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Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics
projects. We describe a modular database and laboratory information management system that was implemented in support of
the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000
mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment
were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash
technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface.
Examples are presented where the database was used to find opportunities for process changes that improved data quality. We
also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric
mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-
coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously
described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation
of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase.

Large-scale genetic screening projects are now pos-
sible in Arabidopsis (Arabidopsis thaliana; Boyes et al.,
2001; Van Eenennaam et al., 2003; Jander et al., 2004;
Myouga et al., 2010) and other model plant species
(Schauer et al., 2006; Yu et al., 2008) due to the
availability of large collections of immortal genetic
resources including homozygous gene knockouts
(Alonso et al., 2003; O’Malley and Ecker, 2010;
Williams-Carrier et al., 2010), randomly generated
mutant families (Menda et al., 2004), nearly isogenic
germplasm (Eshed and Zamir, 1995; http://zamir.
sgn.cornell.edu/Qtl/il_story.htm), and populations
of natural variants or breeding lines (Yu et al.,
2008). It is possible to screen thousands of plants
using modern high-throughput techniques ranging
from quantitative phenotypes such as small molecule
or gene expression analysis to qualitative traits in-
cluding assessment of morphology under varied en-
vironmental conditions. The potential for discovery
using this approach is great, but the informatics chal-
lenges of conducting this type of research are for-

midable due to the enormous numbers of samples
analyzed and the amount of data generated (Baxter
et al., 2007).

There are several major challenges in large-scale
phenotypic screens that do not arise in more tradi-
tional genetics. The most important is developing a
laboratory information management system (LIMS)
and laboratory workflow ensuring that data are accu-
rately recorded and correctly associated with the plant
sample analyzed. The second is to implement relevant
statistical analysis of the mass of data collected over
months or years. Perhaps the biggest challenge is
presentation of diverse types of phenotypic data to
researchers in a way that enables them to make scien-
tific discoveries. We present here a description of a
software suite designed to assist users in collecting
and analyzing such data sets.

This software was developed to support a study of
several thousand nuclear genes, most of which are
predicted to encode proteins targeted to the chloro-
plast (Chloroplast 2010 Project; http://www.plastid.
msu.edu/; Lu et al., 2008; Ajjawi et al., 2010). The goal
of the Chloroplast 2010 Project was to obtain pheno-
typic information that would inform the creation
of hypotheses on the function of as many of these
genes as possible using parallel phenotypic analysis
of homozygous sequence-indexed T-DNA insertion
lines (O’Malley and Ecker, 2010). Both descriptive
morphological and quantitative metabolite screens
were used to determine the effects of each gene dis-
ruption. To maximize the number of lines screened,
each assay was limited to two biological replicates
per line, making the collection of high-quality data
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even more important. The collected data include
controlled text descriptions, photographs, and quan-
titative data of multiple mutant plants from each
mutant line, and each combined plant and seed
sample was ultimately associated with 85 discrete
observations.

Scaling the number of samples processed in a
laboratory from hundreds to tens of thousands re-
quires more than hiring personnel and purchasing
additional equipment. The data collection methods
that work well in the typical academic laboratory do
not scale to handle the larger sample numbers. The
repetitive nature of the work typically results in an
unacceptably high error rate due to user fatigue. The
labeling of tubes, transfer of materials between con-
tainers, as well as addition of reagents to containers is
error prone under any circumstance and even more so
under these conditions. Recording large volumes of
instrument data into laboratory notebooks or spread-
sheets creates many errors. The lack of controlled
vocabularies results in difficulties comparing data
across multiple investigators and over prolonged pe-
riods of time. The distribution of data across many
notebooks or computer files impedes the analysis of
the collected data.

Our design goal for this project was to implement
workstations integrated with a Web-based LIMS to
minimize these problems. By integrating the workflow
for each specific task into a custom-designed LIMS and
designing the physical environment to assist the
workers in managing the flow of materials through
each task, we believe that we have significantly im-
proved our ability to collect error-free data.

The second informatics challenge for this project
was to present these very large data sets in a form
that allows researchers who are neither skilled in
computer programming nor familiar with the intri-
cacies of the project to identify interesting pheno-
types. This was addressed primarily by allowing the
user to sort and filter the data using a custom query
tool and by presenting the large number of assays for
each mutant plant using an efficient and flexible
graphical interface. This interface uses features of the
Ruby on Rails framework (RoR; Thomas et al., 2006)
and Flash objects to coordinate the presentation of
controlled vocabulary terms, images, graphs, and
chromatographs. The major design goal for this in-
terface was to minimize the number of interactions
with the system required to obtain a subset of the
data needed to develop a hypothesis. However, the
interface needs to present sufficient data for the user
to evaluate the results while at the same time see
larger scale interactions or trends that may be pres-
ent in the data. We used animated graphs and
coordinated changes in the set of displayed data to
achieve these conflicting design goals. An example is
presented where the data-analysis tools led to the
discovery that mutants in several steps of Leu ca-
tabolism accumulate multiple amino acids in the
seed.

RESULTS AND DISCUSSION

Data Entry

The high-throughput functional genomics project
served by this database (www.plastid.msu.edu) re-
quired the planting, growth, and leaf and seed har-
vesting of more than 5,000 mutant lines, resulting in
more than 1.5 million discrete observations. Given the
magnitude of the project, it was critical to simplify the
workflow while reducing the error rate of sample
tracking and phenotypic data entry to the lowest
possible level (for summary schematic representations
of the laboratory workflows and quality assurance/
quality control approaches, see Supplemental Fig. S1).

This challenge was approached in two related ways:
by careful design of the work areas and processes as
well as through software design. The laboratory work-
station was designed to work with the data entry
software to minimize common process errors such as
switching samples and to create a consistent and
logical workflow. Barcodes, checkboxes, and drop-
downs were employed wherever possible to avoid
the diverse types of errors and inconsistencies that can
arise from hand-typed data entry (Figs. 1 and 2). The
data entry interfaces were designed to resemble the
laboratory environment; for example, showing a rep-
resentation of the flat of 32 pots (Fig. 2). Barcoded pots,
flats, and sample containers were used throughout the
workflow, eliminating the need to choose specific
prelabeled containers. Instead, the database prompts
the user to scan a barcode on a seed tube, pot con-
taining a plant, or tube containing a tissue sample and
then scan the barcode on a randomly chosen empty
recipient container. Because the sample associated
with the first barcode has an identity in the database,
the LIMS system creates an association with the sam-

Figure 1. Examples of pull-down menus used to capture qualitative
phenotypic data in the LIMS.
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ple now in the previously empty target container. User
log-ins and data entry time stamps were used to
identify operator errors or causes of other systematic
errors such as time of day or order in which manip-
ulations were made (see below). This information is
vital to improving the design of the laboratory process
and software and was collected for all data entry
sessions during the project.
As an example of the type of workflow designed for

the project, Figure 2 and Supplemental Figure S2 show
how the interface is used when planting seeds into a
pot. The session is initiated by establishing a database
identity for the 32-place flat by scanning a barcode and
recording the type of assays to be performed on the
plants as well as the growth chamber in which the
plants will be grown. The barcode on the first seed vial
is scanned to identify the seed stock (“Seed vial
barcode” in Fig. 2), and the barcode on an unplanted
pot (“Pot barcode” in Fig. 2) is scanned next; this
creates an association in the database between the two
barcodes. Once the scanned data are submitted, the
planting flat template is filled with the pot and seed
identifiers to indicate where to place the pot that was
just planted and to confirm the association for the user.
An error-checking process is initiated by the data-

base each time a barcode is scanned. During planting,
the software checks the database to verify that the seed
stock was not already used during the current session
and that the pot barcode was not previously scanned.
This ensures that each sample association is unique; if
this rule is violated, the LIMS generates an error
message on the user interface and prevents the input
of data into the database. In addition, the format of
each barcode is checked to be sure that the correct
types of containers are entered and associated; for
example, a pot barcode cannot be entered in the flat
barcode data entry window. Similar error checks were
designed for every type of data entry, ensuring unique
data associations for all seeds, plants, or samples.
Separation of the sequence of user actions is a

critical element in workflow design, which is comple-

mentary to the database error prevention features
(Supplemental Fig. S2). Three key areas must be pres-
ent and physically separated in the work area: (1)
containers or samples not yet entered in the database;
(2) those objects currently being manipulated; and (3)
items that are entered and finished. This configuration
minimizes mistakes where database error checks can-
not: skipped samples, for example, or accidental use of
a container other than the one scanned. We found that
this arrangement works best when data are entered by
two users working in tandem, since it allows collab-
orative error avoidance and checking.

Capture and Analysis of Qualitative Data

Whole plant, seed, and chloroplast morphological
characteristics were captured by complementary ap-
proaches. The software allows the user to record
observations about morphology using checkboxes
and pull-down menus at the same time that photo-
graphs are taken (Fig. 1). This enforces the use of a
controlled vocabulary, which permits data to be com-
pared and queried consistently (see “Querying the
Data” below). Image files are created offline, creating
an increased possibility of sample mistracking. To
reduce this hazard, file upload to the database is
facilitated by establishing image file names based
upon the sample container barcode identifier. For
example, an image file of a plant is named by scanning
the pot barcode for that plant’s pot, and the LIMS
system converts the pot name into a photograph
identifier.

Once acquired, the images can be redisplayed to
create a visual representation of the cohort of samples
(flat of plants, box of seeds, set of samples processed
for chloroplast morphology analysis), and our project
used this capability to allow quality assessment. For
example, an individual familiar with the assay can
review the controlled vocabulary assessments of a rel-
atively inexperienced student or technician and make
changes in annotation (Supplemental Fig. S3). The

Figure 2. LIMS interface for planting
seeds. To ensure correct labeling of the
plant pot, (1) the Seed vial barcode is
scanned to identify the seeds being
planted, and (2) the Pot barcode is next
scanned to create an association be-
tween seed stock and the plant that
will grow. Once the operation is com-
pleted, the pot and seed stock identi-
ties are recorded in a cell of the 8 3 4
matrix, which shows the technician
where the completed pot should be
placed within the flat. Once 32 pots
are planted to a flat, a new flat barcode
must be scanned before more pots can
be planted.
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ability to review all data helps to ensure that the
quality of the annotation is uniform over time and
across different annotators. Both time and user infor-
mation are stored for the most recent edit.

Capture and Analysis of Quantitative Data

Three assays in the project produce quantitative
data collected from different analytical instruments. To
minimize transcription errors, samples are processed
for metabolite analysis using barcoded containers and
procedures similar to those described above. For ex-
ample, plant identity is captured by scanning a pot
barcode, a leaf is removed and placed directly on an
analytical balance, and the sample mass is recorded
directly to the database. The leaf is then moved to a
barcoded tube whose identity is established by the
LIMS by scanning. This one-to-one chain of identity is
established for the sample based on the barcode each
time a laboratory manipulation requires that it is
moved to a new container all the way until quantita-
tive metabolite data are obtained. This ensures that
users are never required to transfer a sample to a
prespecified “correct” container.

As is customary with most instruments used for
analysis of high-throughput metabolite analysis, the
gas chromatography-flame ionization and liquid chro-
matography-tandem mass spectrometry instruments
employ autosamplers. A barcode scanner is used to
construct the sample list for the autosampler, and the
software used by the analytical instruments associates
the metabolite data with the sample identifiers. Load-
ing software scripts are employed to process the data
generated from the instruments and directly load the
results into the database.

To permit comparisons of results from plants grown
in the microenvironments of different flats, we con-
verted quantitative data to z-scores based on median
absolute deviation of data from the flat in which a
plant was grown (Rousseeuw and Croux, 1993; Lu
et al., 2008). This statistic was chosen for two main
reasons. First, using z-scores, which normalize the
median absolute deviation, allows comparisons across
plants grown in different flats and at different times,
simplifying database queries. Second, a median-based
statistic reduces the impact of individual samples from
a flat that have one or more values dramatically
different from others in its cohort, either due to mu-
tation or environmental effects.

Querying the Data

One of the biggest challenges of a project that
generates a large amount of diverse phenotypic data
is to give consumers of the information an efficient
mechanism to make discoveries about potentially in-
teresting plants. Among the hurdles confronting the
researcher are the following: (1) evaluating noisy data
due to biological and process variation that inevitably
occurs over large numbers of samples; (2) the variable

number of samples analyzed for different mutants
(two for most lines and larger numbers for process
controls and lines of interest to project personnel and
collaborators); (3) the different numbers of homozy-
gous alleles available for different target genes (Ajjawi
et al., 2010); and (4) variations in T-DNA insertion
locations for different alleles.

Two general approaches are provided to explore the
phenotypic data, and the search page for both is found
by open-access login through http://bioinfo.bch.msu.
edu/2010_LIMS. The first query method is “gene
centric,” allowing the researcher to examine informa-
tion for mutants defective in one or more specified
genes or harboring particular mutations (“Search by
Query Terms”). The second is to conduct an in silico
“mutant screen” by searching for plants that are aber-
rant for one trait or a combination of phenotypes
(“Search by Assay Results”). This query interface
provides the researcher with the opportunity to choose
the level of stringency of the query (Fig. 3). The main
choices are (1) whether multiple biological replicates
need to fit the criteria; (2) the selection of specific
controlled vocabulary terms for morphology and chlo-
rophyll fluorescence measurements; and (3) setting the
statistical threshold for quantitative assays. In addi-
tion, simple Boolean logic is available for creating
more complex queries with multiple search terms (e.g.
looking for lines with pleiotropic phenotypes).

As shown in Figure 4, a table is returned. This page
summarizes the results of a query, with information
about the number of alleles for which one or more
plants had a phenotype that matched that query. The
query terms may be shown (“Show filter criteria”) or
hidden. The table contains phenotypic severity scores
for each assay: “Query Score” includes a summation of
the severity of phenotypes selected in the query, and
“Score” takes into account the results of all assays.
Each score reflects both the consistency with which the
siblings score in the assay as well as the rarity of the
change in the full data set. The “Definition” column
contains the “top line” annotation from The Arabi-
dopsis Information Resource (www.arabidopsis.org).
The entire table may be downloaded in Excel-compat-
ible format (“Download as text”). Clicking on the
Arabidopsis Genome Initiative locus designation
(“Name”) opens a new page that displays data when
there is at least one confirmed homozygous mutation
in that locus (Fig. 5).

Interacting with Project Data Using Flexible Displays

The interface that displays mutant data was de-
signed to provide flexibility to the researcher in a
relatively simple and interactive layout (Fig. 5). The
data are presented in three functionally linked display
elements, and the researcher can make selections in
each of these. Images and graphs of quantitative data
are displayed on top. Controlled vocabulary and seed
carbon-nitrogen ratio data are displayed in the center
panel. The bottom window contains an overall sum-
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mary of all individuals grown and assays performed
for alleles of the given gene. This table also provides
information about the pedigrees of assayed lines,
planting date, cohort, and genotyping results. For
genes where many alleles or individuals were grown,
the table window may be expanded (“Expand”) to

show all data or shrunk (“Shrink”) to keep more visual
elements on one screen. Alternatively, branches of the
pedigree tree can be collapsed or expanded to hide or
view samples of interest by clicking on the tree arrows.
“At-a-Glance” provides a visual summary of the phe-
notypic assays represented by abbreviations defined

Figure 3. Menus used to conduct a search for po-
tential mutants in a quantitative phenotype. Illustra-
tion of features available for searching quantitative
phenotypic data. Users of the search tools can select
the search stringency (“Stringency”) and Boolean
logic (“AND/OR”). Choosing “Abnormal” allows
the user to specify one or more analytes and/or the
z-score cutoff value.

Figure 4. Selected results returned from a search for genes with mutants assayed as having seed carbon-nitrogen z-scores $ 5
based on the flat cohort median. Summary scores indicate consistency of phenotypes across samples as follows: WP, whole
plant; CM, chloroplast morphology; Leaf and Seed AA, leaf and seed amino acids; Leaf FA, leaf fatty acid methylesters; Seed
Morph, seed morphology; SS, seed excess starch; SA, high early photoperiod leaf starch; SP, low later photoperiod starch; C/N,
seed carbon-nitrogen ratio; CF, abnormal chlorophyll fluorescence measurement(s); Query Score, score for phenotypic query (in
this case C/N $ 5); Score, general assessment of overall phenotypic abnormality of one or more mutant alleles (higher scores
typically suggest the possibility of pleiotropy).

Large-Scale Phenotypic Database

Plant Physiol. Vol. 155, 2011 1593



by “mousing over” the acronym. Data types (leaf or
seed) are grouped together to permit trends in the
phenotypic data to be easily identified. Gray text
indicates the absence of assay data, and light blue
text designates assay data not deviating from normal.
Dark blue text indicates assay data not normal for
controlled vocabulary-type data or exceeding the de-
fault z-score cutoffs defined in the Search by Assay
query (Fig. 3). A green check mark indicates individ-
uals meeting the original search filter criteria.

Navigation within the Gene Page is performed in
twoways: (1) by selecting data types via tabs located at
the top of each display panel; and (2) by choosing
specific plants to view within the bottom summary
panel. Selecting “Leaf Tissue,” “Seed Tissue,” or
“Chlorophyll Fluorescence” tabs on the bottom allele
summary window controls which data types are avail-

able for display in the top and middle windows
(summarized in Supplemental Fig. S4). Next, selection
of one of the tabs on the top window is coordinated
with the associated data type displayed in the middle
panel. For example, selection of “Leaf Tissue” in the
bottom window and “Chloroplast Morphology” in the
top window displays micrographs and associated con-
trolled vocabulary descriptions. Data types not asso-
ciated with an image or graph, such as leaf starch or
seed carbon-nitrogen ratio, can be viewed by choosing
the appropriate center panel tab.

The types of data can also be selected independently
to look for pleiotropy. For example, selection of con-
trolled vocabulary for leaf starch and chloroplast mor-
phology images reveals the influence of starch-excess
mutations on the chloroplast. All data for each indi-
vidual plant may be viewed by selecting the relevant

Figure 5. Example of a Gene Page display. Top, photograph of selected plant P48571; middle, controlled vocabulary
descriptions of whole plant morphology captured for this plant; bottom, table showing pedigree relationships and summary
information about genotyping results and other metadata for the plant, seed, and chlorophyll fluorescence samples. Clicking on
the blue links (e.g. P33333) in the “Identifier” column of the bottom table causes images and other data for that plant to be
displayed in the middle and top sections of the page. For more information about the behavior of Gene Pages, see Supplemental
Figure S4 and main text.
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sample names (“P” and “CF” numbers), which be-
come active in the bottom summary table depending
on which tab is chosen. Researchers can assess the
consistency of the data for different biological replicate
siblings or across independent alleles of the same gene
by viewing each individual. Links to external re-
sources are also provided to allow access to a wide
variety of data related to the gene of interest.
When large numbers of phenotypes are evaluated in

a functional genomics project, it is common to see
outlier samples caused by biological and process var-
iation or severity of alleles. The data displays were
designed to provide several ways for researchers to
compare data sets quickly and evaluate the consis-
tency of results. Summary scores in the search result
tables allow researchers to compare the strength of the
phenotypic syndromes of different genes (Fig. 4), and
At-a-Glance (Fig. 5) summaries are useful for seeing
trends in all the assays for a single gene. On the Gene
Page, graphs are animated to allow the researcher to
evaluate the consistency of metabolite data. Flash
player animation allows viewing of consecutive im-
ages displaying a set of quantitative leaf or seed amino
acids or leaf fatty acid methylesters for all samples
assayed. It is possible to adjust the speed at which the
player moves from displaying one sample to another
and the z-score scale and threshold. Individual z-scores
can be seen by mousing over metabolite bars. After
reviewing the full set of data, any interesting patterns

can be examined in detail by clicking on individual
samples in the bottom window summary table.

Process Improvements Enabled by the Database

In addition to allowing data to be interrogated by
scientists with access to the internet, having the full
data set with time-stamp metadata provided the op-
portunity to check data consistency throughout the
project and make process improvements during early
stages (Baxter, 2010). For example, because transitory
starch accumulation begins immediately upon the
shift from dark to light, we were concerned that the
time required to harvest leaves in the morning would
influence the results of the starch assay. As shown in
Supplemental Figure S5, there is no correlation be-
tween the number of hits (i.e. leaves scored as having
higher than normal staining for morning leaf starch)
and the order in which samples were harvested.

In contrast, a striking example of the need to review
results to improve data quality is shown in Figure 6. It
was noted that dramatic changes in values for leaf Ala
(Fig. 6A) and Asp (Fig. 6C) occurred during harvest-
ing. After approximately 30 samples (during 20–30
min of harvest time), the values reverted to the high
(Ala) or low (Asp) end of the range and then rapidly
drifted again. The periodicity corresponded to the
time it took to harvest a flat, suggesting that removing
the flat from the growth chamber to the laboratory

Figure 6. Changes in leaf free Ala and Asp under laboratory low light are reduced under supplementary light. A and B, Mol % of
leaf Ala of samples harvested under laboratory room light (approximately 10 mmol photons m22 s21; A) or room light
supplemented with cool-white fluorescent lights (approximately 100 mmol photons m22 s21; B). C and D, Mol % of leaf Asp of
samples harvested under approximately 10 mmol photons m22 s21 (C) or approximately 100 mmol photons m22 s21 (D). Samples
in A and C were harvested on July 20, 2006, and samples in B and D were harvested on July 21, 2006. Harvesting was done flat
by flat on the bench next to the growth chamber. Alike symbols (black squares, white diamonds, and black triangles) represent
samples from the same flat harvested consecutively. Black lines represent linear regression for samples harvested from a single
flat over time. Pearson correlation coefficient r and P values are shown below the data for each flat. Maintaining plants at
approximately 100 mmol photons m22 s21 on the bench minimized the decrease of Ala and the increase of Asp during the
harvest.
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bench was causing rapid shifts in leaf amino acid
levels. Maintaining the plants under a bank of fluo-
rescent lamps similar to growth chamber light levels
during leaf harvest largely reversed this drifting be-
havior and improved data quality for these two amino
acids (Fig. 6, B and D).

Uniform plant growth conditions are difficult to
achieve even in the relatively well-controlled environ-
ment of a modern growth chamber. Even knowing
when improvement in culture conditions will lead to
higher quality data can require elaborate experimental
designs (Massonnet et al., 2010). Seed carbon and
nitrogen levels are highly dependent on available light
levels during seed development (Li et al., 2006); there-
fore, metadata about growth chamber light levels were
collected in the database. As shown in Figure 7,
unsatisfactorily large variance in the ratio of seed
carbon and nitrogen from one experimental set to
another, despite uniform light levels, indicated that
more improvements in growth conditionswere needed.
First, a more uniform growth medium was selected.
Second, a strict water/fertilizer regime was adopted.
Flats were filled with water or fertilizer so that all pots
could uniformly absorb solution for 1 to 2 h, and then
excess solution was poured off. This eliminated dis-
parities that may be caused by growth chamber
shelves not being perfectly level, resulting in unequal
moisture levels in different parts of a single flat or
between different flats over time. Finally, at each
watering, the orientation and position of flats in the
growth chamber were changed to provide more uni-
form light, temperature, and air flow. Analysis of the
effects of these growth condition improvements on
other metabolites showed that these process improve-
ments were also effective in reducing variance in seed
amino acid levels (Supplemental Fig. S6).

Using the Database to Discover Phenotypes: Pleiotropy
of High Seed Branched-Chain Amino Acid Mutants

To illustrate how the data analysis tools can be used
to find mutants with complex phenotypes, we
searched for plants with altered levels of free seed
branched-chain amino acids. When seed amino acid
results were queried for alternations in Ile, Leu, and
Val greater than a z-score of 5, the four genes with the
highest query and overall scores were At2g26800,
At1g03090, and At4g34030 along with the previously
described high seed amino acid mutant coenzyme A
dehydrogenase (ivd1-2), defective in gene At3g45300
(Gu et al., 2010). These mutants were among several
hundred lines included in an effort to increase the
coverage of amino acid metabolic processes in the
chloroplast and other subcellular compartments.

All four genes had alleles with consistently high
soluble Ile, Leu, and Val, and results on T-DNA
Express (http://signal.salk.edu/cgi-bin/tdnaexpress)
suggested that these alleles are likely to cause reduced
gene expression (for schematic diagrams of the inser-
tion sites, see Supplemental Fig. S7A). Mutants mcca1-1

and mccb1-1 carry T-DNA insertions in the a- and
b-subunits of the mitochondrial 3-methylcrotonyl-CoA
carboxylase (At1g03090 and At4g34030), respectively.
Consistent with the large increase in Leu accumula-
tion in this mutant, the heteromeric mitochondrial
3-methylcrotonyl-CoA carboxylase catalyzes the fourth
step of Leu catabolism in mammals and higher plants
(Fig. 8A; Binder et al., 2007; Binder, 2010). Mutants
hml1-1 and hml1-2 carry T-DNA insertions in the first
and third introns of At2g26800, which is annotated
as a putative mitochondrial hydroxymethylglutaryl
(HMG)-CoA lyase (HML1; Fig. 8A). Consistent with
the hypothesis that the four mutants are loss-of-
function alleles, quantitative reverse transcription-PCR
analysis confirmed that these lines have dramatically
reduced steady-state levels of mRNA (Supplemental
Fig. S7B). Follow-up studies were conducted to extend
the initial observations from the pipeline data.

Because annotation of the HMG-CoA lyase gene
in The Arabidopsis Information Resource 9 was based
on sequence similarity to the mammalian enzyme
without published experimental evidence, we tested
whether the protein product has the expected enzyme
activity. Open reading frames for the two largest anno-
tated splice variants (At2g26800.1 and At2g26800.2,
predicted to differ in the length of the N-terminal
open reading frame) were expressed in Escherichia
coli and the products were assayed for the ability to
hydrolyze HMG-CoA. The rapid in vitro production of
acetyl-CoA by HML1 proteins is consistent with the
hypothesis that At2g26800 encodes HMG-CoA lyase
(Supplemental Fig. S7C).

To confirm the high seed amino acid phenotype,
more replicates (n = 5) of the four mutants were grown

Figure 7. Improvement in seed carbon-nitrogen data quality informed
by analysis of early data sets. Values are displayed as flat median 6
1 median absolute deviation. High variance within plantings (six-flat
cohorts) and flat median values (black diamonds) were found during
the first six plantings (data for third through sixth plantings shown).
Changes in plant culture conditions resulted in more consistency in the
data (data for seventh through 11th plantings shown).
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outside of the Chloroplast 2010 pipeline, along with
the ecotype Columbia wild type and positive control
line ivd1-2, a previously characterized high seed
branched-chain amino acid mutant defective in the
catabolic enzyme isovaleryl-CoA dehydrogenase
(At3g45300; Gu et al., 2010). Liquid chromatography-
tandem mass spectrometry analysis of seed amino
acids (Gu et al., 2007) from these mutants confirmed
the initial phenotype (Fig. 8B; Supplemental Table S1).
Themcca1-1,mccb1-1, hml1-1, and hml1-2mutants have
coordinate increases in seed Ile (18–23 times), Leu (28–
32 times), and Val (9–10 times), despite their presump-
tive roles in the degradation of only Leu (Fig. 8). This is
reminiscent of the high-Ile, -Leu, and -Val phenotype
of ivd1mutants (Fig. 8B; Gu et al., 2010), defective in an
enzyme that is thought to function in Leu and Val
catabolism (Däschner et al., 2001).
These results suggest that the accumulation of Leu

catabolic intermediates directly or indirectly regulates

the activity of one or both of the two enzymes common
to catabolism of all three branched-chain amino acids:
branched-chain aminotransferase and branched-chain
keto acid dehydrogenase (BCKDH) complex (Fig. 8A).
In mammalian species, the activity of the large multi-
protein BCKDH complex is inhibited by phosphoryl-
ation and activated by dephosphorylation (Brosnan
and Brosnan, 2006). The phosphatase that activates
mammalian BCKDH is, in turn, inhibited by the Leu
and Val catabolic intermediates isovaleryl-CoA and
isobutyryl-CoA (Damuni and Reed, 1987). Our work-
ing hypothesis is that, as in mammals, accumulation of
one or more CoA ester intermediates in the branched-
chain amino acid catabolic mutants inhibits BCKDH in
developing Arabidopsis seeds, causing the buildup of
unusually high levels of branched-chain amino acids.
Consistent with this hypothesis, it was recently repor-
ted that the ivd1-2 mutant accumulates the Leu cata-
bolic intermediate isovaleryl-CoA during artificially

Figure 8. Mutations in IVD1, MCCA1,
MCCB1, and HML1 cause changes in
seed free amino acids. A, Pathways of
degradation of Ile, Leu, and Val in
plant mitochondria. IVD1, MCCA1,
MCCB1, and HML1 are highlighted
in red. Hypothesized enzymes are
shown in gray with question marks.
ACAT, Acetyl-CoA acetyltransferase;
a-KG, a-ketoglutarate; BCAT, branched-
chain aminotransferase; E-CoAH,
enoyl-CoA hydratase; HIB-CoAH,
hydroxy-isobutyryl-CoA hydrolase;
MCCA, methylcrotonyl-CoA carboxyl-
ase a-subunit; MCCB, methylcrotonyl-
CoA carboxylase b-subunit; MMSDH,
methylmalonate semialdehyde dehy-
drogenase. B, Seed free amino acids
(AA) in ivd1-2, mcca1-1, mccb1-1,
hml1-1, and hml1-2 mutants. Mature
seeds were harvested from plants
grown under a 16/8-h photoperiod
and were analyzed for free amino
acids using liquid chromatography-
tandem mass spectrometry. Values are
shown as means6 SE (n = 5). FW, Fresh
weight; WT, wild type.
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induced senescence (Araújo et al., 2010; note that
ivd1-2 is called ivdh-1 in this publication).

CONCLUSION

The transition from low- to moderate-scale experi-
ments common in biological research laboratories to
higher throughput projects requires researchers to
confront unfamiliar problems. The data collection
methods typically used in a biological laboratory
cannot be adapted to these large-scale experiments,
nor can the data be analyzed without computational
assistance. Recording data in a laboratory notebook
and hand labeling sample containers will result in
high error rates and difficulty retrieving data. If the
data are then entered into a computer-readable form,
more data entry errors will occur. User fatigue becomes
a much larger source of error in these large-scale pro-
jects, and they require more robust error reduction
protocols.

For these reasons, a high-throughput project needs
software specifically designed for the task (Baxter
et al., 2007; Baxter, 2010). Developing the workstations
for processing the biological material in conjunction
with software used to gather the data has the potential
for reducing the error rate and providing data in a
form that is more amendable to computational analy-
sis. We have presented one solution using the RoRWeb
application framework. The availability of such soft-
ware allowed rapid development of data collection
and analysis systems and, due to the modular nature
of the frameworks, promotes the distribution and
modification of these systems. A Web interface to
these large data sets enables rapid distribution of the
data and connects the producers and consumers of
such data sets.

Large data sets such as that from the Chloroplast
2010 Project are useful for developing hypotheses but
require in-depth follow-up. This is because of chal-
lenges associated with any large data set and specific
issues related to screening mutant germplasm. For
example, inconsistent phenotypes can result from
diverse types of alleles: loss-of-function mutations
range from insertions that abolish gene expression
(amorphic alleles) to weak loss of function due to
T-DNA in promoters, introns, or at the end of genes
(hypomorphic alleles). Although less common, in-
creased expression due to the 35S enhancer in the
T-DNA alleles has also been found (Ajjawi et al., 2010).
Another cause of inconsistent phenotypes in seem-
ingly allelic mutants is the widespread occurrence of
secondary mutations in T-DNA lines (discussed in
Ajjawi et al., 2010). Large data sets are also subject to
the multiple test problem due to random variation in
data. Finally, run-to-run process variation over months
and years is unavoidable. The database and analysis
tools developed for this project were employed to
reduce the impact of these influences. In addition, the
data analysis tools developed for this project are

designed to allow the researcher to identify these
potential problems when exploring phenotypic data.

MATERIALS AND METHODS

Database Design

A major design goal was to make the phenotypic data available to the

scientific community. For that reason, the software was implemented as a Web

application utilizing RoR and Adobe Flash. A Web application allows wide-

spread use of the software without the inherent problems of distributing an

application. The use of asynchronous updates of the Web page results in fast

response times of the software, which obviates the speed disadvantage of

typical Web-based tools. The database management software is Oracle 10g.

The main Web application is implemented using the RoR framework (Thomas

et al., 2006). Ruby is employed because it is a dynamically typed object-

oriented interpreted language that allows for rapid development. The RoR

framework has a model (view) controller architecture that promotes good

separation of the application functions and allows for easier maintenance of

the application’s code base. RoR also implements the necessary code to enable

Ajax (asynchronous JavaScript and XML) functionality. Additionally, RoR has

an object-to-relational database mapping layer that reduces the amount of

SQL code that must be written. RoR also reduces the amount of JavaScript

code that needs to be written. The result of this built-in functionality results in

more of the application being written in a single programming language

(Ruby) than is typical for most Web applications. The standardization im-

posed by the RoR framework allows efficient collaboration by multiple

programmers working on the project and allows users with RoR experience

to quickly understand our application logic.

The presentation of graphs onWeb applications can be problematic. Adobe

Flash Player is used to display charts using the charting functions of Adobe

Flash Builder 3.0. The data for the graph are rendered into an XML stream, and

the particular data to be displayed in the graph are selected using E4X

(ECMAScript for XML), which is supported by Adobe ActionScript 3.0 used to

program the Flash Player. The Flash Player is freely available at http://www.

adobe.com/.

Plant Materials and Metabolite Analyses

T-DNA lines of Arabidopsis (Arabidopsis thaliana) used in the branched-

chain amino acid case study were in the Columbia background. The mcca1-1,

mccb1-1, hml1-1, and hml1-2 mutants were obtained from the Arabidopsis

Biological Resource Center (stock numbers SALK_137966C [mcca1-1],

SALK_117349C [mccb1-1], SALK_014207C [hml1-1], and SALK_145226C

[hml1-2]). The stocks that were generated from these mutants in the course

of this study were redeposited to the Arabidopsis Biological Resource Center

as accession numbers CS66518 (mcca1-1), CS66519 (mccb1-1), CS66520 (hml1-1),

and CS66521 (hml1-2). Seeds for amino acid assay and carbon and nitrogen

analysis were harvested from plants grown under the 16/8-h photoperiod.

Seed amino acid and carbon and nitrogen analyses were performed as

described previously (Lu et al., 2008).

Quantitative Reverse Transcription-PCR Analysis

Developing siliques with embryos at torpedo and walking-stick stages

were chosen for mRNA analysis. Total RNA was extracted as described

previously (Takaha et al., 1993), digested with RNase-free DNase I (Roche),

and reverse transcribed with oligo(dT) primers and Moloney murine leuke-

mia virus reverse transcriptase (Promega). Gene-specific primers were de-

signed to span two or three exons as listed in Supplemental Table S2. Primers

HML_L and HML_R were used in hml1-1mutants, and primers HML_L2 and

HML_R2 were used in hml1-2mutants. Quantitative PCR was performed on a

7500 Real-Time PCR system with Power SYBR Green PCR master mix

(Applied Biosystems).

Expression and Purification of Recombinant HML1

Proteins in Escherichia coli

Total RNA was extracted, digested with DNase, and reverse transcribed

with oligo(dT)15 primers as described above. Full-lengthHML1 coding regions
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according to gene models At2g26800.1 and At2g26800.2 were amplified using

the mRNA:cDNA hybrid, Pfu DNA polymerase (Promega) with forward

primers HML1_BamH1_ATG and HML1_BamH1_ATG2, and reverse primer

HML1_Xho1_TAA (Supplemental Table S2). The resulting PCR products were

ATcloned into pGEM-T Easy vector and sequenced to confirm the absence of

PCR errors. XhoI/BamHI-digested HML1 fragments were subcloned into

pET28a expression vector (Novagen) and expressed in E. coli strain BL21

(DE3) (Stratagene). Expression of recombinant proteins was induced with

1 mM isopropyl b-D-thiogalactoside, and cells were grown at 30�C overnight.

Recombinant proteins were affinity purified with nickel-nitrilotriacetic acid

agarose resins under native conditions according to the QIAexpressionist

protocol (Qiagen). Protein concentration was determined using bicinchoninic

acid assay.

Activity Assay of Recombinant HMG-CoA Lyase

Recombinant HML1 (0.7 mM) was incubated with 0.5 mM HMG-CoA at

30�C for 0, 5, and 10 min in 0.2 M Tris-HCl buffer (pH 8.2) containing 0.2 mM

EDTA and 20 mM MgCl2 (van der Heijden et al., 1994). Samples were then

treated with 0.2 volume of 2 N perchloric acid and neutralized with 3 M

KHCO3. The production of acetyl-CoA by HML1 was determined by Pico-

Probe acetyl-CoA assay kit (BioVision) according to the manufacturer’s

protocols. Negative controls included recombinant enzyme preparations

inactivated by 100�C treatment for 5 min and the full reaction without added

recombinant enzyme.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Summary of workflows for the Chloroplast 2010

Project.

Supplemental Figure S2. Schematic representation of how the laboratory

information management system and laboratory work space are used to

reduce error.

Supplemental Figure S3. Time stamp-derived reconstructed image of

plants grown together in a flat and photographed separately.

Supplemental Figure S4. Schematic diagram describing how the selection

of green tabs controls the behavior of the Gene Page displays.

Supplemental Figure S5. The distribution of putative hits from a morning

leaf starch assay.

Supplemental Figure S6. Improvement in seed free amino acid data

consistency informed by analysis of early data sets.

Supplemental Figure S7. Decreased Leu catabolic enzyme mRNA accu-

mulation in mcca1-1, mccb1-1, hml1-1, and hml1-2 mutants.

Supplemental Figure S8. Database schema.

Supplemental Table S1. Seed amino acid contents.

Supplemental Table S2. Primers used in this study.
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