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Nearly 2 centuries of progress have established the
major components of the plant cell wall, a composite
that includes interpenetrating networks of cellulose
(Payen, 1838; Schulze, 1891), microfibrils (Frey-Wyssling
et al., 1948; Preston et al., 1948), pectin (Braconnot,
1825), and lignin (Payen, 1838). However, only over
the last 5 decades has a relatively minor Hyp-rich
structural glycoprotein component emerged with es-
sential roles in building and maintaining the growing
primary cell wall. Here, we highlight unique advances
of each decade, from the initial discovery of Hyp in
cell walls to the current definition of extensins as self-
assembling amphiphiles that generate scaffolding net-
works, where acid-base interaction (extensin pectate)
may template assembly of the pectic matrix. Subse-
quent polymerization toughens up the wall as net-
works resisting both microbial and mechanical stress.
At each stage, we explore hypotheses arising from the
synthesis of emerging data with focus on structure.
This review celebrates the 50th birthday of extensin.
Protein interactions direct life processes at all levels,

ranging from the regulation of metabolism and nucleic
acid replication to signal transduction and morpho-
genesis. Sophisticated extracellular matrices like those
of animals and plants constitute scaffolding networks
of glycoproteins and proteoglycans that interpenetrate
other networks of structural polysaccharides. While
polysaccharide networks are prominent in the plant
extracellular matrix, glycoproteins and proteoglycans
dominate the animal matrix. By weight, protein, which
is largely structural, contributes up to 20% of the pri-
mary wall (Burke et al., 1974; Kieliszewski et al., 1992a)
yet may be essential, as the loss of the structural gly-
coprotein network in Arabidopsis (Arabidopsis thaliana)
is lethal (Hall and Cannon, 2002; Cannon et al., 2008).
Since the discovery of cell wall protein in 1960

(Dougall and Shimbayashi, 1960; Lamport andNorthcote,
1960b), the hydroxy-Pro-rich glycoprotein field, re-
ferred to generically as HRGPs, has blossomed from
having only one family member (extensin; Lamport,
1963), to three (extensin, arabinogalactan protein
[AGP; Yariv et al., 1962; Aspinall et al., 1969; Fincher

et al., 1974], and solanaceous lectins [Allen and
Neuberger, 1973]), then four (Pro-rich proteins, [PRPs;
Chen and Varner, 1985; Hong et al., 1987; Averyhart-
Fullard et al., 1988; Tierney et al., 1988; Wilson et al.,
1994]) and more. We now realize that this (super)family
represents a continuum of peptide periodicity and
glycosylation (Kieliszewski and Lamport, 1994); pe-
rusal of the Arabidopsis genome suggests that
conserved features of HRGPs, in particular their
arabinosyl-O-Hyp and arabinogalactosyl-O-Hyp glyco-
modules, are widespread in secreted proteins ranging
from phytocyanins and systemins to fasciclins and
glycerophosphodiesterases (Pearce et al., 1991; Borner
et al., 2002; Johnson et al., 2003; Kieliszewski et al.,
2010; Showalter et al., 2010). Furthermore, highly
organized HRGP cell wall networks are ancient, as
they occur in algae (Thompson and Preston, 1967;
Gotelli and Cleland, 1968; Miller et al., 1972; Roberts,
1974; Goodenough and Heuser, 1989).

Here, we largely confine ourselves to the classical
extensins, which we define as wall-located, basic, Hyp-
rich structural glycoproteins with alternating hydro-
philic and hydrophobic motifs whose alignment as
self-assembling amphiphiles likely drives extensin
network assembly. The hydrophilic motifs comprise
arabinosylated X-Hypn, where X is usually Ser and n is
most often 4 and occasionally up to 5 (Campargue
et al., 1998) or six (Qi et al., 1995), while the hydro-
phobic “motifs” vary, sometimes being as small as a
single amino acid or dipeptide and often containing
Tyr residues as potential cross-link sites.

THE EXTENSIN SUPERFAMILY OVER 5 DECADES

The findings and technologies used are presented in
a historical context, building up stepwise a picture of
what we know about extensins, with focus on the big
question: what role does extensin and a protein net-
work play in cell walls?

The Sixties: Cell Wall Protein Discovery,
Hyp-O-Arabinosylation, and Evidence for Soluble
Extensin Precursors to the Wall Network

In 1960, the primary cell wall isolated from syca-
more (Acer pseudoplatanus) cell suspension cultures
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and tobacco (Nicotiana tabacum) callus (Lamport and
Northcote, 1960a) contained enzymes and a Hyp-rich
component (Lamport and Northcote, 1960b); there-
fore, it could be considered as a “cell particle (or
organelle) possessing structural integrity and enzymic
autonomy” (Lamport, 1964). Hyp indicated a struc-
tural protein by analogy with animal collagen, where
this cyclic amino acid constrains side chain rotation
and yields an extended structural protein. Sycamore
cells grown in 18O2 showed that molecular oxygen was
the direct source of the hydroxyl oxygen (Lamport,
1963), which was significant because the Hyp hy-
droxyl plays a pivotal role as a carbohydrate attach-
ment site (Lamport, 1967) and Hyp-rich glycopeptides
isolated from enzymatic digests of tomato (Solanum
lycopersicum) cell walls indicated a highly glycosylated
glycoprotein (Lamport, 1969). Prior to the discovery
of the endoplasmic reticulum/Golgi role in protein
secretion (Jamieson and Palade, 1967), early pulse-
chase experiments suggested that extensin destined
for the wall of sycamore cells occurred as a soluble
cytoplasmic precursor (Lamport, 1965). Later pulse-
chase experiments showed that macromolecular Hyp
appeared in “membranous organelles” before secre-
tion to the wall (Chrispeels, 1969).

A hypothetical role in cell extension based on the
structure and location of Hyp-rich glycoprotein in
the primary cell wall suggested the name “extensin”
(Lamport, 1963). Identification of Hyp in the walls of
many algae (Gotelli and Cleland, 1968) supported the
hypothesis that extensins are widespread and may play
a role in cell expansion (Thompson and Preston, 1967).

The Seventies: The Ser-Hyp4 Diagnostic Motif,

Glycopeptide Linkages, and Links to Disease Responses

Facile cleavage of acid-labile (pH 1) arabinofurano-
side linkages and subsequent tryptic degradation re-
leased significant amounts of Hyp-rich material from
the wall (Lamport, 1974) but only a very few major
peptides each containing the diagnostic Ser-Hyp4 sig-
nature sequence. This was the first suggestion that
extensin is a highly periodic protein, subsequently
corroborated by the circular dichroism spectra of both
crude extensin and extensin peptides, indicating an
extended left-handed poly-Pro-II helix (Lamport,
1977). The intractability of the presumed extensin
network provided the impetus for developing new
tools, particularly hydrogen fluoride-solvolysis degly-
cosylation of glycoproteins, in an attempt to solubilize
wall-bound extensin (Mort and Lamport, 1977) from
putative glycan cross-links (Keegstra et al., 1973).
However, extensin remained insoluble, indicating pro-
tein-protein cross-linking rather than protein-glycan
cross-linking and confirming earlier work (Lamport,
1965).

As the structure of extensin was being determined,
their involvement in disease and wound responses
became apparent when Esquerre-Tugaye and col-
leagues showed that pathogens induced extensin

accumulation and that this was correlated with dis-
ease resistance (Esquerre-Tugaye and Mazau, 1974;
Esquerre-Tugaye and Lamport, 1979), while Chrispeels
et al. (1974) showed that physical wounding induced
extensin biosynthesis. A general role for extensin
in response to different stresses, including senes-
cence and abscission, was corroborated and detailed
(Merkouropoulos and Shirsat, 2003).

The Eighties: Extensin Monomers, in Vitro
Cross-Linkage, and EXT Genes

The quest for salt-extractable monomeric precursors
to network extensin began in the early 1960s, but low
yields from sycamore cell suspensions (Lamport, 1965)
and carrot (Daucus carota) discs (Brysk and Chrispeels,
1972; Stuart and Varner, 1980) impeded progress.
Finally, substrate quantities of extensin monomers
salt eluted from intact cells of rapidly growing tomato
cell suspension cultures (Smith et al., 1984) allowed
detailed characterization that confirmed the remark-
able periodicity of the Ser-Hyp4 glycomotif and also
the precursor-product relationship between mono-
meric extensin and the insoluble wall network. Salt
elution also implied ionic interaction between the
extensin and pectin networks (Smith et al., 1984,
1986; Qi et al., 1995; Nuñez et al., 2009). Possession
of a substantial monomeric pool enabled in vitro cross-
linking experiments.

The discovery of the cross-link amino acid isodityro-
sine (Idt) in cell wall hydrolysates (Fry, 1982) sparked
speculation that Idt was the intermolecular cross-link
and key to extensin network insolubilization (Fry,
1982; Lamport and Epstein, 1983). However, the insol-
uble extensin wall network yielded tryptic peptides
that contained Idt only as a very short intramolecular
cross-link in a highly conserved hydrophobic motif,
Tyr-Xaa-Tyr (Epstein and Lamport, 1984). Neverthe-
less, the idea of Idt intermolecular cross-links persisted,
fueled by further evidence of in muro cross-linking
(Cooper et al., 1987; Bradley et al., 1992). In particular,
Bradley et al. (1992) showed that fungal elicitation
of hydrogen peroxide corresponded to a rapid wall-
hardening process involving a decrease in extractable
extensin, emphasizing the significance of Esquerre-
Tugaye’s earlier work (Esquerre-Tugaye and Mazau,
1974; Esquerre-Tugaye and Lamport, 1979) and the
highly specific pI 4.6 extensin peroxidase that cata-
lyzed in vitro extensin cross-linking (Everdeen et al.,
1988; Lamport, 1989). Evidence of other extensin per-
oxidases appeared later (Price et al., 2003).

Finally, the diagnostic Ser-Hyp4 peptide (Smith
et al., 1986) enabled identification of the first extensin
(Chen and Varner, 1985) and PRP cDNAs (Hong et al.,
1987; Tierney et al., 1988; Datta et al., 1989) as bona fide
proteins with the hallmark of other structural proteins,
most notably collagen, which is also Hyp rich and the
major structural fibrillar protein of animals. Collagen
polypeptides occur in an extended poly-Pro-II left-
handed helical conformation, which was also con-
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firmed in carrot extensin by further circular dichroism
spectra (van Holst and Varner, 1984), with evidence for
the role of carbohydrate in maintaining the backbone
conformation (Stafstrom and Staehelin, 1986).

The Nineties: Phylogeny, Glycosylation Codes,
Cross-Linking Codes, and Synthetic Genes

Evolution conserves functional motifs. Peptide se-
quence motifs from gymnosperms (Fong et al., 1992;
Kieliszewski et al., 1992a) and dicot extensins (Smith
et al., 1986; Li et al., 1990; Memelink et al., 1993) made a
comparison with other advanced angiosperm groups
of great interest, particularly those with a radically
different growth habit, like the grasses. A Thr-rich
HRGP (THRGP) from maize (Zea mays; Kieliszewski
and Lamport, 1987; Hood et al., 1988; Stiefel et al.,
1988) was clearly related to dicot extensins and sug-
gested that the HRGP conserved sequence encodes
both Pro hydroxylation (Kieliszewski et al., 1990) and
Hyp glycosylation. Another HRGP from maize con-
tained both extensin and AGP peptide motifs and led
to the formulation of the Hyp contiguity hypothesis:
“perhaps sequences around noncontiguous Hyp di-
rect Hyp-arabinogalactosylation, whereas contiguous
Hyp directs arabinosylation” (Kieliszewski et al.,
1992a, 1992b). Such codes implied that extensin could
readily evolve into an AGP or vice versa, as a single
base change relates Pro, Ser, and Ala codons, respec-
tively, CCX / UCX / GCX. Thus, a single base
change transforms contiguous to noncontiguous Hyp,
changing the glycosylation code, and explains why
members of the extensin superfamily appear as a
phylogenetic continuum (Kieliszewski and Lamport,
1994); for example, gum arabic glycoprotein possesses
both contiguous Hyp (extensin) and noncontiguous
Hyp (AGP) motifs (Qi et al., 1991).
Synthetic gene constructs confirmed the Hyp glyco-

sylation code and enabled the design of HRGPs to
elucidate posttranslational codes and the function of
conserved motif repeats (Shpak et al., 1999) in the
following decade. Meanwhile, the significance of puta-
tive cross-link motifs, VYK and Idt (YXY), became ap-
parent with the availability of FPLC, notably Superose-6
columns that allowed the resolution of extensin mono-
mers, oligomers, and polymers following in vitro enzy-
matic cross-linking of the monomers (Schnabelrauch
et al., 1996), and led to the discovery of a specific
extensin peroxidase.
Significantly, extensin peroxidase did not cross-link

extensins like the maize THRGP (Schnabelrauch et al.,
1996), which lacked the putative VYK and YXYK
cross-link motifs. Some extensins, like tomato P1, ap
parently lacking Idt motifs (Smith et al., 1984, 1986),
were readily cross-linked, suggesting VYK as an in-
termolecular cross-link.
However, discovery of the cross-linked Tyr deriva-

tives di-isodityrosine (di-Idt) and pulcherosine (Brady
et al., 1996) resolves the issue (Fig. 1). The tetra-Tyr
derivative, di-Idt, can be formed from two Idt residues

in neighboring molecules, while the tri-Tyr derivative,
pulcherosine, can be formed from Idt and Tyr (Fry, 1982;
Brady et al., 1996; Brady and Fry, 1997). The apparent
absence of Idt motifs in the P1 peptides isolated earlier
(Smith et al., 1986) may reflect the restriction of Idt to
the C-terminal YVYSSPPPPYHY (SGN-U315189). Thus,
abundant “non-Idt” Tyr residues in P1 and the two Idt
motifs at the C terminus are sufficient for peroxidatic
cross-linking to give pulcherosine and some di-Idt. In
addition to specific motifs and their abundance, differ-
ential localization in the wallmay also influence the role
of extensins (Swords and Staehelin, 1993).

The Noughties: Form and Function

Glycoproteins smothered in sugar offer technical and
conceptual challenges. How can we relate structure to
function? In particular, what is the role of O-Hyp glyco-
substituents: highly conserved neutral oligoarabinoside
glycomodules, typically tri- and tetra-arabinosylated Ser-
Hyp4 in extensins (Lamport et al., 1973), and the acidic
arabinogalactan polysaccharide glycomodules of AGPs
(Tan et al., 2004)? Both are hydrophilic, but their different
structures imply different roles (Tan et al., 2010).

Synthetic gene technology and molecular genetics
have yielded insights into the assembly of the extensin
network at the molecular level and its role at the
biological level. Discovery of the lethal rsh embryo-
genic Arabidopsis mutant corresponding to AtEXT3
showed that extensins are essential for cell plate for-
mation, evidenced by the aberrant mutant wall phe-
notype and AtEXT3 immunocytochemical localization
(Hall and Cannon, 2002). At the molecular level, puri-

Figure 1. Amino acid structures of Tyr derivatives. A, The diphenyl-
ether Idt. B, The tri-Tyr pulcherosine. C, The tetra-Tyr di-Idt.
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fied AtEXT3 extensin monomers visualized by atomic
force microscopy (AFM) form dendritic structures.
This indicates a propensity for self-assembly driven by
the alternating hydrophilic (Ser-Hyp4) and hydropho-
bic motifs, typically Idt (Epstein and Lamport, 1984),
and is consistent with their cross-linkage in vitro by
extensin peroxidase (Cannon et al., 2008). Surprisingly,
AtEXT3 yielded the tri-Tyr derivative pulcherosine as
the major intermolecular cross-linked product rather
than di-Idt formed in the P3-type sequence: Ser-Hyp4-
Ser-Hyp-Ser-Hyp4-Tyr-Tyr-Tyr-Lys (Held et al., 2004).

This enigma was resolved by comparison of AtEXT3
(RSH) with the P3 sequences. Alignment of the Idt-
forming Tyr-Tyr-Tyr motifs in the P3-type sequence
forms di-Idt exclusively, because all Tyr residues align
to Idt motifs; hence, they theoretically form di-Idt.
Unlike P3, cross-linked products of AtEXT3 (Ser-Hyp4-
Lys-Lys-His-Tyr-Val-Tyr-Lys-Ser-Hyp4-Val-Lys-His-Tyr-
Ser-Hyp-Hyp-Hyp-Val-Tyr-His)n can yield di-Idt only
when the Tyr-Val-Tyr (Idt) motifs are aligned in reg-
ister. However, when the AtEXT3 alignment is offset,
pulcherosine is the cross-linked product, as an Idt
motif aligns only with single Tyr residues (His-Tyr-Ser
or Val-Tyr-His) in neighboring AtEXT3 molecules
(Cannon et al., 2008). Such theoretical offset AtEXT3
alignment is consistent with the in vitro cross-linking
results and with the dendritic assemblies of AtEXT3
as imaged by AFM.

Self-assembly is a general feature of extensins, judg-
ing by AFM imaging of a range of extensins (Fig. 2).
For example, AFM-imaged tomato extensin P1 and the
maize THRGP display similar network structures.
Although THRGP is not cross-linked by extensin per-
oxidase (Schnabelrauch et al., 1996), we consider that
hydrophilic alternating with hydrophobic motifs align
monomers into segments of predetermined lengths
to yield dendritic networks where distinctive N- and
C-terminal sequences control segment length and
network assembly and may also confer self-sorting
properties (van Esch, 2010). Thus, hydrophilic arabi-
nosylated Thr-Hyp-Hyp-Thr and Thr-Hyp-Ser-Hyp
motifs of THRGP alternate with individual hydropho-
bic Tyr residues and the arguably hydrophobic Pro-
Lys-Pro motifs (von Heijne and Blomberg, 1979; Vila
et al., 1998). Disassembly of extensin networks involves
Cys endopeptidases that rapidly degrade P1- but not
P3-type extensins (Helm et al., 2008); these KDEL-
tailed Cys endopeptidases are also involved in pro-
grammed cell death and the intercalation of new cells.

The concept of self-assembling amphiphiles (Rapaport,
2006) very likely applies to heterophilic interactions
in the wall. Acid-base interaction between extensin
and pectin (Smith et al., 1984) has the potential to
yield extensin pectate (Cannon et al., 2008). Thus,
extensin may template the orderly assembly of pectin
in the cell plate, perhaps even involving some cova-
lent extensin-pectin cross-links (Qi et al., 1995; Nuñez
et al., 2009).

Hydrophilic AGPs may also behave as self-assem-
bling amphiphiles that are inserted into the membrane

in an orderly fashion (Gens et al., 2000), where they are
initially bound by their C-terminal hydrophobic gly-
cosylphosphatidylinositol-lipid anchor (Oxley and
Bacic, 1999; Svetek et al., 1999; Borner et al., 2002).
However, Hyp-arabinogalactans of AGPs likely play
a role that differs from neutral Hyp-arabinosides of
extensin. Acidic Hyp-arabinogalactans (Lamport et al.,
2006) cover the plasma membrane and could poten-
tially chelate calcium (Tan et al., 2010), thus allowing
AGPs to act as a calcium reservoir. We know that
phospholipase C releases membrane-bound AGPs as
soluble periplasmic AGPs that are then incorporated
into the growing wall as putative pectic plasticizers
(Lamport, 2001; Lamport et al., 2006). We also know
that the b-D-glucosyl Yariv reagent inhibits expansion
growth (Jauh and Lord, 1996) and that this reagent
strongly associates with AGPs, potentially negating
the role of AGPs as a plasticizer in muro and thus
inhibiting expansion growth. Taking what we know

Figure 2. AFM images of self-assembling extensins. Top, tomato P1;
bottom, maize THRGP. Proteins were dissolved in distilled, deionized
water to a concentration of 10 mg mL21. Sixty microliters of the protein
solutions was deposited onto a freshly cleaved, highly ordered pyrolytic
graphite for 5 min and then blotted dry. The graphite surface was rinsed
with 100 mL of distilled, deionizedwater and then dried under N2. AFM
imaging was carried out on an MFP-3DAFM system (Asylum Research)
using AC mode in air. The P1 image is a 256- 3 256-pixel scan, while
the THRGP image is a 512- 3 512-pixel scan. For further details and
comparison with AFM images of an Arabidopsis extensin, see Cannon
et al. (2008).
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about extensins as cross-linkers and AGPs as putative
plasticizers, speculatively one might view extensins
and AGPs as the “yin and yang” of cell extension:
negative and positive regulators, respectively.

QUESTIONS AND HYPOTHESES FOR
FURTHER STUDY

Why Are Some Extensins Not Covalently Cross-Linked
by Extensin Peroxidase?

This question (Kieliszewski and Lamport, 1994;
Schnabelrauch et al., 1996) raises the deeper problem
of their biological significance, if any. Do they have a
role that does not require them to be cross-linked or
are they residual features of evolution? The first
extensins, typified by Chlamydomonas, formed a weak
noncovalent wall lattice consisting entirely of Hyp-
rich glycoproteins, notably non-cross-linking (NCL)
and secreted via Golgi vesicles to the cell surface.
Cytokinesis in these early protists involves a cleavage
furrow that precedes the cell plate divisionmechanism
of later chlorophytes, where intracellular fusion of
Golgi vesicles with their Hyp-rich cross-linking exten-
sin cargo forms a glycoprotein network or scaffold
strengthened by the further addition of cellulosic and
pectic networks. Hence, an extensin network with
covalent cross-links was a secondary development
and led to strong walls that enabled terrestrial coloni-
zation and turgor-driven growth. NCL extensins are
still represented in land plants such as the maize
THRGP (not cross-linked by extensin peroxidase;
Schnabelrauch et al., 1996) and tobacco extensin
HRGPnt3 expressed during the initiation of lateral
root meristems (Keller and Lamb, 1989; Vera et al.,
1994). Both are amphiphiles and basic and, therefore,
with the potential for self-assembly (Fig. 2) of non-
covalent networks. Regarding a role for NCL exten-
sins, hypothetically, they may organize self-assembly
of the cell plate while cross-linking extensins increase
the tensile strength of the primary cell wall.

What Is the Role of P3-Type Extensin?

The occurrence of P3-type extensin in the first vas-
cular plants implies a possible role for these extensins
in vascular development, consistent with the earlier
suggestion of P3 as a “brace” protein (Smith et al.,
1986). It is interesting that cross-linking P3-type ex-
tensins can now be traced to both branches of the first
vascular plants, lycophytes and ferns, notably in Se-
laginella (an extensin of 319 residues; accession no. XP
002961156) and a 210-residue extensin in the maiden-
hair fern,Adiantum capillus-veneris (Uchida et al., 1998).
Both show conservation of the repetitive 16-residue
motif SPPPPSPSPPPPYXYK, first identified in tryptic
peptides isolated from tomato cell walls, as extensin
P3 (accession no. CAA39215.1; Smith et al., 1986;
Showalter et al., 1991). Idt motifs of a P3 extensin
analog are cross-linked in vitro by extensin peroxidase

to form the tetrameric Tyr derivative di-Idt (Held et al.,
2004).

Why Are Some Walls Hyp Poor?

Tissue differences exist in all species; however, some
plants possess relatively little Hyp regardless of the
tissue. Again, a simple answer suggests that some
evolutionary lines, notably grasses, have founded me-
chanical support systems largely involving non-HRGP
structural proteins (Kieliszewski and Lamport, 1987;
Kieliszewski et al., 1990) but perhaps retain the pri-
mary role of extensin as a self-assembling amphiphile
with a templating role at cytokinesis.

Why Are There So Many Extensins and Related HRGP
Hybrids and Chimeras?

Arabidopsis extensins are the best characterized
genomically, with up to 63 potential extensins, of
which 20 are very likely extensins (Cannon et al.,
2008), 12 are shorter potential extensins, and 31 are
extensin chimeras and hybrid extensins (Showalter
et al., 2010). Multiple extensins point to either multiple
functions or similar functions with differential exten-
sin expression.

Judging from their tissue-specific expression, it is
argued that extensins and Pro-rich proteins are “tai-
lored to the tissue” during embryogenesis (Zhang
et al., 2008) and throughout development (Fowler et al.,
1999); this includes root hair formation (Bucher et al.,
2002), which also involves a LRX1, a chimera of
extensin and Leu-rich repeat protein (Baumberger
et al., 2001).

Furthermore, the identification of gene regulatory
elements (Guzzardi et al., 2004) is consistent with the
suggestion that “selective activation of genes encoding
specific structural proteins provides a mechanism for
precise morphogenetic control of cell wall architecture
during cellular differentiation” (Keller and Lamb,
1989). The known roles of extensins in cell wall as-
sembly, cell shape and size, disease resistance, and
quite possibly in reproductive isolation and speciation
(Lee et al., 2007) raise the question of mechanism for
each extensin molecule. Stress induces specific exten-
sins (Merkouropoulos et al., 1999). There is a correla-
tion between extensin expression and walls that
withstand tensile stress such as hypocotyls (Shirsat
et al., 1996), seed coats (Cassab et al., 1985), and root
hairs that exemplify cells exposed to extremes of
osmotic stress; unlike pollen tubes, they possess an
abundance of extensin (Bucher et al., 1997). Associa-
tion of extensins with extension growth is increasingly
well documented (Cleland and Karlsnes, 1967; Sadava
and Chrispeels, 1973; Roberts and Shirsat, 2006; Gille
et al., 2009).

The evolutionary paradigm shows the versatility of
functional adaptation: structures initially selected for
one role are then recruited later to serve another quite
different role. While it is beyond the scope of this
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review to catalog all extensin chimeras and hybrids,
potato (Solanum tuberosum) lectin is a good example of
the extensin Ser-Hypn motif recruited to act as a spacer
between two lectin domains (Van Damme et al., 2004).

What Is the Role of PRPs That Lack Obvious Ser-Hyp4

Glycomodule Repeats yet Are Closely Related to
the Extensins?

PRPs are highly basic, minimally arabinosylated,
and share variations of the Val-Tyr-Lys motif (i.e. Pro-
Hyp-Val-Tyr-Lys; Averyhart-Fullard et al., 1988; Tierney
et al., 1988; Iannetta et al., 1993; Bernhardt and Tierney,
2000). Presumably, PRPs are covalently cross-linked
into thewall network (Bradley et al., 1992; Frueauf et al.,
2000), although direct evidence is lacking. Nevertheless,
PRPs are associated with particular cell types exempli-
fied by root nodules and stomatal guard cells (Menke
et al., 2000). More recent work usingmutants atprp2 and
atprp4 show that AtPRP2 and AtPRP4 are required for
stomatal guard cell function (Carter and Tierney, 2010).
Significantly, predictions of secondary structure using
COUDES software (Fuchs and Alix, 2005) indicate that
the repetitive motifs of AtPRP2 and AtPRP4 form a coil
of b-turns. This suggests that an elastic protein contrib-
utes to the elasticity of guard cell walls.

Why Are PRPs Not Glycosylated Like AGPs?

The Hyp-contiguity hypothesis predicts contiguous
Hyp residues as sites of arabinosylation and clustered
noncontiguous Hyp residues as sites of arabinogalac-
tosylation. These predictions readily fit experimental
data from extensins and AGPs (Shpak et al., 1999, 2001;
Zhao et al., 2002; Tan et al., 2003), as AGP and extensin
analogs can be “designed” to produce predictable
glycosylation patterns when expressed in transformed
plants. Although tightly clustered noncontiguous Hyp
residues (e.g. Ala-Hyp-Ala-Hyp repeats) are reliably
arabinogalactosylated, the clustering of the noncon-
tiguous Hyp/Pro residues in AGPs can be fairly loose
in that the noncontiguous Hyp residues can be sepa-
rated by as many as three or four intervening residues
and still be sites of arabinogalactosylation (Zhao et al.,
2002).

Some PRPs and maize THRGP also contain clus-
tered noncontiguous Hyp; however, these Hyp
residues either remain nonglycosylated or are arab-
inosylated. For example, Douglas fir (Pseudotsuga
menziesii) Pro-rich HRGP is a PRP that undergoes
arabinosylation only on contiguous Hyp residues, while
the major peptide repeat motif also contains noncontig-
uous Hyp/Pro residues that are clustered yet remain
nonglycosylated (underlined): Lys-Pro-Hyp-Val-Hyp-
Val-Ile-Pro-Pro-Hyp-Val-Val-Lys-Pro-Hyp-Hyp-Val-Tyr-
Lys-Pro-Hyp-Val-Hyp-Val-Ile-Pro-Pro-Hyp-Val-Val-Lys-
Pro-Hyp-Val-Tyr-Lys-Ile-Pro-Pro/Hyp-Val-Ile-Lys-Pro.
There are other examples: some essentially nonglyco-
sylated PRPs are almost entirely variations of the
repeat (Pro-Hyp-Val-Tyr-Lys-Pro-Hyp-Val-Tyr-Lys)

that also contains clustered noncontiguous Hyp, with
only four amino acids separating the Hyp residues
that also remain nonglycosylated (Marcus et al., 1991);
maize THRGP possesses Thr-Hyp-Ser-Hyp repeats
that undergo arabinosylation only; some dicot exten-
sins, like tomato P1, also contain loosely clustered
noncontiguous Hyp/Pro residues that are never ara-
binogalactosylated: Ser-Hyp4-Thr-Hyp-Val-Tyr-Lys-
Ser-Hyp4-Val-Lys-Pro-Tyr-His-Pro-Thr-Hyp-Val-Tyr-Lys.
Why? Earlier work indicates that arabinogalactosyla-
tion of clustered noncontiguous Hyp is influenced by
amino acid context: Ala-Hyp and Ser-Hyp repeats
were consistently and extensively arabinogalactosyla-
ted, whereas Thr-Hyp and Val-Hyp repeats were sites
of arabinosylation and arabinogalactosylation (Tan
et al., 2003). Thus, the biased and distinctive amino
acid compositions and sequences of extensins and
PRPs (rich in Lys and Tyr, low in Ala and Gly) com-
pared with the AGPs (rich in Ala and Gly, low in Tyr
and Lys) also hint that sequence environment in ad-
dition to the arrangement of Hyp residues influences
whether a single Hyp residue is arabinosylated,
arabinogalactosylated, or remains nonglycosylated.
Future work will undoubtedly refine the Hyp conti-
guity code.

What Is the Precise Role of the Highly Conserved
Ser-Hyp4 Glycomodule?

The Hyp-b-L-arabinofuranoside linkage has been
conserved since Chlamydomonas (Miller et al., 1972;
Bollig et al., 2007). Thus, the conservation of the Ser-
Hyp4 glycomodule implies a crucial function, yet the
module is uncharged and chemically unreactive under
physiological conditions. It does have H-bonding po-
tential and presents a unique shape: the Ser residues
are a- monogalactosylated, and all Hyp residues are
arabinosylated, with chains three to five residues long.
The structures are unusual. In contrast to the a-3- and
a-5-linked arabinofuranose and b-galactopyranose of
the AGPs, arabinosides of the Ser-Hyp4 glycomodule
are all b-2 linked, except the fourth residue (at the
nonreducing end), which is a-3 linked (Akiyama et al.,
1980). Thus, module shape and H-bond presentation
create a unique surface for homophilic and/or het-
erophilic interactions, perhaps including Gal-binding
lectins or lectin modules.

Are There Practical Applications for Wall
Protein Networks?

A rapid in muro response to pathogen attack leads
to the insolubilization of extensins within minutes
(Bradley et al., 1992), mirrored at the genomic level by
up-regulation of specific extensins containing numer-
ous Idt motifs (Showalter et al., 1991; Zhou et al., 1992;
Wycoff et al., 1995). This creates a potentially highly
cross-linked defensive network welded together by
extensin peroxidase and reactive oxygen species gen-
erated by fungal elicitors (Brady and Fry, 1997). Such a

Lamport et al.
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clear link between disease resistance and extensin
remains to be exploited by molecular pathologists.

Does Pro Hydroxylation Play a Subtle Regulatory Role in

Addition to a Structural Role in Plant Development?

This review concludes by returning to the initial
observation that molecular oxygen is the direct source
of the Hyp hydroxyl group and may have a physio-
logical implication: “and because the Km (for oxygen)
of hydroxylases is much larger than that of cyto-
chrome oxidase it now becomes important to investi-
gate the possibility of a direct effect of oxygen tension”
(Lamport, 1963). Such oxygen sensing by specific
prolyl hydroxylases is well characterized in animals
(Appelhoff et al., 2004). The corresponding oxygen
sensor of plants remains unknown, but plants also
contain multiple plant prolyl hydroxylases (Tiainen
et al., 2005); therefore, we hypothesize their likely role
as an oxygen sensor and, thus, in the survival of
waterlogged crops and marshland flora that enhance
gaseous diffusion to roots by constructing aerenchyma
(Kende et al., 1998; Jackson and Armstrong, 1999).
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