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Abstract
In recent years, the number of known peptide natural products that are synthesized via the
ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes
encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with
molecular biology approaches has guided the discovery of a large number of new ribosomal
natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing
peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review,
we describe the strategies used for the identification of these ribosomally-synthesized and
posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds.
The increasing number of chemical entities and their remarkable structural and functional diversity
may lead to novel pharmaceutical applications.

1. Introduction
The power of peptides to recognize biological targets is well-appreciated from studies using
various display techniques and synthetic libraries. Linear peptides, however, are often poor
drug candidates due to rapid degradation and poor biodistribution. Cyclic peptides,
sometimes containing non-proteinogenic structures, provide protection against proteolysis
and greatly decrease the number of possible conformations, thereby favoring specific and
tight interactions with the target. Recent strategies to increase peptide stability and improve
productivity, together with alternative routes of administration, have resulted in an
increasing number of peptide-based drugs and drug candidates [1], with currently more than
60 therapeutic peptides used commercially and more than 150 in clinical trials [1,2].

Among natural products, the therapeutic potential of cyclic peptides of non-ribosomal origin
is well-recognized, as illustrated by the cyclic antimicrobial compounds vancomycin or
daptomycin, the immunosuppressant cyclosporin A, or the antitumor agent bleomycin A. In
addition, recent years have seen the discovery of a growing number of cyclic peptides that
are biosynthesized by a ribosomal pathway, followed by extensive posttranslational
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modifications to produce the mature compounds. These pathways confer several clear
advantages for bioengineering because of the direct link between gene sequence and natural
product and because of their relatively short biosynthetic pathways. Furthermore, many of
the biosynthetic enzymes have demonstrated substrate promiscuity. The number of families
of RiPPs has expanded considerably in recent years with the discovery of the biosynthetic
origin for cyanobactins, thiopeptides, microviridins, and amatoxins. These findings have
shown that the ribosomal world is much more diverse than originally anticipated, and have
revealed an enormous structural diversity that is just being appreciated [3,4]. This diversity
is increasingly exploited by application of in silico analysis of genome data and by the use
of the polymerase chain reaction (PCR) with degenerate primers to identify precursor
peptides and to predict the structure of the mature compounds from the genomic context and
from previously characterized molecules. This review focuses on RiPPs discovered using
this strategy between 2007 and 2010.

2. Genome Mining for Lantipeptides
Lantipeptides are defined by their characteristic lanthionine and/or methyllanthionine
thioether crosslinks and they often contain the unsaturated amino acids dehydroalanine and
dehydrobutyrine [5]; lantipeptides with confirmed antimicrobial activity are called
lantibiotics. They can be categorized in four classes according to the enzymes responsible
for ring formation. In class I lantipeptides, the enzymes LanB and LanC catalyze the
dehydration of serine and threonine residues and the subsequent intramolecular addition of
cysteine residues, respectively, resulting in the formation of the thioether crosslinks. For the
other classes, bifunctional enzymes are responsible for both dehydration and cyclization
steps (LanM in class II, RamC-like for class III, and LanL in class IV) [5-7]. Genome
mining for lanthionine synthetase homologs has recently guided the discovery of several
lantipeptides. In the first such example, a bioinformatic analysis of the genome of Bacillus
halodurans C-125 revealed the presence of two genes encoding for precursor peptides
clustered with two additional open reading frames (ORF) encoding for LanM-type
synthetases. Analysis of cell-free supernatants by mass spectrometry (MS), in vitro
reconstitution of the LanM enzymes, antimicrobial assays, and mutagenesis experiments,
allowed the identification and structural characterization of the two-component lantibiotic
haloduracin (Figure 1) [8-10]. Using similar bioinformatic approaches or PCR amplification
of conserved DNA sequences, several lanM-containing biosynthetic gene clusters were
discovered subsequently, including the cluster encoding for lichenicidin in the genome of
Bacillus licheniformis ATCC14580 (or DSM13) and VK21 [8,11-13]. In follow-up studies,
this two-component lantibiotic was detected in bacterial cultures by antimicrobial assays and
MS analysis (Figure 1) [11-13]. In a similar study, several variants of the lantibiotic
epidermin, designated Bsa, and produced by methicillin-resistant Staphylococcus aureus
strains were identified (Figure 1), suggesting that these bacteriocins may confer a
competitive ecological advantage on community acquired infections [14].

A new route to lantipeptides was discovered by analysis of the draft genome sequence of S.
venezuelae ATCC10712 revealing a lantibiotic-like gene cluster with an ORF encoding for a
novel class of putative lanthionine synthetase (LanL) [5]. In vitro reconstitution of the
enzyme activity with the predicted precursor peptide resulted in the production of
venezuelin, the first class IV lantipeptide (Figure 1). LanL homologs were also identified in
other species of actinobacteria and firmicutes [5]. Another recent genome database analysis
revealed that several strains of marine Prochlorococcus and Synechococcus contain multiple
ORFs encoding a wide diversity of lantipeptide precursor peptides but only a single gene
encoding a LanM-like synthetase [15]. The precursor peptides have highly homologous
leader peptides but display great diversity in the core peptide, the region of the precursor
peptide that is modified to the mature natural product (note: throughout this review we use
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the term core peptide because the often-used term propeptide has an opposite meaning for
different classes of RiPPs. For a discussion, see the Supporting Information of reference
[4]). The enzymatic activity of the predicted LanM from Prochlorococcus MIT9313 was
reconstituted in vitro and 17 selected precursor peptides (out of the 29 encoded in the
genome) were converted to the corresponding lantipeptides (prochlorosins), providing an
example of natural combinatorial biosynthesis. Analysis of the spent media of MIT9313 by
MS showed in vivo production of at least three of these compounds (e.g. Figure 1),
confirming that lantipeptide production is not restricted to Gram-positive or soil bacteria as
long believed [15]. A search of sequences in the Global Oceanic Survey uncovered more
than 150 prochlorosin precursor genes from many different locations suggesting
prochlorosin production is widespread.

In another study, PSI-BLAST searches of the NCBI database for LanM homologs revealed
more than 60 lanthionine synthetase genes, including examples in phyla (chloroflexi and
proteobacteria) not previously identified as lantipeptide producers [11]. Similarly, a
computerized discovery strategy using the genome-mining software BAGEL2 revealed
approximately 150 putative lantipeptide gene clusters based on conserved biosynthetic,
transport, and immunity machinery [16]. By using BAGEL, the biosynthetic gene cluster of
pneumococcin A1 and A2 was identified in the genome sequence of S. pneumonia R6 [17].
Interestingly, when the predicted pneumococcin core peptides (belonging to class II
lantipeptides) were modified in vivo using the nisin synthetase machinery (a class I system),
lanthionine containing-peptides with antimicrobial activity were produced [17].

3. Genome mining for cyanobactins
Cyanobactins are small cyclic peptides produced by a wide variety of cyanobacteria that
typically, but not always, contain oxazoline and thiazoline structures, or their oxidized
derivatives oxazole and thiazole. The inclusion of cyanobactins amongst the RiPPs was first
revealed by the identification of the biosynthetic gene cluster encoding for patellamides in
Prochloron didemni and heterologous expression in Escherichia coli [18,19]. This discovery
has lead to the identification of several other related compounds. For instance, analysis of
metagenome samples from 46 Prochloron-containing ascidians using PCR primers targeting
patE-like genes (the gene encoding for the precursor peptide in patellamide biosynthesis)
predicted 29 patellamide variants including the novel patellamide B (Figure 2). This study
showed that hypervariable cassettes encoding for the core peptides within a conserved
genetic background leads to the production of cyanobactin libraries with readily predictable
chemical structures [20]. In addition to PatE, all cyanobactin gene clusters encode two
proteases (PatA and PatG) that cleave at the N-and C-terminal boundaries of the core
peptide and catalyze its head-to-tail cyclization. These proteins are highly conserved at the
DNA sequence level across different strains, aiding detection of novel biosynthetic clusters
in genomes. For example, when a collection of cyanobacteria was screened by PCR using
degenerate primers specific for patA-like genes, about one third of the tested strains
spanning different genera (Microcystis, Anabaena, Nodularia, Nostoc, Planktothrix, among
others) were confirmed to contain cyanobactin biosynthetic gene clusters, suggesting the
widespread occurrence of this family of metabolites [21]. In some cases, identification of the
canonical protease cleavage sites in the precursor peptide allowed accurate prediction of the
chemical structure of the mature compounds, facilitating detection and purification of the
compounds from bacterial cultures. For instance, the trichamide biosynthetic gene cluster
from Trichodesmium spp. was discovered after BLAST searches of GenBank, and
subsequently the predicted trichamide structure was confirmed by MS (Figure 2) [22]. In a
similar study, analyses of genomic data of the cyanobacterial strain Microcystis aeruginosa
PCC7806 resulted in the discovery of the hexapeptides microcyclamide 7806A and 7806B,
which were later shown to be the hydrolysis products of aerucyclamide C (Figure 2) [23,24].
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A patellamide-like cluster was also discovered in the genome sequence of Lyngbya aestuarii
CCY9616 and two novel cyanobactins were predicted [25]. More recently, annotation of the
Anabaena sp. 90 genome led to the identification of a gene cluster with patA and patG
homologs [26]. Screening of a collection of Anabaena strains using degenerated PCR
primers specific for the genes encoding for one of the proteases as well as the precursor
peptide revealed several strains with the genetic potential to biosynthesize cyanobactins
[26]. Subsequent liquid chromatography (LC)-MS analysis together with isotope labeling
experiments guided the isolation and identification of a novel family of 18 cyclic peptides
termed anacyclamides (Figure 2). The peptides, composed of 7 to 20 amino acids, exhibit
considerable sequence variation with only a conserved terminal proline. Interestingly, the
isolated anacyclamides lack heterocyclized residues, as was predicted from the gene clusters
[26]. Similar bioinformatic analyses of the genome of phylogenetically distant bacteria
revealed several biosynthetic gene clusters that potentially encode for other unknown cyclic
peptides [22].

4. Genome mining for thiazolyl peptides
Thiazolyl peptides or thiopeptides are a family of highly modified antibacterial compounds
that harbor a central pyridine, hydropyridine, or dehydropiperidine ring decorated with
thiazole substituents and at least one macrocycle (Figure 2). Their ribosomal origin was
recently demonstrated by four independent research groups that reported the biosynthetic
gene clusters for several members of this family (micrococcin P1-P2, thiostrepton, thiocillin
I, siomycin A, thiomuracin A-I, nosiheptide, and GE2270A) in nearly simultaneous
publications [27-31]. All thiazolyl peptide biosynthetic gene clusters contain, in addition to
the gene encoding for the precursor peptide (TsrA for thiostrepton using the nomenclature in
[28]), a set of at least five genes that encode enzymes likely mediating heterocyclization
(TsrFH), dehydration (TsrCD), and a hypothetical protein (TsrE) that potentially catalyzes
the formation of the central 6-membered nitrogen heterocycle. The characterization of
thiopeptide gene clusters has facilitated the discovery of novel thiopeptides by bioinformatic
analysis of genome sequences from other bacteria. For instance, several new clusters
potentially encoding for thiopeptides were identified from Bacillus, Salinospora,
Streptomyces, Frankia, Propionibacterium, and Nocardiopsis [27,29,32]. In the case of
Bacillus cereus ATCC14579, eight compounds were detected in the culture supernatant,
including the novel thiocillin IV (Figure 2) [27].

5. Genome mining for linear thiazole/oxazole-modified microcins
Microcin B17 (MccB17) and streptolysin S (SLS) are produced by E. coli and Streptococcus
pyogenes, respectively. The precursor peptide (SagA in the case of SLS) is modified by a
synthetase protein complex (SagBCD) that introduces several thiazole and oxazole
heterocycles [33,34]. Gene clusters encoding homologs have been identified in the genomes
of archaea as well as bacteria spanning six phyla, including cyanobacteria, actinobacteria,
and proteobacteria [34]. Interestingly, in vitro incubation of a predicted precursor peptide
(ClosA) identified in the genome of the pathogenic bacteria Clostridium botulinum
ATCC3502 and C. sporogenes ATCC15579 with the SagBCD complex (or with SagB/
ClosCD) resulted in a previously unknown peptide with hemolytic phenotype. Although the
native toxin, named clostridiolysin S, has thus far not been isolated from the producer
organisms, the high similarity of the sag and clos gene clusters suggests that the compound
produced in vitro may resemble the peptide encoded by the native host [34,35]. Subsequent
searches for SagB homologs in genome databases identified a gene cluster in Listeria
monocytogenes F2365 and H7858 that encodes a novel peptide designated listeriolysin S.
Gene deletions in the native host confirmed that the cluster encodes for a virulence peptide
displaying hemolytic activity [36]. A similar analysis predicted the production of
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staphylosin S by S. aureus ET3-1, although the functionality of the cluster has not yet been
confirmed [36]. Interestingly, a recent search for SagBCD homologs using a combination of
informatics tools, uncovered three large families of precursor peptides with highly
conserved and long leader regions in phylogenetically diverse bacteria [37,38]. Some of the
mature peptides are predicted to contain thiazole/oxazole heterocycles. However, the
characteristic sagBCD homologs are absent from other genomes encoding these precursor
peptides, suggesting that additional biosynthetic pathways and structurally diverse RiPPs
remain to be discovered [38].

6. Genome mining for microviridins
Microviridins are a family of N-acetylated tricyclic depsipeptides produced from a
ribosomal precursor by cyanobacteria such as Microcystis aeruginosa and Planktothrix
agardhii [39,40]. The precursor peptides are modified by ATP grasp ligases (MdnB, MdnC)
that introduce ω-ester and ω-amide bonds (Figure 3) prior to cleavage of the leader peptide
by a bifunctional transporter-peptidase. Analyses of genome data showed that microviridin-
related biosynthetic gene clusters are present in several cyanobacterial genera including
Anabaena, Nostoc, and Nodularia [39,40]. Recently, a collection of Microcystis strains,
isolated from bodies of water around the world, was screened by PCR using degenerate
primers for mdnB/C homologs [41]. Microviridin-like gene clusters were found in all tested
strains, suggesting their global occurrence. Amplification of some of the precursor genes by
PCR, followed by sequencing, uncovered seven novel microviridin precursors, and analysis
of metagenomic DNA from field samples revealed eight additional precursor variants. To
determine the functionality of the clusters, the Microcystis aeruginosa NIES843 gene cluster
was heterologously expressed in E. coli allowing isolation of the novel peptide microviridin
L and confirmation of the predicted chemical structure (Figure 3) [41].

7. Genome mining for lasso peptides
Lasso peptides are characterized by an N-terminal macrolactam ring that irreversibly traps a
C-terminal tail, producing a complex and very stable three-dimensional lasso structure (e.g.
Figure 3). The biosynthetic route to microcin J25 produced by E. coli AY25 was recently
elucidated [42,43]. Two enzymes (McjB and McjC) catalyze the intramolecular cyclization
of the ribosomally synthesized precursor molecule (McjA) and concomitant steric trapping
of the C-terminal tail [42]. Ortholog neighborhood analysis of mcjB-like genes revealed
several gene clusters from Bacillus, Burkholderia, Caulobacter, and Sphingopyxis encoding
hypothetical lasso peptides with predictable structures [42,44]. In the case of Burkholderia
thailandensis E264, screening for the molecular mass of the predicted cyclic peptide by LC-
MS resulted in the detection and isolation of the novel lasso peptide capistruin (Figure 3)
[44]. The structure of the peptide was determined by NMR spectroscopy and the compound
was heterologously produced in E. coli confirming the involvement of the cluster in its
biosynthesis [44].

8. Genome mining for siderophore-microcins
Siderophore-microcins are ribosomally synthesized peptides that contain a C-terminal
glycosylated siderophore generated by the nonribosomal pathway. The gene cluster and
biosynthetic pathway of MccE492 from Klebsiella pneumonia RYC492 have been
characterized and four proteins (MceCDIJ) are known to be essential for the acquisition of
the siderophore moiety [45-47]. Several bioinformatic studies suggested the existence of
novel siderophore-microcins produced by members of the Enterobacteriaceae family
[48,49]. In a recent study, two of the previously predicted microcins, MccM and MccH47,
were isolated and characterized, demonstrating that both peptides contain the C-terminal
salmochelin-like siderophore found in MccE492 (Figure 3) [50]. Additionally, further
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analysis of the MccE492 gene cluster suggested the existence of an additional siderophore-
peptide named MccG492 (Figure 3) [50].

9. Genome mining for linaridins
Linaridins are linear peptides that contain dehydrated amino acids and additional
posttranslational modifications such as N-terminal methylations or a C-terminal S-[(Z)-2-
aminovinyl]-D-cysteine ring (AviCys). The biosynthetic gene cluster of cypemycin, the only
structurally characterized member of the family, was recently identified [51], demonstrating
that the characteristic dehydrobutyrine residues are potentially introduced by CypH/CypL, a
pair of enzymes without homology to the corresponding dehydratases in lantipeptide
biosynthesis. Searches for cypH/cypL homologs allowed the identification of 10 additional
gene clusters present in different phyla of bacteria and archaea, establishing a novel family
of ribosomal peptides [51].

10. Genome mining for amatoxins and phallotoxins from mushrooms
Amatoxins and phallotoxins are bicyclic octa- and heptapeptides, respectively, containing a
Trp-Cys crossbridge (tryptathionine). They are produced by poisonous mushrooms of the
genera Amanita, Galerina, Lepiota, and Conocybe [52]. Searches for homologs of the
precursor genes of α-amanitin and phallacidin in the A. bisporigera draft genome revealed
more than 20 ORFs having upstream and downstream conserved sequences and a
hypervariable core region potentially encoding for amatoxin-like peptides [52]. Using
degenerate primers that encode the conserved regions in the precursor peptides, the A.
phalloides and A. ocreata genomes were screened by PCR, uncovering five additional genes
likely encoding similar peptides, including one previously known compound [52]. Although
the predicted peptides have not been isolated, the finding suggests that RiPP libraries of
bioactive compounds are produced by several mushroom families.

11. Genome mining for cyclotides from plants
Cyclotides are head-to-tail cyclized peptides with a knotted arrangement of disulfide bonds
produced by the Violaceae (violet), Rubiaceae (coffee), Cucurbitaceae, and Apocynaceae
plant families (e.g. Table 1). They are biosynthesized as precursor peptides comprising an
N-terminal endoplasmic reticulum (ER) signal, a leader peptide, and one to three core
regions encoding the backbone(s) of the mature cyclotide(s) separated by small recognition
sequences [53]. Screening programs suggest that individual plants contain genes encoding
for up to 100 cyclotides, but only a few precursor genes have been identified. Cyclotide
precursor sequences are only moderately conserved, with sequence identities of
approximately 60%, which is challenging for development of a robust PCR strategy for the
detection of novel compounds as described in section 12 for conopeptides. In a recent
experiment, mRNA from Viola biflora was isolated and cDNA clones encoding cyclotides
were generated by using 3′ rapid amplification of cDNA ends (RACE) and primers encoding
a relatively well-conserved amino acid sequence in the ER signal peptide. Four novel
cyclotide sequences were discovered using this strategy including one structure that was
confirmed by LC-MS (Table 1) [54]. Similar studies in Melicytus ramiflorus,
Gloeospermum blakeanum, G. pauciflorum, and Viola baoshanensis resulted in the
identification of more than 40 novel cyclotide precursor genes, but only four molecules have
been detected thus far by LC-MS (Table 1) [55-57]. An alternative strategy, based on the
sequence analysis of an expression sequence tag (EST) library of Oldenlandia affinis (the
producer of kalata B1, the first cyclotide discovered), revealed a new precursor gene
putatively encoding the peptide kalata B19 [58], which has not been detected in O. affinis
extracts. An extensive bioinformatics and expression analysis, combining BLAST searches
for peptide sequences with the characteristic Cys spacing pattern, detection of N-terminal
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signal peptides, and analysis of EST databases uncovered several genes encoding cyclotide-
like peptides from Poaceae species (including crops such as maize, wheat, and rice) [59].
Although none of these compounds has been isolated, and they may not be head-to-tail
cyclized based on core peptide sequence, the finding suggests that ribosomal peptide natural
products are considerably more widespread in plants than previously known.

12. Genome mining for conopeptides from snails
The predatory marine cone snails produce a repertoire of small peptide-based neurotoxins
named conopeptides with therapeutic potential [60]. Most conopeptides are highly
crosslinked by disulfide bridges that generate a well-defined three-dimensional
conformation, and many are decorated with other posttranslational modifications. The
precursor peptides contain an N-terminal signal peptide, a leader region, and a hypervariable
core peptide, and are posttranslationally modified in epithelial cells of the venom ducts.
Some estimations suggest that the 500-700 living Conus species have evolved 50,000 to
140,000 different conopeptides, providing a large diversity of peptide-based neurotoxins, but
less than 2% of these peptides have been isolated [60,61]. Recently, the discovery of new
chemical entities has been dramatically accelerated by prediction of the mature peptide
sequence from genomic DNA or from cDNA sequences, derived from mRNA extracted
from the venom duct [62]. PCR with primers designed to recognize the conserved nucleotide
sequence for the signal peptide and the 3′ untranslated region (3′-UTR) was used to
sequence precursor genes of previously uncharacterized peptides from several Conus species
[63-68] (Table 2). Direct sequencing of venom duct cDNA libraries from C. striatus and C.
litteratus, together with bioinformatic analysis, has also provided more than 200 gene
sequences encoding conopeptides [69,70]. Predicting the posttranslational modifications
remains challenging, but structural homology with characterized peptide families can
provide useful insights [68].

Conus are not the only organisms producing RiPP toxins. For instance, novel molecules
were recently discovered from venom mollusks from the turrid group that comprise
approximately 10,000 species and that are likely to produce over a million
pharmacologically active venom components [71]. Similarly, scorpions are expected to
produce over 100,000 venom molecules, while millions of neurotoxic peptides are probably
synthesized by 38,000 species of spiders [72]. Thus, the pool of biologically active peptides
is enormous and advanced genome and transcriptome techniques will facilitate their
discovery.

Summary and Outlook
The ever-increasing amount of DNA sequence data and the recent knowledge about the
biosynthetic routes of RiPPs have lead to the discovery of novel gene clusters encoding
previously unknown compounds. Upon identification of the clusters, prediction of the
chemical structures of the mature peptides based on the genomic context of the precursor
genes, in combination with several chemical and biological strategies, has aided bioassay-
independent discovery and isolation of novel natural products. It is now clear that many
species, from bacteria to eukarya, have taken advantage of combinatorial libraries of
ribosomal peptides to efficiently evolve bioactive molecules that can mediate intra- and
inter-species interactions. The recently discovered structural diversity introduced by
posttranslational modifications has generated an exceptional pool of chemical entities that
may aid in the development of novel peptide-based drug therapies.
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Figure 1. Lantipeptides recently discovered by genome mining
The two-component lantibiotics haloduracin from B. halodurans C-125 and lichenicidin
from B. licheniformis ATCC 14580, DSM13, and VK21 were discovered after genome
mining for LanM lanthionine synthetases. Venezuelin, a lantipeptide predicted from he
genome sequence of S. venezuelae ATCC 10712, was produced in vitro after reconstitution
of a novel LanL lanthionine synthetase. Prochlorosin 1.7 is one of 29 lantipeptides produced
by Prochlorococcus MIT9313. BsaA2 was discovered after genome sequence analysis of
several S. aureus strains. Dha: dehydroalanine, Dhb: dehydrobutyrine, Abu: α-aminobutyric
acid. For the thioether crosslinks, residues derived from Ser/Thr are shown in red and
residues originating from Cys are shown in blue.
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Figure 2. Cyanobactins and thiopeptides discovered by genome mining approaches
Patellamide B produced by P. didemmni was discovered by sequencing of metagenomic
samples. Trichamide was isolated from Trichodesmium sp. and microcyclamide 7806A and
7806B from M. aeurignosa PCC7806 were found after identification of orthologue
patellamide biosynthetic gene clusters. Anacyclamide A10 was isolated after PCR detection
of its biosynthetic gene cluster in Anabaena sp90. The thiopeptide thiocillin IV was
discovered in the culture supernatant of B. cereus ATCC 14579 after identification of its
biosynthetic gene cluster through genome analysis.
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Figure 3. Ribosomal peptides discovered by genome mining containing lactones and lactams or
C-terminal siderophores
The microviridin L biosynthetic gene cluster was detected in the genome of M. aeruginosa
NIES843 after PCR screening and genomic DNA library construction. The capistruin gene
cluster was identified in B. thailandensis E624 following orthologue neighborhood analysis
of the gene cluster of the related peptide microcin J25 from E. coli. The siderophore-
microcins MccM, MccH47, and MccG492 were discovered after genome sequence analysis
of different Enterobacteriaceae.
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