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Abstract
Indefinite symmetric matrices that are estimates of positive definite population matrices occur in a
variety of contexts such as correlation matrices computed from pairwise present missing data and
multinormal based theory for discretized variables. This note describes a methodology for scaling
selected off-diagonal rows and columns of such a matrix to achieve positive definiteness. As a
contrast to recently developed ridge procedures, the proposed method does not need variables to
contain measurement errors. When minimum trace factor analysis is used to implement the theory,
only correlations that are associated with Heywood cases are shrunk.

Let R be a symmetric indefinite matrix, that is, a matrix with both positive and negative
eigenvalues. Often such matrices are intended to estimate a positive definite (pd) matrix, as
can be seen in a wide variety of psychometric applications including correlation matrices
estimated from pairwise or binary information (e.g., Wothke, 1993). Approaches to
modifying R to create a pd matrix for further analysis include least squares approximation
(Knol & ten Berge, 1989) and adding a small constant to its diagonal (e.g., Yuan & Chan,
2008); a thorough review is given in Yuan, Wu, and Bentler (2009). This note describes a
methodology for scaling off-diagonal elements of R to achieve a pd approximation. This is
done by finding a bounded diagonal scaling matrix that shrinks selected off-diagonal rows
and columns of R.

Lemma 1
There exists a diagonal matrix D with nonzero elements such that (R − D) is positive
semidefinite.

Proof—Such a D can be obtained e.g., by minimum trace factor analysis (Bentler, 1972;
Della Riccia & Shapiro, 1982).

In the standard factor analytic situation where R is positive definite, D would be a pd
diagonal matrix of unique variances, and (R − D) = FF′ would be the covariance matrix of
the common parts of the variables. However, in the current context, R is indefinite and hence
D has different properties.

Lemma 2
One or more diagonal entries in D are negative.
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Proof—Assume the contrary. Then R is the sum of a positive semidefinite (psd) and a pd
diagonal matrix, and thus R would be pd, which is contrary to assumption. Hence D must
have one or more negative diagonal elements.

Let H2 be a diagonal matrix containing the diagonal of (R − D); in standard factor analysis,
the elements of this matrix are known as communalities. Let DR be the diagonal matrix
containing the diagonal of R, and let R0 = (R − DR). With these definitions, R − D = R0 +
H2. Let Δ be a pd diagonal matrix such that 0 < Δ2 H2 < DR.

Theorem
R* = ΔR0Δ + DR is positive definite.

Proof—Note that ΔR0Δ + Δ2 H2 = Δ(R0 + H2) Δ is psd and DR − Δ2 H2 is pd. Since R* =
(ΔR0Δ + Δ2 H2) + (DR − Δ2 H2) is the sum of a psd and a pd matrix, it is pd.

The theorem shows how to obtain a pd matrix from an indefinite one, where diag(R*) =
diag(R) and the offdiagonals of R*are rescaled elements of R. When R is a correlation
matrix with unit diagonals, R*can be similarly interpreted.

Application
Suppose that R is a correlation matrix obtained by polychoric and/or polyserial
methodology. It is well known that this matrix is often indefinite in small samples, leading
to problems in estimation and testing of derived models such as structural equation models.
R* may be an appropriate substitute for R in such models. Although biased, R* is a
consistent estimate of the population counterpart to R since R* approaches R as N goes to
infinity. The sampling distribution of elements of R* can be obtained using the bootstrap.

To obtain R *in practice, a minimum trace factor analysis algorithm (e.g., Bentler, 1972;
Jamshidian & Bentler, 1998) applied to R will yield a unique H2 such that tr(H2) is
minimized. Let  be the ith diagonal element of H2. If R is indefinite, many elements will
have  but one or more elements will be Heywood cases with . The matrix Δ2 is
constructed such that an element  if , while if  for some a priori
constant k < 1. For simplicity, k may be taken as the same value for all Heywood variables.
It is desirable to have k be only marginally smaller than 1.0, for example, k = .96. Then if

, for example, the ith row and column of R0 is multiplied by .934 to yield the
correlation in R *. Only those variables corresponding to Heywood cases have their
correlations rescaled; the remainder are not modified.

An example of this methodology is given in Table 1, which shows the correlations among
12 variables obtained for a random sample of 50 cases from a categorized multinormal
population, based on Bonett and Price’s (2005) odds-ratio tetrachoric estimator. The
eigenvalues of this correlation matrix are 6.4233, 1.3704, 1.1237, 0.7641, 0.7174, 0.5059,
0.4430, 0.3334, 0.1559, 0.1115, 0.0600, −0.0087. The small negative eigenvalue makes the
matrix indefinite. Minimum trace factor analysis showed that variables 3, 4, 6, and 9 had
communalities greater than 1.0, ranging from 1.037 to 1.1543. Table 2 gives the correlation
matrix after scaling using k = .96. Only variables 3, 4, 6, and 9 have correlations that are
reduced. The median reduction in correlation is .027, while the maximum reduction is .0712
(r43 reduced from .8579 to .7867). The eigenvalues of the resulting matrix are 6.2305,
1.3369, 1.1195, 0.7738, 0.7204, 0.5146, 0.4473, 0.3641, 0.1780, 0.1226, 0.1181, 0.0742.
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Discussion
The most widely known methodology for dealing with indefinite or near singular symmetric
matrices is that of ridge regression (Hoerl & Kennard, 1970) or Tikhonov regularization1. In
standard ridge regression and other ridge applications, each diagonal of a symmetric matrix
is incremented by a small positive number, say κ, that is larger than the smallest eigenvalue
of R. The statistical theory to make this approach well-rationalized in the context of
covariance and correlation structures has recently been developed (e.g., Yuan & Chan, 2008;
Yuan, Wu, & Bentler, 2009), where variables are assumed to contain measurement errors
that are explicitly accounted for in the model. The approach proposed in this paper does not
need variables to contain measurement errors in application. An example is the regression
model with standardized variables when the correlation matrix of the predictors is
nonpositive definite. When the proposed procedure is implemented using minimum trace
factor analysis, correlations for variables associated with Heywood cases are smoothly
scaled down; those among non-Heywood variables remain undisturbed.

A limitation of this methodology is that the scaling constant k is subjectively determined.
The example used k = .96, but other values marginally below 1.0 could be used as well.
Limited experience shows that the precise value does not matter much. The need to use
subjective judgment in selecting tuning values is also a feature of previously proposed
methods (Knol & ten Berge, 1989; Yuan & Chan, 2008; Yuan, Wu, & Bentler, 2009).
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