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Abstract
Recent advances in diffusion weighted MR imaging (dMRI) has made it a tool of choice for
investigating white matter abnormalities of the brain and central nervous system. In this work, we
design a system that detects abnormal features (biomarkers) of first-episode schizophrenia patients
and then classifies them using these features. We use two different models of the dMRI data,
namely, spherical harmonics and the two-tensor model. The algorithm works by first computing
several diffusion measures from each model. An affine-invariant representation of each subject is
then computed, thus avoiding the need for registration. This representation is used within a kernel
based feature selection algorithm to determine the biomarkers that are statistically different
between the two populations. Confirmation of how well these biomarkers identify each population
is obtained by using several classifiers such as, k-nearest neighbors, Parzen window classifier, and
support vector machines to separate 21 first-episode patients from 20 age-matched normal
controls. Classification results using leave-many-out cross-validation scheme are given for each
representation. This algorithm is a first step towards early detection of schizophrenia.

1 Introduction
A recent World Health Organization (WHO) report estimates that nearly 1% of the
population in the US is affected by schizophrenia. A growing body of evidence suggests that
early detection and treatment of schizophrenia (and many other brain disorders) is critical in
forming and predicting the course and outcome of the disorder [1]. The tools proposed in
this work can serve as a first step towards early detection of schizophrenia, which may result
in better prognosis and functional outcome. However, very little work has been done on
developing a biomarker that characterizes first-episode schizophrenia or other subtle
psychiatric disorders such as mild to moderate traumatic brain injury.

There has been some work done on classifying patients with chronic schizophrenia using
structural MRI [2,3]. The authors in [4,5] use dimensionality reduction followed by linear
discriminant analysis for classification of patients with schizophrenia (chronic). They,
however, only use the fractional anisotropy (FA) images derived from single tensor
estimation as a discriminant feature. Another related work is by [6], where the authors use
kernel methods for discriminating schizophrenia patients. Recent work has also focussed on
using other imaging modalities, such as, functional MRI for detection of schizophrenia in
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prodromals [7]. The work presented in this paper, can provide complementary anatomical
input to such fMRI based techniques for early detection of schizophrenia.

2 Our contribution
In this work, we propose to design an algorithm that locates abnormal features of first-
episode (FE) schizophrenia patients. These features are then used within a classification
system to determine their potential use as biomarkers. While several studies have reported
statistical differences in diffusion measures for FE patients [8,9], to the best of our
knowledge, this is the first study that uses them to perform classification.

Existing work on distinguishing chronic schizophrenia used the single tensor model, which
is known to be inadequate in regions of crossing and branching - a common configuration
occurring throughout the brain [10]. In this work, we use a nonparametric spherical
harmonics model [11], as well as a parametric two-tensor model [12] to detect biomarkers
and perform classification of FE patients. These models can better capture multi-fiber
configurations and hence the abnormality in the underlying anatomy.

Another novel aspect in this work is the use of an affine invariant probabilistic
representation of each subject, which avoids the computational cost of registration along
with errors due to mis-registration. Finally, we use a kernel based method [13] to locate
statistically different diffusion measures (biomarkers) followed by classification of FE
patients using several classifiers, i.e., Parzen window classifier, k-nearest neighbor and
support vector machines.

3 Preliminaries
Schizophrenia is characterized by several symptoms such as, hallucinations, delusions,
suspiciousness, etc. These occur in varying degrees in people affected by this disorder.
Chronic schizophrenia typically implies that the patient has had psychotic symptoms for
atleast five years, while first-episode schizophrenics are patients who have recently had
their first psychotic episode (thus they are in the early stage of the development of the
disease). Thus, knowing anatomical biomarkers that can reliably distinguish FE patients can
be quite useful in determining the risk for prodromal subjects (subjects with high risk of
schizophrenia). Recent studies have shown that around 30-40% of prodromals convert into
schizophrenics. Thus, a tool that can provide the probability of a prodromal subject being
anatomically close to FE patients can be immensely useful for early detection of
schizophrenia. This is the main motivation behind our work.

In diffusion weighted imaging, image contrast is related to the strength of water diffusion
along fiber orientation. At each image voxel, diffusion is measured along a set of distinct
gradients, u1, …, un ∈ S2 (on the unit sphere), producing the corresponding signal, s = [s1,
…, sn]T ∈ ℝn. One of the simplest model that explains s is the diffusion tensor model, which
provides a Gaussian estimate of the fiber orientation [14]. However, this model is highly
inadequate in regions of crossings and branching fibers [15]. To overcome this limitation,
several other models have been proposed [15,16,17,18,19,20,12]. Of these, we use the
nonparametric spherical harmonics (SH) model of computing the orientation distribution
funciton (ODF) [11] and the unscented Kalman filter (UKF) based two-tensor model
proposed in [12]. These choices are guided by the following considerations: 1). The SH
model can represent an arbitrary number of fiber configurations at each voxel, 2). The UKF
based two-tensor model estimation incorporates the correlation in diffusion of water along
the fiber direction, and thus is a robust estimator of the diffusion profile for one and two
fiber configurations.
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Spherical harmonics (SH)
This nonparametric model is one of the popular techniques for estimating the diffusion ODF
[11]. The method works by first computing the coefficients of the spherical harmonic (SH)
basis of order L that best fits the measured signal and subsequent analytical computation to
obtain the ODF. Given any bandlim-ited signal s defined on the sphere, one can write it as

an expansion in terms of the SH basis as: , where Yl,m are the
spherical harmonic basis functions. The above equations can be written as a linear system of
equations and cl,m can be computed using least squares.

Filtered Two-tensor (F2T)
In this case, the signal is assumed to be generated by a mixture of two Gaussians. Thus,

, where {D1, D2} are the two diffusion tensors estimated
recursively within an unscented Kalman filtering framework [12]. The method works by
starting tractography from the seed region and diffusion tensors are estimated as a fiber is
traced from seed to termination. In this work, we perform whole brain tractography, by
seeding the entire brain (except CSF). Thus, the F2T model is estimated at every voxel of
the brain (in terms of the fibers that pass through each voxel), apart from CSF.

4 Methods
Validation studies have indicated the correlation between de-myelination, cellular packing,
and axonal damage to diffusion measures such as fractional anisotropy (FA), trace (TR),
norm (N), etc., [21,22]. Thus, these measures are potential candidates for being used as
biomarkers. In the case of the SH model, generalized fractional anisotropy (GFA) and
generalized norm (GN) are the diffusion measures of interest [23]. These measures can be
readily computed in the SH basis as follows 5:

where S is the estimated signal using the SH model, c = [c1c2…] are the coefficients in the
SH basis, and n is the number of samples. GFA captures the anisotropy of the signal, while
GN measures the “size” or amount of diffusion. Note that, these measures are typically used
for ODF’s, but given the linear relation between the signal and the ODF in the SH basis
[11], the measures computed above are equivalent (upto a linear transformation) to those
computed for ODF’s. Computing these measures directly for the signal avoids computation
of the ODF.

The F2T model allows for computation of a different set of orthogonal diffusion measures
such as the FA, Mode (MD) and norm (N) [24]. These measures capture different
(orthogonal) aspects of the shape of the tensor. Thus, FA measures the anisotropy while
norm captures the amount of diffusion. Mode distinguishes between planar, ellipsoidal and
spherical shapes. Given, a diffusion tensor D, these measures can be computed as follows:

5The acquired scanner signal is denoted by s, while the estimated signal is denoted by S.
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where, |.| denotes the determinant, tr(.) is the trace, I is the identity matrix and ∥.∥ denotes
the frobenius norm of a matrix. These measures can be computed for each tensor, and thus
six features are obtained.

4.1 Affine invariant representation
The next step in our algorithm is computing an affine invariant representation, i.e., a
representation that does not change even if an affine transformation is applied to the
underlying data. We achieve this by computing a probability density function (PDF) of each
diffusion measure defined above. A nonparametric estimate of the PDF can be computed

using the following expression [25]: , , where
I(x) is a scalar value at spatial location x, M is the number of data points, G is a Gaussian
kernel and h denotes the bandwidth of the kernel. Notice that, the spatial position x is
arbitrary and applying an affine transformation to it does not change the PDF.

For each of the diffusion measures discussed earlier, we compute a PDF from values
estimated throughout the brain. Thus, for the SH model, an affine invariant representation of
a subject is given by: Psh = [pgfa pgn], where pgfa and pgn are the PDF’s of the GFA and GN
respectively. The PDF’s are computed at nb bins, and thus Psh is an nb × 2 matrix. Similarly,
for the F2T model, we compute PDF’s for all the 6 diffusion measures to obtain a
probabilistic representation Pf2t = [pfa1 pmd1 pn1 pfa2 pmd2 pn2] of each subject (nb × 6
matrix).

4.2 Biomarker detection and classification
Once a PDF of each diffusion measure is computed for each subject, the goal is to
determine, which of these measures characterize FE patients. Since each PDF is a high (nb)
dimensional vector, appropriate methods have to be used. As such, we will use the kernel
based method of [13] for statistical hypothesis testing. This method has several advantages,
chief among them are : a) It can be used with high dimensional data without sacrificing
robustness and accuracy. b) The data need not necessarily lie in a Euclidean vector space,
i.e., any type of data with an appropriate kernel can be used. c) This method computes
statistical differences without any assumption on the distribution from which the samples are
drawn (the popular t-test assumes a Gaussian distribution for the samples in each
population). Thus, subtle differences can be captured using the kernel based method.

This method tests the hypothesis of two distributions being equal p = q. The test statistic
used is the maximum mean discrepancy (MMD) between the two samples. Let F be a class
of functions f : X → ℝ and p, q be probability distributions (with domain X), then MMD is
defined as: MMD[F, p, q] = supf∈F (Ex~p[f(x)] − Ey~q[f(y)]), where E represents the expected
value. Computing MMD involves, mapping the data to a reproducing kernel Hilbert space
(RKHS) and computing the inner product (between high dimensional features) in this space
using an appropriate kernel (Gaussian in our case). If MMD is greater than a certain
threshold, the null hypothesis (p = q) is rejected. The hypothesis threshold is selected based
on significance level α, typically set to 0.05.

We will use this kernel method for feature selection (biomarker detection). Thus, in the case
of F2T model, each of the PDF’s pi ∈ Pf2t is tested, and the ones which are statistically
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different are used for classification. Classification involves learning a function that
minimizes a particular metric so as to best separate the groups in the training data set.
Several classifiers have been proposed in the literature. We will use three popular ones:
Parzen window classifier [26], k-nearest neighbor [27] and support vector machines (SVM)
[28]. A typical way to ensure robustness to overfitting for any classifier is to perform a
leave-many-out cross validation. In this technique, a certain percentage of the available data
are randomly selected (without replacement) for training the classifier. Testing is then
performed on the remaining data and classification error computed. This process is repeated
several thousand times and the overall performance of the classifier is computed in terms of
its sensitivity and specificity.

Briefly, the entire algorithm can be summarized as follows:

Algorithm 1 : Biomarker detection and classification

1. Compute diffusion measures and their PDF’s for each subject to obtain Psh, Pf2t.

2. Randomly select x% of the subjects for training the classifier C. This process is
repeated to obtain M training data sets .

3. For each training data set Ti, use the kernel based hypothesis testing method [13] to
find the PDF’s pb ∈ Psh or pb ∈ Pf2t which are statistically different. This is the
biomarker detection part of the algorithm.

4. Train the classifier C on the training data set Ti using the selected features pb
(PDF’s).

5. Test the classifier on the remaining data (corresponding to Ti) and compute correct
detection rate and false positives.

6. Perform steps (3)-(5) for all training data sets {T1 …, TM} and compute the overall
sensitivity and specificity of the classifier.

In step 3 above, a counter (corresponding to each diffusion measure) is incremented each
time a diffusion measure is selected as statistically different. Thus the measure that best
characterizes a given population will be chosen frequently, thereby indicating its potential
use as a biomarker.

5 Results
We applied the above algorithm for detecting biomarkers of FE schizophrenia patients. The
data set consisted of 21 FE patients (17 males, 4 females, average age: 21.21±4.56 years)
and 20 normal controls (15 males, 5 females, average age: 22.47 ± 3.48 years) with the p-
value for age being 0.34. dMRI data was acquired for all the subjects on a 3T scanner with
51 gradient encoding directions and 8 baseline images. The spatial resolution was 1.66 ×
1.66 × 1.7mm3 with a b-value of 900.

The SH model was estimated throughout the brain, while F2T model estimation was done in
terms of whole brain tractography [12]. Thus, F2T was not estimated in CSF areas, where no
fiber tracts exist. Estimation of both these models was done for all 41 subjects and the
proposed algorithm was applied as described before (Algorithm 1).

For the SH model, the generalized norm (GN) was consistently chosen as the biomarker by
the kernel hypothesis testing method [13] for all the training data sets. The reason is evident
from the plots of PDF’s of all subjects (see Figure 1). In the case of F2T model, norm of the
two tensors (N1, N2) were the distinguishing features that separated the two groups. No
differences in FA or mode were observed. Thus, for both the models, a measure of the
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“amount of diffusion” was chosen as the biomarker that characterized FE patients, i.e.,
overall diffusivity in FE patients is higher than NC. Biologically, this implies that, in the FE
patients there is demyelination of the axons or lower density of cellular packing, allowing
for more diffusion of water. Another point to note, as evident in Figure 1, is that the tensor
norms (N1, N2) measure the diffusivity, which is higher for FE patients, while the signal
norm (GN) is lower for FE patients. This is because, higher diffusivity D implies lower
signal S : S(ui) = S0 exp(−bD(ui)).

Table 1 gives the sensitivity (Se) and specificity (Sp) of each of the classifier’s (for both
models) with different number of samples (x = {40%, 60%, 80%, 98%}) in the training data
set. For each x, 10000 training data sets were randomly generated from the original data and
testing was done on the remaining samples. This method of cross-validation is a very good
estimator of the generalization property of any classifier [29].

For the k-nearest neighbor (knn) classifier, we used 6 nearest neighbors, with cosine of the
angle between the PDF’s as a measure of similarity (the PDF’s can be thought of as nb
dimensional vectors). In the case of SVM and Parzen window classifier (PWC), the kernel
width was chosen so as to minimize the error during training.

In general, the k-nearest neighbor (knn) classifier gave the best performance for this data set.
Also, the F2T model performed much better in terms of the classification accuracy than the
SH model. Notice that, the performance of knn is close to optimal even when only 60% of
the data is used in the training data set. Combining the features from both the models did not
improve the performance of any classifier.

6 Discussion and Application
In this work, we proposed a system for detecting biomarkers of FE schizophrenia patients
using two representations; spherical harmonics and two-tensor. The effectiveness of using
these biomarkers to characterize FE patients was obtained by testing their classification
accuracy (85% specificity and 86% sensitivity). Future application involves using these
biomarkers to determine the probability of a prodromal subject being at risk of developing
schizophrenia. This can be easily done by computing P̂ = [pn1, pn2] for a prodromal subject
and then using a nonparametric density estimator to compute the probability of P̂ being a FE
patient. This will be the focus of our future work. Thus, the proposed method can be of great
clinical significance for early detection of schizophrenia.

Acknowledgments
This work was supported in part by a Department of Veteran Affairs Merit Award (Dr. M Shenton, Dr. R
McCarley), the VA Schizophrenia Center Grant (RM, MS) and NIH grants:1P50MH080272-01 (MS,RM), P41
RR13218 (MS), R01 MH 52807 (RM), R01 MH 50740 (MS), R01MH074794 (Dr. Westin) and NA-MIC (NIH)
grant U54 GM072977-01 (Dr. Ron Kikinis).

References
1. McGlashan T. Early detection and intervention in schizophrenia: editors introduction. Schizophr

Bull. 1996; 22(2):197–199. [PubMed: 8782281]
2. Davatzikos C, Shen D, Gur R, Wu X, Liu D, Fan Y, Hughett P, Turetsky B, Gur R. Whole-brain

morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities.
Archives of general psychiatry. 2005; 62(11):1218–1227. [PubMed: 16275809]

3. Pohl, KM.; Sabuncu, MR. A unified framework for mr based disease classification. In: Prince, JL.;
Pham, DL.; Myers, KJ., editors. Information Processing in Medical Imaging. Volume 5636 of
Lecture Notes in Computer Science. 2009. p. 300-313.

Rathi et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Caan M, Vermeer K, van Vliet L, Majoie C, Peters B, den Heeten G, Vos F. Shaving diffusion
tensor images in discriminant analysis: A study into schizophrenia. Medical Image Analysis. 2006;
10(6):841–849. [PubMed: 16965928]

5. Caprihan A, Pearlson G, Calhoun V. Application of principal component analysis to distinguish
patients with schizophrenia from healthy controls based on fractional anisotropy measurements.
Neuroimage. 2008; 42(2):675–682. [PubMed: 18571937]

6. Khurd P, Verma R, Davatzikos C. Kernel-based manifold learning for statistical analysis of
diffusion tensor images. Lecture Notes in Computer Science. 2007; 4584:581.

7. Schobel S, Lewandowski N, Corcoran C, Moore H, Brown T, Malaspina D, Small S. Differential
targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic
disorders. Archives of General Psychiatry. 2009; 66(9):938. [PubMed: 19736350]

8. Friedman J, Tang C, Carpenter D, Buchsbaum M, Schmeidler J, Flanagan L, Golembo S,
Kanellopoulou I, Ng J, Hof P, et al. Diffusion tensor imaging findings in first-episode and chronic
schizophrenia patients. American Journal of Psychiatry. 2008; 165(8):1024. [PubMed: 18558643]

9. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz F, Shenton M. A review of
diffusion tensor imaging studies in schizophrenia. J of Psychiatric Research. 2007; 41:15–30.

10. Behrens T, Johansen-Berg H, Jbabdi S, Rushworth M, Woolrich M. Probabilistic diffusion
tractography with multiple fibre orientations: What can we gain? NeuroImage. 2007; 34:144–155.
[PubMed: 17070705]

11. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical Q-
ball imaging. Magnetic Resonance in Medicine. 2007; 58:497–510. [PubMed: 17763358]

12. Malcolm J, Shenton M, Rathi Y. Neural tractography using an unscented Kalman filter. In. IPMI.
2009:126–138.

13. Gretton A, Borgwardt K, Rasch M, Scholkopf B, Smola A. A kernel method for the two-sample-
problem. Journal of Machine Learning Research. 2008; 1:1–10.

14. Basser P, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical
Journal. 1994; 66(1):259–267. [PubMed: 8130344]

15. Tuch D. Q-ball imaging. Magnetic Resonance in Medicine. 2004; 52:1358–1372. [PubMed:
15562495]

16. Anderson A. Measurement of fiber orientation distributions using high angular resolution diffusion
imaging. Magnetic Resonance in Medicine. 2005; 54(5):1194–1206. [PubMed: 16161109]

17. Jian B, Vemuri B. A unified computational framework for deconvolution to reconstruct multiple
fibers from diffusion weighted MRI. TMI. 2007; 26(11):1464–1471.

18. Jansons K, Alexander D. Persistent angular structure: New insights from diffusion MRI data.
Inverse Problems. 2003; 19:1031–1046.

19. Tournier JD, Calamante F, Gadian D, Connelly A. Direct estimation of the fiber orientation density
function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage. 2004;
23:1176–1185. [PubMed: 15528117]

20. Barmpoutis A, Hwang MS, Howland D, Forder J, Vemuri B. Regularized positive-definite fourth
order tensor field estimation from DW-MRI. Neuroimage. 2009

21. Budde M, Kim J, Liang H, Schmidt R, Russell J, Cross A, Song S. Toward accurate diagnosis of
white matter pathology using diffusion tensor imaging. Magnetic resonance in medicine. 2007;
57(4):688. [PubMed: 17390365]

22. Chenevert T, Brunberg J, Pipe J. Anisotropic diffusion in human white matter: demonstration with
MR techniques in vivo. Radiology. 1990; 177(2):401–405. [PubMed: 2217776]

23. Ozarslan E, Vemuri B, Mareci T. Generalized scalar measures for diffusion MRI using trace,
variance, and entropy. Magnetic Resonance in Medicine. 2005; 53(4):866–876. [PubMed:
15799039]

24. Kindlmann G, Ennis D, Whitaker R, Westin C. Diffusion tensor analysis with invariant gradients
and rotation tangents. TMI. 2007; 26(11):1483–1499.

25. Parzen E. On estimation of a probability density function and mode. The annals of mathematical
statistics. 1962:1065–1076.

Rathi et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



26. Jain A, Ramaswami M. Classifier design with Parzen windows. Pattern Recognition and artificial
intelligence. 1988:211–228.

27. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory. 1967; 13(1):21–27.

28. Schölkopf B, Burges C, Smola A. Advances in kernel methods: support vector learning. MIT
press. 1999

29. Picard R, Cook R. Cross-validation of regression models. Journal of the American Statistical
Association. 1984; 79(387):575–583.

Rathi et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
PDF’s of diffusion measures for 21 FE patients (red) and 20 NC (blue). Top row: GFA and
GN are shown, but only GN was chosen as biomarker for the SH model. Bottom: Norms of
both the tensors in F2T model show significant difference between the groups.
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