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Abstract
Sexually reproducing metazoans establish a cell lineage during development that is ultimately
dedicated to gamete production. Work in a variety of animals suggests that a group of conserved
molecular determinants function in this germ line maintenance and function. The most universal of
these genes are vasa and vasa-like DEAD box RNA helicase genes. However, recent evidence
indicates that vasa genes also function in other cell types, distinct from the germ line. Here we
evaluate our current understanding of vasa function and its regulation during development,
addressing vasa’s emerging role in multipotent cells. We also explore the evolutionary
diversification of the amino-terminal domain of this gene and how this impacts the association of
vasa with nuage-like perinuclear structures.
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Introduction
Segregation and maintenance of the germ line is required for all sexually reproducing
metazoans. In many animals, a population of primordial germ cells (PGCs) is set aside early
in embryogenesis that is dedicated for the germ cell lineage while other cells in the embryo
differentiate into soma. PGCs migrate to the somatically-derived gonads and proliferate into
germ line stem cells that can self renew and differentiate into gametes. At least 3 general
mechanisms are used to specify PGCs within the animal kingdom. The germ line can form
(1) early in embryogenesis from an inheritance of maternal factors (maternally derived, also
referred to as preformation) used in flies and nematodes, (2) by cell-cell interactions early in
embryogenesis (inductive, also referred to as epigenetic) as seen in mice, and (3) any time in
the animal’s life, even in adulthood, from a multipotent stem cell precursor (persistent
multipotent cell derived germ cells), such as in planaria and hydra.(1–4) Despite these
developmental differences, animals employ a group of conserved molecular determinants for
PGC specification. The most common of these is the gene vasa.(5–7) While the exact
function of Vasa is unclear, its extensive conservation underscores its universal importance
in germ line development (Table 1).

Vasa is a member of the DEAD box protein family which functions in a broad range of
molecular events involving duplex RNA. Nine conserved sequence motifs typify all DEAD-
box genes (Figure 1A.(8) Biochemical analyses show how these motifs, in Vasa and other
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DEAD-box proteins, confer its ATP-dependant RNA helicase catalytic activity. Structural
data also suggest that Vasa unwinds duplex RNA in a non-processive manner.(8–11) DEAD-
box proteins may operate as chaperones that unwind local secondary structures to facilitate
proper RNA folding and interactions with accessory proteins. (12,13) These features are
evident in examples encompassing pre-mRNA splicing, ribosome biogenesis, nuclear
export, translational regulation and degradation.(8)

Functional analyses of Vasa
What is Vasa’s role in germ line development? Vasa-null animals have been generated in
Drosophila, Caenorhabditis elegans and mice by gene knockout, by reduction of Vasa
mRNA by RNA-interference (RNAi) and by Vasa protein reduction by antisense
morpholino treatment (Knockdown).(14–20)

Drosophila leads the way in understanding vasa function
Genetic screens for maternal-effect genes in Drosophila first revealed vasa function in
oocyte development.(21) Subsequent mutational and gene inactivation studies showed vasa
function in posterior patterning and in germ cell specification in the embryo.(15,22,23)

Identifying the molecular targets of this DEAD-box helicase though has proven difficult.
Vasa produced from bacterial recombinant can bind RNA and has ATP-dependent RNA
helicase activity in vitro. This activity is absent with mutations in the conserved DEAD-box
sequence motifs.(10,24) Structural analysis of the DEAD-box region in Drosophila Vasa
suggests that it unwinds duplex RNA in a nonprocessive manner by binding and bending
short stretches of the duplex.(10) Consistent with its RNA-binding ability, biochemical and
genetic data suggest Drosophila Vasa acts as a translational regulator. Indeed, its direct
binding to the translational initiation factor eIF5B is required for proper translation of
maternal gurken transcripts.(15,25–28)

Does Vasa bind RNA in a sequence specific manner?
Recently, Liu et al., (2009) screened for mRNAs that co-purified with Vasa from Drosophila
embryos. They identified 221 candidate mRNAs that bound to Vasa, 24 of which were
mRNAs in the pole cells – where Vasa is in vivo. Mei-P26 was one of the candidates – its
protein product represses microRNA activity and promotes differentiation of the germ line
stem cells. Liu et al. found that in vasa mutants, mei-P26 translation is substantially
reduced.(29) This is intriguing in that mei-P26 was previously shown to interact with one of
the Argonaut proteins of the miRNA pathway (Ago1) to repress the miRNA interference of
target mRNAs in the germ line. Thus, the absence of vasa resulted in low mei-P26 synthesis,
and therefore miRNA interference was functional in the germ line. Perhaps more important
was that this Vasa/mei-P26 mRNA interaction was shown to be sequence specific; Vasa
bound specifically to a (U)-rich motif in the mei-P26 39 untranslated region in vitro, and
expression of a GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 39
UTR domain. Moreover, mei-P26 translation was significantly reduced by a mutation in
Vasa that reduced its interaction with the translational initiation factor eIF5B.(29) These
results are important for several reasons: 1) it provides an important gene regulatory link to
understand miRNA regulation in the germ line, 2) it suggests that Vasa interacts with
mRNAs selectively, and 3) Vasa interacts with mRNAs in a sequence selective fashion,
perhaps linking the sequences in the 3′UTR target mRNA to the initiation factor important
for translation of the sequence. Further identification of other sequences in this Vasa-
interactome will be important to understand the consensus mRNA sequences for its
interaction and the resulting sequences important for germ line development.
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Overlapping functions of multiple vasa genes in C. elegans
Germ line development in the nematode Caenorhabditis elegans is dictated by the
inheritance of localized cytoplasmic determinants in the egg and early embryo. Despite
some notable differences in germ plasm composition between Drosophila and other
organisms, such as the lack of an Oskar homolog outside of diptera, and the presence of the
unique PLG-1 gene in C. elegans, the localization of Vasa in the germ plasm remains a
conserved feature.(4) C. elegans has four germ line helicases (GLH 1-4), each are Vasa
homologs, each present in the germ granules (P-granules) and each are present exclusively
in germ line blastomeres during development.(16–18) Loss of function analyses suggests that
GLH-1 is most important for germ line development; glh-1 mutants have a dramatic
decrease in germ cells and mature gametes.(18,19) Although GLH 2–4 transcripts are present
in the germ line and their proteins localize to P-granules, deletion of glh-2, glh-3 or glh-4
genes alone are not sufficient to cause adult sterility.(17,19) Unfortunately, the mechanism of
GLH-function is not known, and may require a biochemical approach as recently
accomplished in Drosophila.(29)

The picture of vasa function in mammals is dim
Vasa-null mice develop normally and the females are completely fertile. In contrast, male
vasa-null mice are infertile due to deficiencies in male germ cell proliferation and
differentiation.(14) The Vasa-like gene, DBY in humans, also appears to be required for male
fertility.(30) These examples of sex-specific phenotypes in mammals are just the opposite to
vasa mutants in Drosophila, where females are sterile and males are fertile. Mutants of the
vasa-related gene (PL10, also called Belle) in Drosophila, however, are male infertile.(31)

Thus, although vasa is present in both male and female germ lines, it must either have
different targets of function or is regulated differently in the two germ line types. The major
impediment in our progress here is that we have so few clues as to the functional mRNA
targets of vasa. Overcoming this deficiency will likely require the biochemical approaches
of Vasa-mRNA co-purification. Such an approach is difficult though in many animals in
which only a small amount of relevant tissue is accessible.

Vasa function is required in diverse organisms – studies with loss of function approaches
While work in Drosophila, C. elegans and mice constitutes the most extensive analysis of
any vasa gene, a growing body of data from several different animals have contributed to
our understanding of Vasa function. Abrogating Vasa expression by utilizing RNAi in
embryos and adults has been useful for collecting functional data in animals lacking stable
transgenics. For example, the flatworm M. lignano displays Vasa expression in the
multipotent neoblast stem cells in addition to germ cells. However, RNAi knockdown of
Vasa had no effect on stem cell maintenance, neoblast proliferation, gonad formation or
gonad development.(32) This suggests either a nonessential role of Vasa in adults or a
functional overlap with other Vasa-like genes in flatworm gonads and neoblasts, similar to
that seen in the germ line of the roundworm. So too in colonial ascidians,(33–35) oysters,(36)

in teleosts,(20,37) Xenopus,(38) the parasitic wasp,(39) and the crustacean Parhyale
hawaiensis,(40) vasa function and or association in germ cell development is widespread.

Vasa function is required in diverse organisms – gain of function in the chicken and the
human

Recent Vasa gain-of-function analyses in human and chicken cell lines have provided more
insight into Vasa’s role in development. Ectopic Vasa expression has been reported in
epithelial ovarian cancer cells where it abrogates the DNA damage-induced G2 checkpoint
by down regulating 14-3-3σ expression.(41) However, it is unclear whether the abnormal
presence of Vasa reflects a causative role in ovarian tumorigenesis. This could be tested in
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mice by restoring 14-3-3σ expression in a Vasa-expressing ovarian cancer cell line,
reintroducing these cells into a host animal and analyzing whether it abolishes
tumorigenicity. Nonetheless, this observation illustrates the importance of correct Vasa
expression in development. Ectopic Vasa expression in chicken embryonic stem cells
(ESCs) induces expression of specific germ line and meiotic genes.(42) As a consequence,
following their injection into chick embryos, these ESCs exhibit improved germ line
colonization and adopt a germ cell fate. This supports a fundamental role of Vasa in germ
line identity and function.

Together these data suggest Vasa has an essential and evolutionarily conserved role in many
aspects of germ line development including germ cell specification, proliferation and
maintenance. Identification and analyses of Vasa targets will help resolve the mechanistic
details behind this conserved germ line function as well as additional roles outside the germ
line. The results also show that no one approach (gene inactivation versus gene over-
expression), no one cell-type, no one animal, and no one gene will likely solve this problem.
Instead, using diverse experimental approaches in many different animals will hopefully
enable the most efficient approach to definitely identify vasa function.

Beyond the germ line: Vasa in multipotent stem cells
Although Vasa has proven a reliable marker for the germ lineage in several animals, these
examples mostly consist of insects and vertebrates (Table 1).(5) Emerging data have
provided a broader phylogenetic perspective on vasa and demonstrate its function also in
multipotent cell types. In Cnidarians, for example, the multipotent interstitial cells (I-cells)
contribute not only to the germ line, but also to somatic cell types such as nematocytes
(nerve cells) and gland cells.(7,43,44) Flatworms possess remarkable regenerative capabilities
due to their pool of multipotent stem cells (neoblasts).(45) Vasa is expressed in the ovaries,
the testes and the neoblast stem cells.(32) The function(s) of Vasa in these persistent
multipotent cells of cnidarian and flatworm is yet unknown, but with recent technological
advances in the experimentation of both of these animals, vasa’s function can be tested by
RNAi or morpholino knock-down of Vasa followed by testing the ability of I-cells or
neoblasts not only to proliferate and differentiate into somatic cell types, but also into a
germ line.

While no examples of Vasa expression are reported outside of germ line cells in vertebrates
and insects, data from other deuterostomes and from various arthropods prove otherwise.
For example, the crustacean Polyascus polygenea (a colonial barnacle) contains Vasa in a
cluster of multipotent stem cells in its buds and stolon during the parasitic stage of its life
cycle.(46) Vasa is present in the auxiliary cells of the oyster ovary, in the somatic cells of the
reconstructing gonadal tissues during its development for the next spawning cycle,(47) and in
the snail, is present in non-germ-line lineages.(48) In the polychaete annelid, Vasa is
enriched in the progenitor mesodermal posterior growth zone (MPGZ). The MPGZ cells are
multipotent somatic stem cells, highly proliferative and contribute to both mesodermal tissue
and PGCs.(49) In the oligochaete as well, Vasa is present in non-genital segments during its
development.(50)

Tunicates are close relatives to vertebrates and analyses in the colonial ascidians (Botryllus
primigenus and Polyandrocarpa misakiensis) show vasa mRNA expression in their germ
lines along with cell aggregates containing somatic-derived multipotent hemoblasts.(51,52)

Regenerating buds induce vasa expression de novo at every budding cycle suggesting that
vasa may have functions in regeneration activities independent of the germ line.(2,35,53)

Indeed, many of the animals with Vasa in their multipotent cells are capable of tissue
regeneration in the adult to varying degrees.(54,55) This is also true in the more limited
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regenerative context for oyster gonad regeneration as well as asexual reproductive budding
in colonial ascidians and the parasitic barnacle. However, Vasa expression in multipotent
cells outside of a regenerative context in the polychaete annelid may be indicative of a more
general germ cell developmental phenomenon where localized cytoplasmic factors may help
set aside a multipotent stem cell population of which a subset are later designated for the
germ line. Overall, the presence of Vasa in non-germ line cells in various taxa is becoming
standard, but still lacking is an experimental test of vasa function during the regeneration,
the development, or in the maintenance of potency of non-germ line cells.

Regulation of Vasa expression
Transcriptional and epigenetic control of vasa expression

Localized Vasa expression is a common feature throughout phylogeny and in order to
control this, animals employ a variety of mechanisms to regulate both vasa mRNA and
protein accumulation. Several studies suggest vasa transcriptional regulation contributes to
cell and tissue-specific Vasa expression in developing embryos and adults. (56) In
Drosophila embryonic development, zygotic transcription of vasa occurs specifically in the
pole cells immediately after gastrulation and remains germ line-specific into adulthood.(57)

DNA methylation is one form of epigenetic regulation directing differential gene expression,
where hypermethylation is associated with gene silencing.(58) A recent study in humans
suggests that the methylation state of the vasa gene promoter controls its specific
transcription in the testes. The vasa promoter is hypomethylated in the testes and methylated
in all other tissues, which do not express vasa.(59) A clinical study showed that
spermatogenesis defects such as idiopathic azoospermia or severe oligospermia were also
associated with a hypermethylated vasa promoter in some individuals.(60) Transcriptional
regulation during gonad development and germ cell maturation likely also involves
hormonal signaling.(61,62)

Post-transcriptional regulation of vasa
The presence of different vasa splice forms in several animals such as M. lignano, S.
purpuratus, L. variegatus and P. dumerilii, suggests RNA processing contributes to vasa
regulation (Table 1).(32,49,63) Differential vasa expression can also result from regulation of
vasa mRNA stability. For example, the vasa transcript in the amphipod crustacean Parhyale
hawaiensis is maternally provided and uniformly distributed during early cleavage stages
before localizing in 32-cell stage embryos. These Vasa-positive cells were determined to be
PCGs by lineage tracing analysis and vasa transcript localization is dependent on its 3′UTR
to preferentially stabilize it in the germ line.(40,64) Differential vasa transcript stability has
been seen in several other animals, such as zebrafish and other teleosts, and thus appears to
be an important general process for post-transcriptional regulation.(37,65–67)

Translational repression is another regulatory mechanism that allows localized protein
production from a ubiquitous transcript during embryonic development.(68) Sequences
within a transcript 5′ and 3′UTRs may contain cis-regulatory elements which form
secondary RNA structures or which bind trans-acting factors that inhibit its translation.(69)

Relief of this translational repression can direct localized vasa expression. For instance, in
mice, Dazl protein binds the 3′UTR of mouse vasa mRNA in vivo, stimulates its translation
in Xenopus oocyte extracts and Dazl knockout mice have reduced levels of Vasa protein,
suggesting this regulation is crucial for Vasa translation and spermatogenesis.(70)

Post-translational regulation of Vasa
Work in Drosophila has detailed multiple mechanisms that regulate Vasa protein
localization to the pole plasm. For example, Vasa directly interacts with Oskar protein in
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vitro and this interaction may facilitate Vasa anchoring to polar granules in the posterior
pole of the oocyte.(71) Indeed, all mutant oskar alleles are defective in Vasa protein
localization.(72,73)

Evidence also suggests that proteolysis may play a regulatory role in Vasa localization. In
Drosophila, Vasa is ubiquitinated in the oocyte and its pole plasm accumulation is
dependent on the deubiquitinating enzyme Fat facets.(74) Since ubiquitylation can target a
protein for degradation, Fat facets may stabilize Vasa in the pole plasm. Normal Vasa pole
plasm localization also depends on Gustavus and Fsn, two paralogous B30.2/SPRY domain
proteins.(75,76) Both Gustavus and Fsn directly interact with Vasa through their B30.2/SPRY
domain and share several features indicative of an E3 ubiquitin ligase function.(76–78)

Gustavus contains a SOCS-box domain that complexes with Elongin B/C in vitro and
Cullin-5 in vivo.(75–77)Fsn has an F-box domain that interacts with Cullin-1 in vivo.(76)

While Gustavus and Fsn both appear to target Vasa for ubiqutination, mutational and
overexpression analyses suggest their functions are not identical and may contribute to a
delicate regulatory balance of Vasa ubiquitination required for its proper localization.(76)

These results raise several important questions concerning this regulation. What is the nature
of Vasa ubiquitination by Gustavus and Fsn? Are there mono-ubiquitination, K48-ubiquitin
chains or K63-ubiquitin chains species of Vasa and do these impart different stability and
localization properties?

Regulation of proteolysis may also direct Vasa localization during embryonic development
in the sea urchin Strongylocentrotus purpuratus. Vasa transcript is present uniformly during
early embryogenesis through blastula stage, but Vasa protein is strongly enriched in the 16-
cell stage micromeres and subsequent small micromeres.(63,79) The Vasa coding region is
sufficient for its small micromere accumulation and proteasome inhibition increases Vasa
protein levels throughout the embryo (Gustafson et al., in preparation). Vasa expression is
also regulated by proteolysis in C. elegans.(19) The Jun N-terminal kinase member KGB-1
and COP9 signalosome subunit 5 (CSN-5) both bind GLH-1.(80) Phosphorylation of GLH-1
by KGB-1 targets it for proteasomal degradation, whereas CSN-5 association in GLH-1
enhances its stability in the germ line.(80) In addition, recent data from Vasa orthologs in
mice, Xenopus and Drosophila suggest arginine methylation is a conserved aspect of Vasa
regulation. Furthermore, in Drosophila, the arginine methyltransferase Capsuleen
(dPRMT5/csul/dart5) is required for symmetric dimethyl-ariginine modifications of Vasa in
vivo.(81) However, additional work is required to elucidate the functional consequences of
Vasa arginine methylation. Does arginine methylation influence Vasa’s binding specificity
to target mRNAs and other proteins or are they important for Vasa’s localization and protein
stability?

Sub-cellular Vasa localization suggests a dynamic role in mRNA association - the Nuage-
like structures

In addition to its cell type and tissue-specific expression, another universal feature of Vasa
expression is its subcellular localization. Germ cells in all metazoan animals contain
perinuclear electron-dense ribonucleoprotein (RNP) structures.(82) These RNP rich
structures are often called nuage, the mitochondrial cloud, polar granules, P-granules,
chromatoid bodies and in some somatic cells, P bodies. (82,83) While the various names of
these structures correspond to differences in morphology, composition and animals in which
they were first identified, it is believed they are related entities.(83,84) Several of the proteins
identified as nuage components are known to function in mRNA regulation.(4) Although it is
still unclear whether these structures are centers for translation, polysomes have been
reported adjacent to nuage in Drosophila and rats.(83,85) Ultrastructural analyses in C.
elegans show nuage structures are frequently associated with nuclear pores.(86) One of the
most common nuage components is Vasa (Figure 2).(17,86–90) Examples in several animals
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suggest that at some point in development, either Vasa mRNA or protein displays a nuage
association or nuage-like localization (Table 2).

It is unclear however whether nuage is the location of Vasa function. Instead, this
subcellular localization may be used to direct a lineage-specific segregation of Vasa during
early embryonic development. In many animals, Vasa-containing nuage structures are
thought to be exclusively germ line-specific. However, the presence of Vasa-positive nuage-
like structures in multipotent neoblasts of the flatworm Magnostatum lignano suggests they
may be more widespread (Table 2).(32) Now that at least one vasa target, mei-P26, has been
identified, its relative association with the nuage will be important to determine in order to
resolve the consistent role of vasa in this specialized cellular structure.

Does vasa interact with the RNAi pathway?
Several studies indicate a functional relationship between Vasa and both the small
interfering RNA and micro-RNA processing pathways. One essential component in both of
these pathways is the RNase III endonuclease Dicer,(91) which, in mice, colocalizes with
Vasa in nuage.(89) Furthermore, ectopically expressed Vasa and Dicer protein interact in
COS cell lysates and this interaction requires the C-terminal portion of Vasa.(89) The C-
terminal RNaseIII region of Dicer is sufficient to interact with Vasa and the remaining N-
terminal ATPase/helicase-PAZ domain region appears independent of Vasa.(89)

PIWI proteins represent a subgroup of Argonautes required for germ line stem cell
maintenance and fertility in several animals.(92) Drosophila PIWI is a polar granule
component that interacts with Vasa and PIWI-mutant flies have normal Vasa protein
expression and abdominal patterning of the embryo, but exhibit a severe deficiency in pole
cell formation.(93) Over-expressing PIWI results in a dose-dependent increase in Vasa
protein levels and pole cell formation. These data suggest that a PIWI-mediated piRNA
pathway regulates the levels of Vasa and Oskar proteins and possibly other genes involved
in the germ line determination pathway in Drosophila.(93) A similar interaction is found in
mouse, where Vasa protein binds to both recombinant and endogenous MIWI and MILI,
which are mouse PIWI homologs.(81,94) Indeed, MILI and Vasa knockout mice have similar
phenotypes and defects in spermatogenesis indicative of cooperative molecular
functions. (14,94) In MIWI knockout mice, Vasa protein does not localize to the nuage
structures.(94) However, it is still unknown whether MIWI is required for nuage and
ultrastructural studies in MIWI knockout mice are needed. Exactly how these specific
interactions influence Vasa, MIWI or MILI function is unclear.

Recent work has identified Maelstrom as a nuage component that interacts with both mouse
Vasa and MIWI, is required for spermatogenesis and also is involved in silencing
transposable elements.(95,96) In Drosophila, Maelstrom protein localizes to nuage in a Vasa-
dependent manner. In maelstrom mutant oocytes, a higher molecular weight Vasa protein
species is evident indicating that Maelstrom is required for proper Vasa modification or
processing.(87) Although still not definitive, the consistent association in multiple animals of
vasa and members of the RNAi pathway argues strongly that they have a functional
relationship. This may not be surprising since both are postulated to be involved in
translational regulation, and the engagement of each mRNA with the ribosome is likely a
continuously evaluated process that responds with incremental increases, decreases, and
rates of translation. Researchers often have difficulty in dissecting overlapping pathways by
classic genetic means, so an alternative approach is to make use of blossoming in vitro cell
free lysate assays both for mRNA translational activity, as well as for mRNA stability as a
result of miRNAs.(97,98) In the context of vasa function in the RNAi pathway, it is hard to

Gustafson and Wessel Page 7

Bioessays. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ignore the intersection here that the small RNAs are 20–30 bases in length, and that vasa is
capable of unwinding 20–25 bases of dsRNA.

Vasa evolution resulted in divergent N-termini while retaining the conserved helicase
domain

Comparative phylogenetic data suggests that the Vasa gene family originated from a
duplication in a PL10-related DEAD-box gene early in metazoan evolution.(7) While
animals have both vasa and PL10 genes, plants and fungi have only PL10 genes and lack
vasa genes (Figure 1B). At some point after this gene duplication, vasa genes acquired
CCHC Zn-knuckle domains in the region N-terminal of the conserved DEAD box. The
number of Zn-knuckle domains found Vasa sequences vary from 1 to 8. However,
vertebrates and insects may have both independently lost these Zn-knuckle domains (Figure
1C, Table 1).

CCHC Zn-knuckles can be categorized as a “classical zinc-finger” based its zinc chelation
topology of a short β-hairpin followed by an α-helix.(99) They can bind single and double-
stranded DNA or RNA and may be involved in transcriptional regulation.(100,101) Most
examples of CCHC Zn-knuckles come from human retroviruses which all require Zn2+

binding for proper nucleocapsid protein folding.(102–104) The CCHC Zn-knuckle domains of
retroviral nucleocapsid proteins interact with specific structures in the viral RNA genome
during packaging.(105–109) A non-viral CCHC Zn-knuckle example includes the C. elegans
Lin28 protein, which has 2 CCHC Zn knuckles that are crucial for its localization to P-
granules and stress granules.(110) While the exact functional significance of these Zn-
knuckle domains is unknown, their RNA-binding properties point to a role in Vasa’s RNA
target specificity. Zn-fingers are versatile and can also target binding to other proteins.(99)

Do the CCHC Zn-knuckles impart additional functional dimensions to Vasa proteins? While
the presence of the 9 conserved DEAD-box sequence motifs in Vasa allow inference into
their RNA helicase catalytic activities, the highly divergent N-terminal regions are more
cryptic. The presence of Vasa Zn-knuckles correlates, in many animals, with an expanded
expression pattern (and possible functional role) outside of the germ line. The presence or
absence of Zn-knuckles may reflect differences in RNA or protein target binding. These
different target interaction properties may be important to potential expanded functions
outside of the germ line. One exception to this notion is the presence of Zn-knuckles in the 4
Vasa homolog Germ-line helicase (GLH 1-4) genes in C. elegans, whose expression is
restricted to the germ line.(16–18) Alternatively, it is possible that the loss of Zn-knuckles in
insect and vertebrate vasa genes coincided with the emergence of Zn-knuckle containing
cofactor proteins which now confer the target specificity. However, no such Vasa cofactors
have been identified yet in either insects or vertebrates.

Summary and Future directions
Although vasa has been known to be an important gene in development for almost 30 years,
we know remarkably little about how it works. With recent progress and technological
breakthroughs recently, however, we anticipate that the next few years will result in a
plethora of answers and new understanding. We feel the following are the most important
questions to address:

What are the mRNA targets of vasa in translational regulation?

Does vasa function similarly in germ cells as it does in multipotent stem cells?

What role does the highly divergent N-terminus of vasa play in its function?

Is the nuage a site of vasa function or storage?
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Is vasa an integrator of RNAi and translational regulation?

Despite the tremendous diversity in embryonic development displayed in metazoan animals,
the broad conservation of Vasa underscores its importance for reproduction. Despite
numerous functional analyses though, our understanding of Vasa’s specific molecular
function in translational regulation is meager. Further Vasa functional analyses will greatly
expand our understanding of Vasa’s purpose during development and how it is localized so
effectively. Analysis of Vasa expression in less-studied animals outside of vertebrates and
insects imply that the role of Vasa is not strictly confined to the germ line, which coincides
with the divergence of its N-terminus. Perhaps the animals containing Zn-knuckles on their
N-termini have different functional capabilities than those without a defined N-terminal
structure. Alternatively, vasa may simply interact with a Zn-knuckle containing protein and
thereby have similar functions. Ectopic expression studies and gene swapping experiments
will certainly help in this regard. Most importantly, if Vasa utilizes its helicase activity in
translation, does it function as a general translation factor or does it interact with specific
target transcripts? Although Vasa is capable of binding RNA in vitro, it is currently
unknown whether Vasa interacts with mRNAs in vivo.(10,24) Gurken is one of the only
examples for which Vasa has been shown to be required for translation.(23) However, we
still do not know if Vasa directly binds Gurken transcript. A screen for mRNAs that interact
with Vasa proteins will help identify its targets. With the break in this wall by Liu et al.,
2009, we may now be able to crack the function of vasa in both the germ line, and
multipotent cells.

Abbreviations

PGC primordial germ cell

DEAD-box single-letter amino acid code (aspartic acid, glutamic acid, alanine, aspartic
acid) within the helicase domain of a family of conserved proteins

MPGZ mesodermal posterior growth zone
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Figure 1. Vasa gene family conservation
(A) Nine conserved sequence motifs specific to all DEAD-box genes. Residues important
for ATP-binding and hydrolysis are indicated in green and residues involved in RNA
binding are indicated in purple. The function of the remaining conserved motifs in white is
unclear. (B) A schematic representation of the phylogenetic relationship between Vasa
genes, PL10 genes and the closest related DEAD box gene, p68 (Adapted from Mochizuki
et al., 2001). The star indicates the evolutionary split between Vasa and PL10 genes. (C)
CCHC Zn-knuckle domain-containing Vasa genes from Table 1 were used to illustrate the
phylogenetic conservation of this motif in the N-terminal portion of Vasa proteins. Animals
with Vasa CCHC Zn-knuckles are indicated in red, animals lacking Vasa Zn-knuckles are
shown in black and animals with insufficient Vasa sequence information are indicated in
grey (Phylogenetic tree adapted from Dunn et al., 2008).
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Figure 2. Vasa protein association with nuage-like structures
Vasa protein localizes to perinuclear structures in a wide variety of metazoans. C. elegans
immunofluorescent imaging of Vasa protein (A) and TEM image of polar granules (B)
(black arrows indicate nuclear pores). (C) In Drosophila melanogaster developing egg
chamber, Vasa protein localizes to the pole plasm in the oocyte (white arrowhead) and the
pernuclear nuage in nurse cells (red arrows). DIC (D) and Vasa immunoflourescence (E)
imaging of a Ciona intestinalis gastrula embryo with both punctate (arrows) and diffuse
(arrowheads). Vasa protein (F, immunofluorescence) localizes to the Balbiani body (G,
TEM) in mouse oocytes. In mouse spermatids, chromatoid bodies (black arrows) (H, TEM)
contain Vasa protein (white arrows) (I, immunoflourescence).
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Table 2

Subcellular localization of Vasa during development

Species Nuage-localization

Cnidaria

Hydractinia echinata (Hydrazoa) Protein: Perinuclear nuage material in oocytes and early embryos(44)

Platyhelminthes

Macrostomum lignano (Flatworm) Protein: Perinuclear localization in developing germ cells in ovaries and testes as well as
multipotent neoblasts(32)

Echinoderms

Strongylocentrotus purpuratus (Purple sea
urchin)

VasaGFP Localizes to perinuclear granular structures resembling nuage in small micromere
cells (Gustafson et al., unpublished)

Annelids

Platynereis dumerilii (Dumerili’s clam worm) Protein: Localizes to a perinuclear ring in oocytes corresponding to previously described
nuage material(49,111)

Tunicates

Ciona intestinalis (Ascidian) Protein: Perinuclear nuage-like particles during the late tailbud stage of embryonic
development(90)

Vertebrates

Homo sapiens (Human) Protein in Gonocytes and oogonia: Not expressed in first trimester fetuses, but
progressively increases in developing female germ cells between weeks 12–20 and coincides
with a change from a uniform cytoplasmic distribution to a punctuated perinuclear ring
localization(112–114)

Protein in Oocytes: Localizes to a single compact perinuclear body in developing
embryos(113)

Mus musculus (Mouse) Protein in Spermatocytes: Localizes to the cytoplasm in a perinuclear fashion resembling
the chromatoid body(115)

Gallus gallus (Chicken) Protein: Localizes to spherical mitochondrial cloud structures in developing oocytes(116)

Sparus aurata (Gilt head sea bream) mRNA: Localizes to the perinuclear cytoplasm in early midvitellogenic and vitellogenic
oocytes(62)

Oryzias latipes (Medaka) mRNA: Localizes to patches with the early oocyte cytoplasm(117)

Danio rerio (Zebrafish) Protein: Granular localization in PGCs and Vasa(20)

mRNA: localizes to nuage-like structures in 1000-cell embryos(118)

Xenopus Laevis (African clawed frog) Protein: Localizes to germ granules and germ plasm during early embryonic
development(38,119)

Chaetognaths

Sagitta inflata (Arrow worms) Protein: Localizes to the large germ granule formed in fertilized eggs (120)

Insects

Drosophila melanogaster (Fruit Fly) Protein: Found in perinuclear nuage of nurse cells in developing egg chambers(72,73,121)

mRNA: Localizes to a perinuclear granules in the egg(122)

Bombyx mori (Silkworm)

Nematodes

Caenorhabditis elegans Protein: Localizes to P-granules during embryonic development(16–18)

Molluscs

Crassostrea gigas (Oyster) mRNA: Localizes distinctly to cytoplasmic granules at the vegetal pole in unfertilized
oocytes(47)
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