly, the parameter estimate for the primary drug type (Heroin vs. Cocaine) was
−.859 in our model. Given e−.859 is equal to .424, the total drug use abstinence of Heroin
users in the later five years would be expected to be 57.6% less than that of Cocaine users.

For comparison, the distribution of the stabilized weights swit and the non-stabilized weights
wit is presented in Figures 2 and 3, respectively (a logarithmic transformation was applied to
weights for display purposes only). We also summarized the empirical distribution of swit
and wit at two arbitrary time points (the second and ninth years) in Table 3. From Table 3
and Figures 2 and 3, we found that the distribution of the non-stabilized weights wit is more
variable and skewed than that of swit.

Of course, swit could also have some extreme values so that the weights swi contain some
“influential” individuals. For example, the minimum and maximum values of swi in our case
were .00002 and 39.788, respectively. To examine the effect of those “influential” weights
on our results, we conducted a sensitivity analysis. Specifically, the weights were truncated
by resetting the value of swi greater than the 95th percentile to the value of the 95th

percentile, which was equal to 2.0. At the same time, we also reset the value of swi lower
than the 5th percentile to the value of the 5th percentile, which was equal to 0.127 (see Cole
& Hernan, 2008). With this truncated swi, qualitative results of the final MSM were similar
to those shown in Tables 1 and 2.

As mentioned before, we included drug use and some covariates at baseline to estimate the
individual probabilities in the denominator of swi for our final MSM model. As a sensitivity
analysis (see Bodnar et al., 2004), we re-estimated those individual probabilities using only
variables with p<0.30 in the model and refitted the final MSM model. The results of the
model did not change meaningfully.

In addition, note that we did not include some other time-dependent covariates, such as the
number of months of incarceration or employment in each year during the first 10 years
following first use of primary drug, to estimate the individual probabilities in the
denominator of swi for our final MSM model. The exclusion of those covariates could have
led to the presence of unmeasured confounders and incorrect estimation for cumulative
treatment effect. To see the robustness of our results, we included both covariates into the
estimation of swi in a similar manner to annual drug use in the first 10 years and re-
estimated our final MSM model. The results of our final model after this sensitivity analysis
were again similar to those shown in Tables 1 and 2.

Discussion
In this article, we described the causal inference of a marginal structural model (MSM) and
applied it to investigate the effect of cumulative drug treatment occurring over 10 years on
drug use abstinence over the subsequent five years. We used this method because standard
unweighted regression analysis is not appropriate when time-dependent confounders, such
as past drug use history (e.g., Dit in our analysis), exist in the observational studies (Robins,
1986, 1997; Robins et al., 2000).

Because of the presence of confounding, the unweighted GEE method gave nonsignificant
regression estimates of γ1 for cumulative treatment effect, whether or not the covariates at
intake were adjusted. Conversely, the MSM with stabilized weights gave the significant
estimate of β1 for cumulative treatment. The difference between the unweighted and
weighted estimates indicates a confounding effect by the time-dependent covariate Dit,
which can be corrected by MSM to provide an unbiased estimate of causal effects. From our
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final model, we also found that the heroin users compared to users of other drugs would
have a significantly shorter period of abstinence despite the cumulative treatment effect.

In drug abuse research, the cumulative effect of drug treatment has been investigated by
methods such as structural equation models (e.g., Hser, Grella, et al., 1998). Although those
methods may provide possibly significant estimates of cumulative treatment effects, they,
like standard unweighted regression, are not based on the counterfactual outcomes and thus
lack a causal interpretation for their estimates. In addition, the potential time-dependent
confounding may not be eliminated by those methods.

Limitations
The longitudinal data for this study have been used in some of our previous studies (e.g.,
Hser, Evans, Huang, Brecht, & Li, 2008; Hser, Huang, Brecht, Li, & Evans, 2008). In this
study, we aggregated the monthly records of the data into an annual dataset for analysis, and
some loss of information may have resulted. Theoretically, the original monthly records
could have been directly used for Dit or Ait in the analysis and the weighted MSM models
could have handled this monthly data. However, our preliminary analysis of monthly data
frequently encountered either complete separation or quasi-complete separation when the
individual probabilities for the MSM weights were estimated by some parametric logistic
models. The relatively low treatment participation in the months of the first 10 years
following first use of primary drug could be a cause of the complete or quasi-complete
separation. So, monthly records may not be appropriate for the MSM model in a drug abuse
context. In our analysis, the complete or quasi-complete separation also happened when we
included both Fi0 and Fi1 for the estimation of MSM weights. This is the reason that we
selected Fi0 by a separate logistic regression and used it solely to estimate MSM weights.

Our results showed some degree of time-dependent confounding of drug use in the first 10
years, although this time-dependent confounding was not as strong as expected. For this
article, we aggregated the longitudinal data in the first 10 years annually. Aggregation of the
data based on every two or three years may provide stronger evidence for the time-
dependent confounding of drug use and may be a better way of handling the data for the
MSM model. Further exploration in this direction should be interesting.

For this article, we only selected the subjects who had 15 years of records for analysis and
ignored the subjects who had a shorter history. Although MSM can handle the incomplete
data due to the short history of subjects in some way (see Robins et al., 2000), it requires an
assumption that the measured variables or covariates at each time point are sufficient to
adjust for selection bias due to shorter history. Clearly, further investigation incorporating
those subjects with a shorter history should be interesting.

Furthermore, we want to mention again that the validity of the causal inference of our MSM
model depends on the correctness of our MSM model in (1) and weight specification. For
example, the estimated causal effect and the conclusion of our MSM model here could be
different once some unmeasured (time-dependent or time-independent) confounders are
identified and added into the estimation. Although we conducted a sensitivity analysis to
examine the robustness of our results by including some other time-dependent covariates
such as incarceration and employment into the weight and final MSM model estimation, one
difficulty is that further including some other (time-dependent or time-independent)
covariates into the weight estimation could frequently lead to complete or quasi-complete
separation. In addition, we assumed in this study that the cumulative logit models are
correctly specified for drug treatment participation in the first 10 years following first use of
primary drug. This assumption is vulnerable to model misspecification given the complexity
of the dynamic process of drug use and treatment participation. Of course, this is not a
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problem unique to the MSM models—many advanced statistical models may suffer the
same problem.

Implications
Despite some limitations, our study revealed findings of importance to the field by using a
model that controls for self-selection due to time-dependent confounders. With the increased
recognition of drug addiction as a chronic, relapsing condition, the need becomes apparent
for developing long-term care or management appropriate for addressing the course of
addiction. Many addicts may require multiple treatments before they show improvement
through reduced drug use or begin a stable recovery including abstinence. The cumulative
treatment effects found in this analysis support the need for planned multiple treatments by
many addicts. Yet, most treatment programs in the current service delivery system appear
disconnected. The multiple treatments patients received likely occurred as a result of relapse
as opposed to planned continuing care. Previous studies have shown that multiple treatments
in a continuing care arrangement produced more favorable outcomes than separate, discrete
treatments (Hser, Huang, Teruya, & Anglin, 2004). Efforts to integrate treatment
components to develop long-term care treatment should take these findings into
consideration.

Previous to this study, marginal structural models have not been applied in drug abuse
research. Drug abuse research often involves observational studies such as those included in
the present analysis, in which self-selection effects often make the causal inference
questionable. As demonstrated in the present study, MSM controlling for time-dependent
confounders was able to demonstrate cumulative effects, whereas the traditional methods
failed to do so. From both the statistical and empirical point of view, MSM is a better
approach to assess cumulative treatment effects due to its advantages of controlling for self-
selection bias over time.
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Appendix
The SAS code (version 9.13) for obtaining our final MSM model is as follows:

proc genmod data=msmdata;
class id;
model abstinence=cumtx gender drugtype1 drugtype2 agefirstarrest
project1 project2 race1 race2 race3 emp1 emp2 edu1 edu2 agefirstuse/
dist=normal link=identity;
weight sweightyr;
repeated subject=id/type=ind;
run;

The SAS code (version 9.13) for the cumulative logit models to obtain the individual
probabilities in each year for the stabilized weights is as follows:

proc logistic data=year&i;
/* the logistic model for the denominator of the stabilized weights; tx and 
primaryuse are the number of months of treatment and primary drug use in 
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current year; txpre1 and primaryusepre1 are the number of months of 
treatment and primary drug use in the previous year; txpre2 is the number of 
months of treatment in the year before the previous year; primaryuse0 is the 
number of months of primary drug use in the first year; the new dataset 
yearapred&i would contain the individual probabilities for the denominator 
of the stabilized weights*/
 model tx=txpre1 txpre2 primaryuse primaryusepre1
   txpre1*primaryuse primaryuse0
   gender drugtype1 drugtype2 agefirstarrest;
  output out=yearapred&i predprobs=individual;
run;
/* the logistic model for the numerator of the stabilized weights; the new 
dataset yearbpred&i would contain the individual probabilities for the 
numerator of the stabilized weights*/
proc logistic data=year&i;
 model tx=txpre1 txpre2;
  output out=yearbpred&i predprobs=individual;
run;
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Figure 1.
Dynamic view on drug use and drug treatment over time points. Ai1, Ai2,…,Ai10 denote the
amount of treatments received by the ith subject at each time point, while Di1, Di2,…,Di10
denote the amount of drug use by the subject at each time point.

Li et al. Page 13

J Drug Issues. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Distribution of stabilized weights swit by year. The box for each year shows the location of
the mean, median and second and third quartiles. Vertical lines extend to the maximum and
minimum values.
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Figure 3.
Distribution of non-stabilized weights wit by year.
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Table 1

Estimates of the causal effect of cumulative drug treatment

Unweighted GEE method 1 Parameter 95 per cent robust CI

 Unadjusted model .013 −.003, .029

 Model adjusted with covariates .015 −.001, .031

MSM 2 Parameter 95 per cent robust CI

 Stabilized weights .035 .007, .063

 Non-stabilized weights −.008 −.031, .015

1
Non-causal models are shown for comparison purposes only. The unadjusted model includes only the total months of treatment  and

the total months of drug use  accumulated in the ten years following first primary drug use. The model is further adjusted by intake
variables, including gender, primary drug type, age at first arrest, project, race/ethnicity, employment at baseline, education at baseline, and age at
first use of primary drug. For both models, the robust or sandwich-type standard error is used for the confidence interval calculation.

2
Weights are estimated as described in the text using recent drug uses, recent drug treatments, and variables at intake including gender, primary

drug type, and age at first arrest.
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Table 2

Final marginal structural model with stabilized weights.

Variables Parameter estimates Robust Standard error 95 per cent robust CI

*
.035 .014 .007, .063

Gender (Female Y/N) .239 .182 −.117, .596

Drug type 1 (Methamphetamine vs. Cocaine) −.228 .322 −.858, .403

Drug 2 type (Heroin vs. Cocaine) * −.859 .265 −1.378, −.339

Age at first arrest .001 .012 −.022, .024

Project 1 (TUE vs. METH) −.543 .328 −1.186, .100

Project 2 (TXPROC vs. METH) −.269 .272 −.802, .264

Race 1 (White vs. Others) −.316 .335 −.972, .341

Race 2 (Black vs. Others) −.678 .366 −1.396, .040

Race 3 (Hispanic vs. Others) .092 .368 −.630, .814

Employment at intake (Employed vs. Unemployed) .416 .225 −.025, .856

Employment at intake (Not in labor force vs. Unemployed) −.040 .222 −.475, .396

Education at intake (College or above vs. Less than high school) .264 .210 −.147, .675

Education at intake (High school vs. Less than high school) −.340 .233 −.797, .116

Age at first primary drug use .000 .022 −.042, .043

*
p<.05
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Table 3

Distribution of the estimated weight swit and wit at the second and ninth year.

Mean(SD) Median (IQR) Percentile 1 Percentile 99

Year 2

swit 1.00(0.12) 1.00(0.01) 0.81 1.47

wit 5.37(45.65) 1.02(0.01) 1.01 74.33

Year 9

swit 1.00(0.25) 0.98(0.06) 0.40 2.11

wit 6.55(25.91) 1.06(0.08) 1.01 145.00
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