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Abstract

Continuum robots, which are composed of multiple concentric, precurved elastic tubes, can
provide dexterity at diameters equivalent to standard surgical needles. Recent mechanics-based
models of these “active cannulas” are able to accurately describe the curve of the robot in free
space, given the preformed tube curves and the linear and angular positions of the tube bases.
However, in practical applications, where the active cannula must interact with its environment or
apply controlled forces, a model that accounts for deformation under external loading is required.
In this paper, we apply geometrically exact rod theory to produce a forward kinematic model that
accurately describes large deflections due to a general collection of externally applied point and/or
distributed wrench loads. This model accommodates arbitrarily many tubes, with each having a
general preshaped curve. It also describes the independent torsional deformation of the individual
tubes. Experimental results are provided for both point and distributed loads. Average tip error
under load was 2.91 mm (1.5%-3% of total robot length), which is similar to the accuracy of
existing free-space models.

Index Terms
Active cannula; concentric-tube robot; continuum robot; Cosserat-rod theory

[. Introduction

Concentric-tube continuum robots, which are also called active cannulas due to their
promise in interventional medicine, use the geometry and elastic interaction of precurved
concentric tubes to achieve a wide variety shaft curves and end-effector poses. As shown in
Fig. 1, the shape of the cannula’s telescoping backbone can be changed by axially rotating
and translating each individual tube at its base. Harnessing precurvature in this manner
enables a larger variety of shapes at smaller diameters than is possible with continuum
robots actuated by mechanisms external to the backbone (e.g., cables, pushrods, etc.). These
characteristics have led to many proposed minimally invasive surgical applications for
active cannulas, including use in fetal procedures [2], the lung [3], the heart [4], and in
transnasal and transgastric surgeries [5], among other interventions. While some of these
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applications, such as manipulating a fiber-optic laser in the lung [6], may be approachable
with free-space kinematic models that do not include external loading, in many other
foreseeable applications, it will be useful for the cannula to intentionally manipulate tissue
by retracting it, cutting it, dissecting it, traveling through it like a needle, etc. Furthermore,
as the cannula approaches the area in which it is to work, it is likely that tissue will contact it
at one or more points along its shaft. Gravity can also cause some (albeit typically small)
deflection in an active cannula. To enable accurate control of cannula position and applied
forces under these conditions, it is essential to have a model that describes cannula shape
under externally applied point and distributed forces and moments.

The value of modeling external loading has recently been demonstrated in larger scale
pneumatically actuated continuum robots where the robot sags significantly under the self-
weight of the arm. Trivedi et al. used geometrically exact Cosserat-rod theory to describe
the shape of the OctArm under load, thereby reducing model errors from 50% to 5% [7].
With respect to small-scale continuum robots for medical applications, Xu and Simaan have
recently demonstrated intrinsic-force sensing using a flexible push—pull-rod-actuated
multibackbone robot and applied it to palpation [8]. The model that we present here may one
day enable intrinsic-force sensing with active cannulas.

With respect to tendon-driven continuum robots, the effect of external loading has not yet
been a focus, but rod theory has been applied to model backbone shape under tendon loads.
Much of this work has built on Chirikjian’s application of continuum models to
hyperredundant robots [23]. Li and Rahn formulated a geometrically exact model for the
nonlinear deformation of individual sections of the backbone due to tendon loads [9].
Gravagne et al. used geometrically exact rod theory to derive the large-deflection dynamics
of a planar continuum manipulator and control its vibration [10]. Camarillo et al. modeled
both the bending and compression of a constant-curvature continuum robot [11]. Recently,
Jones et al. explored the real-time solution of the static Cosserat-rod equations for a tendon-
driven continuum robot under applied loads [12]. While our work in this paper draws upon
similar geometrically exact rod theory as has been used in these studies, our concentric
precurved tube design presents a fundamentally different problem because there are many
elastica to consider rather than just one. While concentric tubes do share a common
backbone shape, each can undergo torsion independent of the others, which precludes the
use of any existing model.

While significant prior work has been done in active-cannula modeling and sophisticated
free-space models exist, none have yet accounted for external forces or moments. The
modeling frameworks that exist today have been developed in parallel by several groups.
The simplest possible model of an active cannula by Furusho et al. [2] makes the
assumption that the outermost tube in any given section of the robot has infinite stiffness
compared with all tubes within it. Webster et al. [5] and Sears and Dupont [4] provided
initial beam mechanics models that accounted for tube interaction and, thereby, achieved
better accuracy. The importance of torsion was also recognized and initially modeled in
straight sections of the device [3], [5], before being extended (in closed form) to curved
sections in a two-tube cannula [13], [14]. The latest (numerically evaluated) models
generalize to arbitrarily many tubes and variable precurvature [13]-[15]. While these are
useful and general models, they are only able to consider cannulas in free space. Our
purpose in this paper is to extend them to describe the shape of an active cannula under
external loading. Such a model is a necessary prerequisite to future development in areas
such as design based on compliance, manipulation of objects, and intrinsic-force sensing and
control.
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A. Contributions

Our contributions in this paper are as follows: 1) We present an extension of the classical,
geometrically exact Kirchoff rod theory from one rod to many precurved concentric tubes
under arbitrary external point and distributed wrench loading, and 2) we apply the theory to
a specific active-cannula continuum robot and validate it experimentally.

Some results in this paper were presented in preliminary form in [1]. Noteworthy additions/
enhancements in the current paper include the following:

1. anenhanced treatment of relevant results from classical Cosserat-rod theory;

2. derivation of the fundamental torsional component of our model using both
Cosserat-rod methods and energy methods, thus demonstrating their consistency;

3. an expanded experimental discussion and new figures illustrating the cannula
workspace, our experimental apparatus, and experimental error;

4. new experimental results for distributed loading;

5. adiscussion of unmodeled effects including friction, elongation, and transverse
shear, and how they could be (and whether they may need to be) included in future
active-cannula models.

Il. Mechanics-Based Model

Our derivations in this section draw on Antman’s thorough work on nonlinear elasticity [16,
chs. 4 and 8]. In the interest of clarity to those familiar with robotics, we have replaced some
of the geometric nomenclature with the more-compact kinematic notation familiar to the
robotics community (e.g., the use of rotation matrices rather than directors).

This section is organized as follows. After discussing modeling assumptions in Section II-A,
we proceed in Section 11-B and C to introduce the kinematics and constitutive behavior of a
single tube. Section I1-D gives a condensed derivation of the Cosserat equilibrium equations
for a precurved rod under load, the results of which provide the basis for the multitube
derivation in Section II-E and F.

A. Assumptions

A theory of rod deformation is termed “geometrically exact” if it makes no approximations
with respect to kinematic variables [17]. The nonexact methods typically used to predict the
deformation of structural beams often employ two *“small-deflection” approximations (either
of which removes geometric exactness) to enable closed-form solutions: 1) The deformed
shape is assumed “close” to the initial shape when computing internal stresses, and 2) some
approximate formula is used for the beam’s curvature in calculating the elastic curve. In this
paper, our approach is based on the geometrically exact Cosserat-rod theory, which makes
neither approximation.

With respect to constitutive behavior, we use the standard assumptions of the classical
elastic-rod theory of Kirchoff, which is a special case of Cosserat-rod theory [16]. The
assumptions of Kirchoff are 1) inextensibility and no transverse shear strain and 2) linear
constitutive equations for bending and torsion. Inextensibility and shearlessness are
generally regarded to be good assumptions for long thin rods, such as the tubes in active
cannulas (e.g., the prototype described in Section I11). To illustrate the validity of the
inextensibility assumption, we provide the following calculation. The maximum insertion
force for the inner tube of our prototype was measured to be 10.1 N using an ATI Nanol7
force sensor, which is a number that also exceeds any of the applied loads in our
experiments. If this load was applied at both ends of a straight tube with the same
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dimensions as the inner tube used in our experiments, the total elongation would be less than
50 um. Thus, we can be confident that bending and torsion will dominate the deformation
behavior of an active cannula. For simplicity, we adopt the linear constitutive equations, but
our overall approach does not require it. Active cannulas often remain below 3% strain in
practical use, which is in the linear range of Nitinol [18].

We also neglect friction in this paper, as do all active-cannula models to date. While friction
is a worthy topic of future modeling and compensation efforts, the fact that we can achieve
less than 3 mm average tip error without modeling friction indicates that its effects do not
dominate the behavior of our experimental prototype. Furthermore, in our experimental
procedure, we explored hysteresis and noted no discernible effects, i.e., we could not induce
the cannula to reach a different final position under load when the load was allowed to
oscillate. We will comment further upon how frictional effects might be added to our
modeling framework in Section 1V.

B. Kinematics of a Single Precurved Tube

Let the unloaded precurved shape of a tube be defined by an arc-length parameterized curve
r*(s).1 We assign frames continuously along r*(s) and, by convention, choose the z-axes of
these frames to always be tangent to the curve (see Fig. 2 for an illustration). The well-
known Frenet-Serret apparatus provides closed-form equations, which can be used to
generate such frames as long as r*(s) is twice differentiable. In this convention, one axis is
always aligned with the plane of instantaneous geometric curvature. Perhaps more intuitive,
but less analytically simple, are rotation minimizing, or Bishop frames, which can be
thought of as “sliding” along the curve without undergoing any rotation about the tangent z-
axis. Both these framing conventions have been used in prior active-cannula modeling.
Regardless of the convention choice (the subsequent analysis accommodates either), framing
the initial tube curve creates a rotation matrix R™(s) at every arc-length location s on the
undeformed curve.

Thus, a continuous homogeneous transformation g*(s) is established, consisting of the
position and orientation of an arc-length-parameterized reference frame along the curve

_ R “(s)
g*(s):[ (s) m'(s) |

4 1

We can obtain a local curvature vector by using the well-known relationship
* +«T x Y
u (5)=(R" (SR (5)) .

Here and throughout the paper, the dot denotes a derivative with respect to arc length s.
The V operator denotes conversion of an element of so(3) (the Lie algebra of SO(3)) to its
corresponding element in R3. Following convention, we “overload” the V notation so that it
also indicates the mapping from se(3) (the Lie algebra of SE(3)) to R®. The A operator
denotes the inverse operation in both cases. For an in-depth discussion on this notation, see
[19]. Thus, the original arc-length-parameterized curve r’(s) could be reconstructed by
integrating

INote that throughout the paper, we use the * to denote variables associated with undeformed individual tube shapes. Thus, r*(s)
indicates the preset shape a single tube has in the absence of any other tubes or external loads.
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where £(s)=[e] u*T(s)]", and e3 = [0 0 1]T.

In Cosserat-rod theory, any deformation of a tube from its initial state g*(s) to a new state
g(s) can be described by a corresponding change from &(s) to & (s), which we denote A&(S)
= & (s) — &°(s). The three components of Au(s) (i.e., the change in u(s)) correspond to
bending strains about the x-and y-axes of the attached local reference frame, and torsional
strain about the z-axis. In general, transverse shear strain and elongation can be similarly
captured by changes in the first three components of & (s). Since we neglect these effects in
this paper (for the modeling assumptions, see Section 11-A), Au(s) completely captures the
deformation of the tube. The deformed backbone shape of the tube g(s) is then defined
differentially by

2 (5)=g(s)é(s)

where &(s)=[e] uT(5)]", or equivalently

r(s)=R(s)e3, R (5)=R(s)u(s) @

where u(s) = u”(s) + Au(s) is the curvature vector of the deformed backbone curve.

Note that in the kinematic formulation above, one can make the following analogy to rigid-
body motion: As a “body frame” angular velocity 2 describes how a rotation matrix R(t)
changes with respect time [19], a local curvature vector u describes how a rotation R(s)
changes with respect to the arc length of the rod. Thus, the expressions for the elastic energy
stored in a deformed rod are of the same form as those for the kinetic energy of a tumbling
rigid body. This is termed Kirchoff’s kinetic analog, as discussed in [20]. This analogy can
be helpful for those with experience in robot dynamics to gain intuition about the model in
this paper.

C. Constitutive Relationships

We use a linear constitutive law to describe the relationship of the strains to the internal
moment vector (expressed in global frame coordinates) at s

m(s)=R(s)K(s)Au(s) 3)
where
E(s)I(s) 0 0
K(s)= 0 E(s)I(s) 0 s
0 0 G(s)J(s)

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.
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E(s) is Young’s modulus, I(s) is the second moment of area of the tube cross section, G(s) is
the shear modulus, and J (s) is the polar moment of inertia of the tube cross section. We use
this linear relationship because it is notationally convenient and accurate for our robot, but
our approach does not require it. One could easily incorporate a nonlinear constitutive law
here (i.e., m = f (Au, s)). The following model derivation would differ only in the
computation of the arc-length derivative and the inverse of m.

D. Equilibrium Equations: A Single Tube Under Load

We now give a brief development of the fundamental equilibrium equations needed to
obtain the deformed shape of one precurved rod under a prescribed load. Note that this
exposition directly parallels the development of the multitube case in Section II-F. In [16,
ch. 4.1], by writing a moment balance on a section of a rod under load then taking the
derivative of the result with respect to arc length, Antman derives the equations of
equilibrium for the special theory of Cosserat rods. We provide a modified, condensed
version of that derivation here, which parallels the more complex development of the
multitube case that follows. We will also use certain results from the single-tube analysis in
the multitube development.

Consider a cantilevered precurved rod, the kinematics of which are described in Section I1-
B, extending from arc length s = 0 to s = I, and subject to an arbitrary combination of
distributed forces f (s) and moments I(s) along its length. We now cut a section at an
arbitrary arc-length location s, as shown in Fig. 3. By convention, we denote the internal
force, which the material of [s, 1] exerts on the material of [0, s), as n(s). Similarly, the
internal moment that the material of [s, I] exerts on the material of [0, s) is m(s). Summing
the forces on the portion [s, 1], we obtain

[ f(o)do = n(s)=0. @

Similarly, summing the moments on the portion [s, 1] about the world frame origin, we
obtain

[Lr(@) X f(@)+l(@)) do - m(s) = r(s) X ()=0. )

The unknown, deformed shape r(s) is present in both (5) and in the differential equation (2).
Thus, it is not generally possible to obtain either the deformed curve or the curvature
algebraically. The classical approach to solve this problem is to take derivatives of the force
and moment balances with respect to arc length and then use the constitutive law to obtain
derivatives of the kinematic variables that can be numerically integrated simultaneously with
the kinematic equation (2) as a boundary value problem. This is the approach that we adopt
here.

Taking the derivative of (4) with respect to s, we obtain

n (s)+f(5)=0. )

Similarly, taking the derivative of (5) with respect to s and substituting (6) into it yields

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.
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m (5)+ 7 (s) X n(s)+(5)=0. (7

Equations (6) and (7) are the classical forms of the equations of equilibrium for a special
Cosserat rod, as given in [16]. In order to obtain the deformed shape of a single rod under
load, they can be expanded using (3) to obtain equations for the local curvature derivatives,
which can then be integrated simultaneously with (2) (as is done, e.g., in [7] and [12]).

We now proceed to do this by expressing (6) and (7) in terms of the local curvature and
kinematic framework from Section I1-B. Taking the derivative of (3) and substituting (2)
into it yields

m =R(K(tt - )+(T@K+ K)(u — u")). (®)

For simplicity, we have dropped the (s) notation and will continue to do so, except where
needed for clarity, for the remainder of the paper. Using (2), (4), and (8), we can rewrite (7)
in terms of the curvature and the applied loads. Premultiplying by RT and K1 and then
solving for u, we obtain

w=u -K! ((EK+ K)(u-u")+eR [ ’ f(a-):lo-+RTl).

This equation, combined with (2), results in a system of differential equations (u and g in
terms of u, g, and the applied loads). Typical boundary conditions for this simple case would
be g(0) = go, and m; (I) = 0 in the absence of any point moments at the tip.

E. Kinematics of a Collection of Concentric Tubes

We now consider a robot composed of a collection of precurved concentric tubes subject to

a set of external forces and moments along its length. In this section, we give the geometric

constraints appropriate to such a collection, and in the next section, we derive the equations
of equilibrium that can be integrated to obtain the final shape of the tubes. For simplicity in

deriving the fundamental equations, we consider n tubes of the same length, which are fully
overlapped. In Section 11-G, we will discuss how to apply the model to the case where tubes
begin and end at different locations.

We assume each tube has its own arc-length-parameterized transformation g7 (s), as in (1),

and associated precurvature vectors ; (s), as set forth in Section 11-B. If the tubes are
concentric, then each of their final deformed curves must be equal, i.e., r{ () =ra(s) = ... =
rn (5). We designate this common deformed curve as r(s). This does not imply that each g;
(s) must be equal. The tubes are free to twist independently during deformation, and this
prohibits us from considering the collection of concentric tubes to be a single, precurved
rod.

The equality of the deformed curves can be equivalently expressed by the two statements ry
0)=rp(0)=...=r,(0)and r+ (s) = 15 (S) = ... = I, (5). Thus, their tangent vectors are
equal along the length. Recalling from (2) that £ (s) = R; (S)es, this implies that the third
columns of each R; (s) are equal. Therefore, each R; () differs from the others by a rotation
about the local tangent z-axis. We introduce an angle 6; (s) to parameterize this difference as

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.
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Ri(5)=R1(s)Ry, (10)

where Ry, = €83 91 () denotes a rotation about the z-axis by 6; (s), and 61 = 0 by definition.
We use this to obtain a relationship between the tube curvature vectors that enforces the
tangency constraint. Applying the definition of u;, we obtain

.V .
w;=(R R)) =R}, w+6es. (11)

Interpreted geometrically, this equation says that the local x and y curvatures of each
deformed tube are equal when expressed in a common reference frame. The torsional z
components are free to vary independently for each tube. The variable g; provides a
parameterization of this variance as

Oi=ui; — uj ;. (12)

F. Equilibrium Equations: A Collection of Tubes Under Load

We now proceed to derive the equilibrium equations for a collection of concentric tubes
under applied external forces and moments. This section will parallel the derivation of
Section 11-D. We begin by writing a force balance on a section of the cannula from arc
length s to the end |

n n
ff_Zf,'(O')dO' - Zn,:O.
i=1 i=1

(13)

Similarly, summing the moments on the portion [s, I] about the world frame origin, we
obtain

n

I, (r(a) x Zﬁ(a)+2h(a>) do = )" (mi(s) = 7(s) X ni(5)=0
i=1 i=1

i=1 (14)

where f; and I are external force and moment distributions, respectively, applied specifically
to tube i.

Taking the derivative of (13) with respect to s, we obtain

i(hﬁfi):()-
i1

(15)

Similarly, taking the derivative of (14) with respect to s and substituting (15) into it yields

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.
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n
Z(mﬁ- r X’I"L,'+l,'):0.
i=1 (16)

Equations (15) and (16) are the multitube analogs of the Cosserat equilibrium equations (6)
and (7). Indeed, they are merely the sums of (6) and (7) over all the tubes. The substance of
our approach lies in the following application of the concentric-tube kinematic constraints
(allowing independent tube torsion) to these equations in order to obtain a set of differential
equations similar to the single-tube case while introducing the minimum number of
additional variables.

We now wish to expand (16) and solve for uq in terms of the precurvatures, the applied
loads, and the state variables. As in the single-tube case, we use the constitutive law (3) and
the kinematic relationship (2) for each tube to obtain

n n
Zmi(s):ZRi(Ki(ui — W) HWKA+K)(w; — ).
=1 i=1
We use r~=Rq ez and (13) to obtain the last two terms of (16) in terms of the applied loads

D xnitl)=(Ries) x [ f(o)dor+l
=1

where f(S)=Z:;1ff(S), and l(S):Z;l:lli(S). Then, after premultiplying by RY (s) and
recalling that Rg,.:RlT(s)Ri(s) from (10), (16) becomes

17)

We wish to obtain an expression for uy in terms of f, I, Ry, and uy,..., up; therefore, we apply
the derivative of (11) as follows:

o aRL
u,'(s)=6,~—-u1+Ré,iu1+6)163

do; (18)

to eliminate uy,..., u, from (17). This substitution enables us to solve (17) for the first two
components Uy y and Uy in terms of the state variables

T

Xy

xy . (19)

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.
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n
where K=Zi:1Ki, and [y y denotes selection of only the first two components of a vector.

There is not enough information in (17) and (18) to similarly obtain uj ,. This is because our
kinematic constraints allow the torsional strains of the individual tubes, i.e., uj ,, to be
different, where 8; parameterizes this difference. Thus, we now return to the single-tube
formulation, as described in Section I1-D, to obtain the behavior of the individual torsional
strains.

Equation (9) describes the curvature of a single tube under a general load. Therefore, it
remains true for every individual tube in an arrangement of many concentric tubes. We
generally do not know a priori what forces and moments the tubes in a concentric collection
apply to one another. However, noting that the third column of the matrix &; is all zeros, we
find that the third component of u is actually independent of any forces and nonaxial
moments. Writing this third component for tube i, we obtain

s i1 . (GiI)
u; =1t; _+ #(u,-_xu;‘_y - u,'_)-zlf_x)+#(u’-‘: —Uj;)—

TpT
R: ;.
G,'.]i Gi],' b 3 !

——e3R;
G;J; (20)

The only external load appearing in this equation is the component of the distributed
moment at s about the local z-axis. In a collection of concentric tubes, the assumption of no
static friction between tubes implies that the tubes cannot apply such axial-moment
distributions on one another. Therefore, in this equation, lj represents a purely external
torsional moment distribution applied specifically to tube i.2

This torsional behavior completes our multitube model so that we now have first-order state
equations for the variable set {g1, U, U2 7,..., Uy z, 62,..., 6y }. The equations that define their
derivatives are (2), (12), (19), and (20). The intermediate variables u;j can be calculated
algebraically from u; at every step using (11).

G. Model Implementation

Challenges in practical implementation of our model include numerically dealing with point
loads and the issue of tubes beginning and ending at different arc lengths. In an active
cannula, all tubes are clamped to actuators at their bases and are subject to a set of applied
loads along their length. Since the distributed force is integrated in (19), finite-point forces
can be conveniently included in the model through the use of Dirac delta functions in the
distribution. However, including finite-point moments using this method would cause (19)
to become infinite at a point, and most numerical techniques are ill equipped to handle this.
The same difficulty arises if tubes end at different arc lengths or if the precurvature of a tube
undergoes a step change (i.e., if r(s) is not twice differentiable at a point).

All such occurrences should ultimately result in a step change in the deformed curvature.
This can be accounted for by solving a series of continuous systems bounded by the
discontinuous solution points while enforcing appropriate boundary conditions at the
junctions. Discontinuous solution points for a typical two-tube cannula are illustrated by
gray lines perpendicular to the cannula in Fig. 4, which break it into sections. The boundary
conditions to be enforced across each transition point between sections (at arc length s) are

2since energy methods have been used in prior unloaded active-cannula models, we also present an energy-based derivation of (20) in
the Appendix to demonstrate the connection of our present study to prior modeling approaches.
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as follows: 1) The position and orientation of each tube must be continuous across the
boundary, and therefore

gi(s)=gi(s")

and 2) static equilibrium requires that the sum of the internal moments carried by the tubes
just before the end of the section equal the sum of the internal moments carried by the tubes
just after the end of the section plus the sum of the applied point moments at the boundary (a
point moment applied to tube i is denoted by I, (s)), i.e.,

(=Y st ),
=1 i=1 i=1

This enforcement of static equilibrium across discontinuous boundaries is also required in
application of Cosserat theory to other types of continuum robots, and forms of these same
conditions are also given in [7].

One must also consider the boundary conditions of the entire cannula for practical
implementation. In many physical prototypes of active-cannula robots, all the tubes are
constrained to pass through a fixed entry point, which we designate as s = 0, as shown in
Fig. 4. The actuators grasp the bases of the tubes behind this point at negative arc-length
values s = —D;. At the proximal end of each tube, gj (—D;j ) is determined by the actuation
inputs, namely the translation and axial rotation of the base of the tube. At the distal end of
the robot, the static equilibrium condition becomes

imi(s):ilp.f(s)-
i=1 i=1

Also, at the distal end of each tube, we have a natural boundary condition for the local axial
component of the internal moment of each tube

el RImy(ti)=eX R (t)Lyi(6)

where I; denotes the arc length at which tube i ends. This arises because in the absence of
friction, the tubes cannot apply axial moments to one another.

The tubes are straight for s < 0, and therefore, the unknown boundary conditions on the
proximal side of the robot are the set of initial curvature values {uy x (0), uyy (0), Uy,
(=Dj), uz; (=D2),..., unz (=Dy )}. In our experiments described in the next section, we
employ a standard shooting method to solve for the values of these unknown initial
curvatures which satisfy the boundary conditions on the distal side while enforcing the
conditions given above at each transition point.
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lll. Experiments

In order to validate the model developed in Section 11, a set of experiments was performed
for a collection of two Nitinol tubes with general precurvatures (see Fig. 5) in various
configurations and under various loading conditions.

A. Tube Properties and Measurement Procedures

The physical properties of the tubes used are given in Table I. Each tube has an initial
straight length followed by a curved section, the curvature of which is shown in Fig. 5. In
our experiments, the outer tube was held stationary in its fully extended position, while the
base of the inner tube was translated to five different positions (by the actuation unit shown
in Fig. 6), which are given in Table II. At each of these translational positions, the inner tube
was rotated to eight evenly spaced angular positions, which are given in Table I11. Thus, the
tubes were actuated to 40 different workspace locations which evenly span the set of angular
and linear differences of tube base positions (see Fig. 7). The rest of the configuration space
could be generated by a rigid rotation of the experimentally sampled space about the base
frame z-axis; therefore, this set of tube positions evenly samples the unique—from the
perspective of the model—configuration space locations.

As shown in Fig. 8, at each of these configurations, a set of 3-D points along the backbone
was determined via images taken from a calibrated pair of stereo cameras (Sony XCD-X710
Firewire cameras with a resolution of 1024 x 768 pixels) mounted above the robot. The
fiducial markers shown in the inset image in Fig. 8 enabled determination of point
correspondences for stereo triangulation after they had been identified in image coordinates
by manually clicking on the center of the black bands in each image with MATLAB’s
ginput command. The cameras were calibrated using a camera calibration tool-box for
MATLAB [21], and the transformations between the stereo-camera coordinate frames and
the robot base frame were initially estimated by triangulating a grid of points with known
locations in the base frame and performing rigid point cloud registration [22]. The mean,
max, min, and standard deviation of the euclidean registration errors were 0.57, 1.30, 0.11,
and 0.32 mm, respectively. Directionally, the mean registration errors along the x-, y-, and z-
axes were 0.50, 0.12, and 0.15 mm, respectively, where the x-axis points toward the cameras
and the z-axis points along the robot axis at the base. These numbers encompass the error in
the process of manually identifying the pixel coordinates of the points, as well as any error
intrinsic to the stereo-camera system. We take this to be a rough estimate of the effective
accuracy of our vision-based triangulation system.

In each of the 40 actuator configurations, a point force was also applied to the tip of the
cannula by a wire tied through a hole in the tip of the inner tube, and backbone data were
taken in the robot’s loaded state. The direction of the force vector applied by this wire was
also determined by triangulating points marked along its length, as shown in Fig. 8. As can
also be seen in the figure, the wire was run over a pulley and attached to a mass ranging
from 100 to 500 g, as detailed in Table Il. From the perspective of the cannula, the applied
tip-load vector was in a different direction in each experiment because the robot was in a
different configuration in each.

The pulley was mounted to a 6-degree-of-freedom (DOF) manually adjustable frame made
from standard 80-20 Inc. parts. In each of the 40 robot configurations, before taking data, the
location and angle of the pulley was adjusted as needed to make sure that the cable was
orthogonal to the pulley axis. At this time, we also checked for hysteresis due to pulley
friction by displacing the mass up and down (the flexible cannula acting as a spring) and
noting that the pulley always returned to the same equilibrium angle when the weight was
released. A subsequent experiment was carried out using this same procedure, in which the
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cable tension was measured using a six-axis load cell (Nano17, ATI, Inc.). The resolution of
the cable tension was found to be £0.009 N for the 0.981 N load, £0.020 N for the 1.962 N
load, and +0.088 N for the 4.905 N load. Thus, we conclude that any unmodeled pulley
effects did not significantly affect the loads transmitted to the cannula.

The two tubes have general precurvatures «;(s) and «5(s). To obtain these, we began by
capturing points along them (individually before inserting one into the other) using the
stereo triangulation system in the manner described previously. We then fit a parametric
polynomial curve to these points and gathered curvature data from these smooth fits. The
components of precurvature for each tube are plotted in Fig. 5 (the tube curves were framed
using Bishop’s frames; therefore, there are only x and y curvatures). Note that the curvatures
are not constant over s, and all prior prototypes reported in the literature have had constant-
curvature preset tube shapes.

B. Model Performance and Calibration

Since model error nearly always increases with the arc length along the robot toward the tip,
we use tip location difference (called “tip error” henceforth) as a metric for comparing
predictions to experiments, as has been done in many previous studies with active cannulas
and other continuum robots. In our particular experiments, we also visually verified that the
tip was the point of greatest deviation between model and experimental data by plotting the
two together for all experimental positions.

Using the nominal parameter values (those that were directly measured or appeared on data
sheets; for further discussion of active cannula nominal parameters, variances, and error
propagation in model parameters, see [3]) listed in Table I, the mean tip error over all 80
experiments was 5.94 mm. Since actual values for the moduli of Nitinol tubes are highly
uncertain (Young’s modulus is listed as 41-75 GPa on data sheets from the manufacturer,
NDC, Inc.), the values of each tube’s bending and torsional stiffness were subsequently
calibrated by finding the set of tube parameters that minimized the sum of the positional
errors at three locations along the robot: the base (s = 0), the tip of the outer tube (s=1,),
and the tip of inner tube (the tip of the device, s = 11 ). To reduce uncertainty in the
registration of the robot base frame to the stereo-camera frames, we included small changes
to the base-frame position (translations X, dy, 6z) and to the orientation (XYZ Euler angle
rotations da, df, dy) as additional parameters to be calibrated. Our calibration process is
accomplished by solving an unconstrained nonlinear optimization problem for the parameter
set P ={Ej I1, Ex Iy, J1 Gq, J2 Gy, 6X, 8Y, 6z, da, 3B, dy }-

80

Peatibraiea=argmin | " ex(0)+ex(2)+ex(t1)
P k=1

where ey (S) = ||rm o del (S) — F'data (S)||k s the Euclidean distance between the model
backbone prediction and the data in experiment k. To implement this minimization, we used
the Nelder—Meade simplex algorithm, as implemented by MATLAB’s fminsearch function.

The parameters resulting from this model-fitting procedure are shown in comparison to their
nominal counterparts in Table IV. The base-frame parameters showed only small changes
during optimization, with XYZ Euler angles changing by —0.06°, 0.67°, and —0.58°, while
the frame origin translated 2.0 mm. Using these calibrated parameters, the mean error over
all experiments was 2.91 mm, as shown in Table VI.
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Fig. 9 shows the unloaded and loaded states of the cannula for actuator values of Dy = 154.7
mm, D, =30.7 mm, a1 = 135°, and a, = 0°. Experimental data points are overlaid on the
model prediction, and the model shown in the figure uses the calibrated parameters. The
configuration shown is typical of all 80 experimental positions in that the tip error in both
cases is about 3 mm, while the mean for all experiments is 2.91 mm. The rest of the shape is
also typical of the 80 experimental runs in that the experimental data lie very close to the
model prediction along the entire backbone, and the applied forces were sufficient to cause
large deflection in all cases.

C. Distributed Load Experiment

In order to demonstrate capability of the model of Section 1l to handle distributed loads, an
experiment was conducted where a force distribution was applied along the length of the
cannula. The actuator configuration was D1 = 122.7 mm, D, = 30.7 mm, and a1 = ap = 0°.
Note that the cannula’s own weight is not sufficient to cause appreciable gravitational
deflection. Therefore, we added additional weights along its length. As shown in Fig. 10, we
approximated a distributed load by placing a large number of nuts along the shaft of the
cannula (on both the outer tube and the portion of the inner tube which extended out from
the outer tube). The nuts were spaced evenly along the shaft and had a total mass of 56.96 g.
Stereo-point correspondences were determined based on manually clicking backbone points
between the nuts. The tip of the device was covered by the last nut, thus making it
impossible to locate the tip in stereo images; therefore, the tip was considered to be the last
visualizable section of the backbone, and the model arc length was reduced by one nut
width. The model and experimental data for this loading condition are shown in Fig. 11,
along with the unloaded model for the same configuration. The tip error was 4.54 mm.

D. Statistical Analysis

Error statistics for both nominal and fitted parameter sets are given in Tables V and VI. The
dataset corresponds well to model predictions, with a mean tip error of 2.91 mm. An error
histogram for all 80 cases shows that 75% of the errors were below 3 mm, and 85% were
below 4 mm (see Fig. 12).

A statistical outlier with 15.20 mm of tip error occurred in the loaded state with D, = 130.7
mm, D, =30.7 mm, a1 = 270°, and a, = 0°. The error in this case may have been increased
by a procedural error (e.g., an incorrect aq value being recorded) or simply a worst-case
compounding of unmodeled phenomena and measurement uncertainty. It is also worth
noting that in this configuration, the cannula was fully extended, and this error corresponds
to only 7.68% of the arc length.

We note that for long, slender continuum robots, tip error is highly dependent on the total
arc length, since errors tend to increase from the base of the cannula to its tip, as mentioned
previously. The total arc length of the active cannula in our experiments ranged from 105.9
to 197.9 mm over the experimental dataset. Thus, an average tip error of 2.91 mm is
approximately 1.5%-3% of the arc length.

E. Error Sources

The unmodeled phenomena of transverse shear strain and elongation could potentially be
accounted for by allowing A&(s) to include the first three components, but the kinematic
constraints in this case become more complex, and shear effects are known to be negligible
for long, thin beams. Additional torsion due to friction is likely a more significant effect and
could potentially be included in the model by additions to or modifications of (20), which
describes the axial torque along a tube. Depending on cannula design (intratube tolerances,
precurvature functions, arc lengths, etc.), we believe that friction can become more
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pronounced than it was in our experimental prototype, and future model extensions
accounting for it may be useful, despite the minimal hysteresis observed in our experiments.

An unmodeled hardware detail that may be important is the fact that there is a small amount
of clearance between the outside diameter of the inner tube and the inside diameter of the
outer tube. This means that the tube tangents are not quite coincident where one exits the
other, as the model assumes. In terms of design, this effect can be reduced by choosing
tighter intratube tolerances at the cost of increasing frictional effects. Alternatively, this
effect could be modeled by modifying the continuity of position and orientation across
transition points to include a small rotational and translational displacement, where one tube
exits another.

However, the fact that small tip errors were achieved without modeling any of the above
effects indicates that they are largely negligible in our prototype. The model presented in
this paper effectively captures the main structural features of concentric-tube continuum
robots because it allows independent tube torsion during deformation. Whether it will be
necessary to model any of these effects in the future will likely depend upon the design of
the active cannula and the accuracy required by the application. Many clinical applications
(e.g., needle biopsy or thermal ablation) can tolerate 3-mm tip errors. Other potential
applications, such as retinal microsurgery, will require higher accuracy. In many cases,
implementation of closed-loop control using this model is likely to significantly increase the
operational accuracy and may render additional modeling detail unnecessary.

V. Conclusion

In this paper, we have presented an extension of the geometrically exact Cosserat-rod theory
to analyze a collection of concentric precurved tubes under a general set of distributed and
point wrenches. We then tested this model in a set of experiments using an active-cannula
robot composed of two Nitinol tubes with general preset curved shapes, subject to both tip
loads and distributed loads along the length of the device. With parameter fitting, the model
achieved an average tip error of 2.91 mm across all 80 experimental positions, which span
the model-unique configuration space.

Our modeling work in this paper provides a theoretical foundation from which to understand
active-cannula shape under load and from which to begin to explore many future
applications. We expect that this model will be a valuable design tool in simulating proposed
active-cannula designs, thereby enabling accurate compliance and kinematic analysis for
cannulas intended to interact with tissue under environmental constraints. We also expect
that it may facilitate use of the cannula’s flexibility to sense and control contact forces.
Intrinsic-force sensing is desirable for thin continuum medical robots where inclusion of a
force sensor could significantly affect device function [8]. Force information has the
potential to enable tissue-property estimation to locate lesions via palpation or provide
haptic feedback to the surgeon in a teleoperated system.
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APPENDIX

Prior derivations of active-cannula shape have proceeded from both the perspective of
energy minimization and Cosserat-rod theory. In this Appendix, we derive (20) using energy
methods to demonstrate the consistency of the two approaches.

Using Euler’s linear constitutive bending equation (3), the elastic energy stored in the n-tube
deformations is

1 2 { T *
E:E;fo(u,» —u;)" Ki(u; —u;)ds.

Substituting (11) into this, we have

1 ) & . ) . .2
E=> [oulKiu 1—2u{K1u’{+u:ﬁTK1u“l‘+Z(u1TKiu1+2u,lTKi(9,'e3—2u{R9,Kiu7+ufTKiuf—Zu;‘TKiHie3 +6; €l Kie3)ds.
i=2

(21)

To find the functions 6;, which minimize the stored elastic energy, we apply the following
Euler-Lagrange equation to the functional n — 1 times, once with respect to each 6;:

of d (()_f)zQ,

a0, ds\op,) ="

(22)

Note that the right-hand side is not zero, as is the case in prior free-space models [15].

Instead, we have Q;. which represents any generalized forces associated with 6;. This
corresponds to an arc-length-dependent torque per unit length applied about the e3 -axis of
tube i. Applying (22) to the integrand of (21), we obtain
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We can use (11) and (18) to replace u; and uj and then solve for u; , to obtain (20).
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Fig. 1.
Active cannula composed of three telescoping Nitinol tubes, which is actuated by rotating
and translating the tubes at their bases.
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Fig. 2.

The shape of a precurved rod is defined by an arc-length parameterized frame along the
rod’s length. When external loads are applied, the rod deforms under a combination of
bending and torsion. Since transverse shear and elongation are neglected, the frame’s z-axis
remains tangent to the deformed curve.
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Fig. 3.

Section of rod from s to the free end | subject to distributed forces and moments. The
internal force and moment are also shown.
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Fig. 4.

Two-tube cannula showing transition points where continuity of shape and internal moment
must be enforced. The constrained point of entry into the workspace is designated as the arc-
length zero position.
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Curvature of Preset Tube Shapes
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Fig. 5.

Measured curvatures of the preset tube shapes expressed in a rotation-minimizing frame
(note that rotation-minimizing frames, i.e., «; . and «; _, are zero by definition).
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Fig. 6.
Manual actuation unit used to precisely position the bases of the tubes.
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Fig. 7.

Cannula in all 40 experimental configurations. One can span the entire workspace by rigidly
rotating this collection about the z-axis, which can be accomplished by rotating the base of
each tube by the same amount while keeping their angular differences the same. Thus, the
above illustrates a sampling of all unique configuration space locations from the model’s
point of view. For each configuration, backbone data were collected in the unloaded state
and with a force applied to the tip of the cannula.
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Fig. 8.

Experimental setup. Tube bases were translated and rotated precisely by manual actuators.
Three-dimensional backbone points were triangulated by identifying corresponding markers
along the cannula in stereo images. The vector of the applied force was measured by
triangulating positions along the wire that connects the cannula tip (via the pulley) to the
applied weight.
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Fig. 9.

Comparison of model prediction and experimentally determined backbone points for the
unloaded and loaded cases where actuators are set to D1 = 154.7 mm, D, = 30.7 mm, a1 =
135°, and ap = 0°. The direction of the 0.981 N applied force is shown by an arrow at the tip
of the deformed model prediction. These examples are representative of our dataset—their
tip errors (approximately 3 mm) are near the 2.91-mm mean tip error over all 80
experiments.

IEEE Trans Robot. Author manuscript; available in PMC 2011 May 10.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Rucker et al.

Fig. 10.
Active cannula under a distributed load represented by nuts equally spaced along its length.
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Fig. 11.
Comparison of loaded and unloaded model predictions with experimentally determined
backbone points for a distributed load. The tip error is 4.54 mm.
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Fig. 12.
Histogram of tip error for all 80 experiments using fitted model parameters. A total of 75%
of the errors are below 3 mm, and 85% are below 4 mm.
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Measured and Assumed Physical Quantities for Experimental Tubes

TABLE |

Tube 1 (Inner) | Tube 2 (Outer)
Inner Diameter (mm) 1.25 2.00
Outer Diameter (mm) 1.75 2.37
Straight Length (mm) 122.7 30.7
Curved Length (mm) 206.9 102.5
Young’s Modulus (E) (GPa) 60 60
Shear Modulus (J) (GPa) 23.1 23.1
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TABLE IV

Nominal and Calibrated Parameters

Nominal Value | Calibrated Value

Eqly (Nm?) 0.0204 0.0197
J,G; (Nm?) 0.0157 0.0123
E,l, (Nm2) 0.0458 0.0368
3,G, (Nm?2) 0.0352 0.0331
ox (mm) 0 -1.7
dy (mm) 0 -1.0
0z (mm) 0 0.3
da (deg) 0 -0.06
0p (deg) 0 0.67
dy (deg) 0 -058
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TABLE V

Tip Error Statistics—Nominal Parameters

Tip Error Statistic (mm) | 40 Unloaded Cases | 40 Loaded Cases | All Cases
mean 3.76 7.82 5.79
min 0.60 2.42 0.60
max 10.59 25.53 25.53
std. dev. 2.85 4.13 4.08
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TABLE VI

Tip Error Statistics—Calibrated Parameters

Tip Error Statistic (mm) | 40 Unloaded Cases | 40 Loaded Cases | All Cases
mean 2.89 2.92 291
min 0.62 0.91 0.62
max 8.49 15.20 15.20
std. dev. 2.19 2.52 2.34
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