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Abstract: With technological advances now allowing measurement of thousands of genes, proteins and metabolites, researchers are 
using this information to develop diagnostic and prognostic tests and discern the biological pathways underlying diseases. Often, an 
investigator’s objective is to develop a classification rule to predict group membership of unknown samples based on a small set of 
features and that could ultimately be used in a clinical setting. While common classification methods such as random forest and support 
vector machines are effective at separating groups, they do not directly translate into a clinically-applicable classification rule based on 
a small number of features.We present a simple feature selection and classification method for biomarker detection that is intuitively 
understandable and can be directly extended for application to a clinical setting. We first use a jackknife procedure to identify important 
features and then, for classification, we use voting classifiers which are simple and easy to implement. We compared our method to 
random forest and support vector machines using three benchmark cancer ‘omics datasets with different characteristics. We found our 
jackknife procedure and voting classifier to perform comparably to these two methods in terms of accuracy. Further, the jackknife proce-
dure yielded stable feature sets. Voting classifiers in combination with a robust feature selection method such as our jackknife procedure 
offer an effective, simple and intuitive approach to feature selection and classification with a clear extension to clinical applications.
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Introduction
With technological advances now allowing mea-
surement of thousands of genes, proteins and 
metabolites, researchers are using this information 
to develop diagnostic and prognostic tests and dis-
cern the biological pathways underlying diseases. 
Often, researchers initially seek to separate patients 
into biologically-relevant groups (e.g., cancer versus 
control) based on the full suite of gene expression, 
protein or metabolite profiles. Commonly though, the 
ultimate objective is to identify a small set of features 
contributing to this separation and to develop a classi-
fication rule to predict group membership of unknown 
samples (e.g., differentiate between patients with and 
without cancer or classify patients according to their 
likely response to a treatment).

A number of methods have been developed for 
feature selection and classification using gene expres-
sion, proteomics or metabolomics data. All methods 
share the two essential tasks of selecting features 
and constructing a classification rule, but differ in 
how these two tasks are accomplished. Methods can 
be categorized into three groups: filter, wrapper and 
embedded methods based on the relationship between 
the feature selection and classification tasks.1 In filter 
methods, feature selection and classification are con-
ducted independently. Typically, features are ranked 
based on their ability to discriminate between groups 
using a univariate statistic such as Wilcoxon, t-test, 
between-group to within-group sum of squares (BSS/
WSS), and an arbitrary number of the top-ranking 
features are then used in a classifier. For wrapper 
methods, the feature selection step occurs in concert 
with classifier selection; features are evaluated for a 
specific classifier and in the context of other features. 
Lastly, with embedded techniques feature selec-
tion is fully integrated with classifier construction. 
Numerous methods within each category have been 
developed; Saeys et al1 discuss the relative merits and 
weakness of these methods and their applications in 
bioinformatics.

Support vector machine (SVM)2 and random forest3 
are embedded methods that are two of the leading fea-
ture selection and classification methods commonly 
used in ‘omics research. Both methods have proved 
effective at separating groups using gene expres-
sion data4–6 and proteomics7–10 and recently SVM 
has been applied to metabolomics data.11 However, 

while these methods demonstrate that groups can be 
differentiated based on gene expression or protein 
profiles, their extension to clinical applications is not 
readily apparent. For clinical applications, classifiers 
need to consist of a small number of features and to 
use a simple, predetermined and validated rule for 
prediction. In random forest, the classification rule 
is developed by repeatedly growing decision trees 
with final sample classification based on the major-
ity vote of all trees. Although important features can 
be identified based on their relative contribution to 
classification accuracy, the method does not directly 
translate into a clinicially-meaningful classification 
rule. SVM are linear classifiers that seek to find the 
optimal (i.e., provides maximum margin) hyperplane 
separating groups using all measurements and thus 
does not accomplish the first task, that of feature 
selection. Several methods for identifying important 
features have been proposed6,12 but as with random 
forest, the method does not yield classification rules 
relevant to a clinical setting. Further, SVM results can 
be very sensitive to tuning parameter values.

Voting classifiers are a simple, easy to understand 
classification strategy. In an unweighted voting clas-
sifier, each feature in the classifier “votes” for an 
unknown sample’s group membership according to 
which group the sample’s feature value is closest. The 
majority vote wins. Weighted voting can be used to 
give greater weight to votes of features with stronger 
evidence for membership in one of the groups. Voting 
classifiers have been sporadically used and evaluated 
for application to gene expression data.13–16 Dudoit 
et al14 found Golub’s13 weighted voting classifier per-
formed similarly to or better than several discriminant 
analysis methods (Fisher linear, diagonal and linear) 
and classification and regression tree based predictors, 
but slightly poorer than diagonal linear discriminant 
analysis and k-nearest neighbor. The weighted voting 
classifier also performed similarly to SVM and regu-
larized least squares in Ancona et al15 study of gene 
expression from colon cancer tumors. These results 
suggest that voting classifiers can yield comparable 
results to other classifiers.

To be clinically-applicable, classification rules need 
to consist of a small number of features that will con-
sistently and accurately predict group membership. 
Identifying a set of discriminatory features that is 
stable with respect to the specific samples in the 
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training set is important for developing a broadly 
applicable classifier. In the traditional approach to 
classifier development, the data set is separated into a 
training set for classifier construction and a test set(s) 
for assessment of classifier performance. Using the 
training set, features are ranked according to some 
criterion and the top m features selected for inclusion 
in the classifier applied to the test set. By repeatedly 
separating the data into different training and test 
sets, Michelis et al17 showed that the features identi-
fied as predictors were unstable, varying considerably 
with the samples included in the training set. Baek 
et  al18 compared feature set stability and classifier 
performance when features were selected using the 
traditional approach versus a frequency approach. In 
a frequency approach, the training set is repeatedly 
separated into training and test sets; feature selec-
tion and classifier development is conducted for each 
training set. A final list of predictive features is gener-
ated based on the frequency occurrence of features 
in the classifiers across all training:test pairs. They 
showed that frequency methods for identifying pre-
dictive features generated more stable feature sets 
and yielded classifiers with accuracies comparable 
to those constructed with traditional feature selection 
approaches.

Here we present a simple feature selection and 
classification method for biomarker detection that 
is intuitively understandable and can be directly 
extended for application to a clinical setting. We 
first use a jackknife procedure to identify impor-
tant features based on a frequency approach. Then 
for classification, we use weighted or unweighted 
voting classifiers. We evaluate the performance of 
voting classifiers with varying numbers of features 
using leave-one-out cross validation (LOOCV) and 
multiple random validation (MRV). Three cancer 
‘omics datasets with different characteristics are 
used for comparative study. We show our approach 
achieves classification accuracy comparable to ran-
dom forest and SVM while yielding classifiers with 
clear clinical applicability.

Methods
Voting classifiers and feature selection
The simplest voting classifier is an unweighted classi-
fier in which each feature “votes” for the group mem-
bership of an unknown sample according to which 

group mean the sample is closest. Let xj(g) be the 
value of feature g in test sample j and consider two 
groups (0, 1). The vote of feature g for sample j is
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where µ1(g) and µ0(g) are the means of feature g 
in the training set for group 1 and 0, respectively. 
Combining the votes of all features in the classifier 
(G), the predicted group membership (Cj) of sample j 
is determined by
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The unweighted voting classifier gives “equal” 
weight to all votes with no consideration of 
differences in the strength of the evidence for a 
classification vote by each feature. Alternatively, 
various methods for weighting votes are available. 
MacDonald et  al16 weighted votes according to the 
deviation of each feature from the mean of the two 
classes, ie, W g x g g gj j( ) ( ) [ ( ) ( ) / ]= − +µ µ1 0 2 . This 
approach gives greater weight to features with values 
farther from the overall mean and thus more strongly 
suggesting membership in one group. However, if 
features in the classifier have substantially different 
average values, this weighting strategy will dispro-
portionately favor features with large average values. 
Golub et  al13 proposed weighting each feature’s 
vote according to the feature’s signal-to-noise ratio 
ag = [µ1(g) - µ2(g)]/[σ1(g) + σ2(g)]. In this approach, 
greater weight is given to features that best discrimi-
nate between the groups in the training set. While 
addressing differences in scale, this weighting strat-
egy does not exploit information in the deviation of 
the test sample’s value from the mean as MacDonald 
et al’s16 method does.

We propose a novel weighted voting classifier that 
accounts for differences among features in terms of 
variance and mean values and incorporates the mag-
nitude of a test sample’s deviation from the overall 
feature mean. In our weighting approach, the vote of 
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feature g is weighted according to the strength of the 
evidence this feature provides for the classification of 
sample j, specifically.
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where wj(g) is the weight of feature g for test set sam-
ple j, xj(g) is the value of feature g for test sample j, 
xi(g) is the value of feature g for training sample i, n 
is the number of samples in the training set, and µ1(g) 
and µ0(g) are the grand means of feature g in the train-
ing set for group 1 and 0, respectively. This approach 
weights a feature’s vote according to how far the test 
set sample’s value is from the grand mean of the train-
ing set like MacDonalds et al’s16 but scales it accord-
ing the feature’s variance to account for differences 
in magnitude of feature values. Test set samples are 
classified based on the sum of the weighted votes of 
each feature.

We used a jackknife procedure to select and rank 
features to include in the classifier (G = {1, 2, … , 
g, … , m}, where m,,n = number of all features in 
dataset). For this approach, data are separated into 
a training and test set. Using only the training set, 
each sample is sequentially removed and features are 
ranked based on the absolute value of the t-statistic 
calculated with the remaining samples. We then 
retained the top ranked 1% and 5% of features for 
each jackknife iteration. This step yielded a list of 
the most discriminating features for each jackknife 
iteration. Then the retained features were ranked 
according to their frequency occurrence across the 
jackknife iterations. Features with the same fre-
quency of occurrence were further ranked accord-
ing to the absolute value of their t-statistics. Using 
the frequency ranked list of features, we constructed 
voting classifiers with the top m most frequently 
occurring features (fixed up to m = 51 features in this 
study), adding features to the classifier in decreasing 
order of their frequency of occurrence and applied 
the classifier to the corresponding test set. In both 
the LOOCV and MRV procedures, we used this 
jackknife procedure to build and test classifiers; thus 

feature selection and classifier development occurred 
completely independently of the test set.

For clarification, our two-phase procedure is 
described by the following sequence:

Phase 1: Feature selection via jackknife and voting 
classifier construction

For each training:test set partition,

1.	 Select the m most frequently occurring features 
across the jackknife iterations using the training 
set for inclusion in the classifier (G), where G is 
the set of the m most frequently occurring features 
in descending order of frequency.

2.	 For each feature g selected in step 1, calculate the 
vote of feature g for test sample j using equation (1).

3.	 Repeat step 2 for all features in the classifier G.
4.	 Combine the votes of all features from step 3 and 

determine the group membership (Cj) of sample j 
using equation (2). For the weighted voting classi-
fier, the vote of feature g is weighted according to 
equation (3).

5.	 Repeat steps 2–4 for all test samples in the 
test set.

Phase 2: Cross-validation

6.	 Repeat for all training:test set partitions.
7.	 Calculate the misclassification error rate to assess 

performance of the classifier.

Data sets
We used the following three publicly available data 
sets to evaluate our method and compare it to random 
forest and support vector machines.

Leukemia data set
This data set from Golub et  al13 consists of gene 
expression levels for 3,051  genes from 38 patients, 
11 with acute myeloid leukemia and 27 with acute 
lymphoblastic leukemia. An independent validation 
set was not available for this data set. The classifica-
tion problem for this data set consists of distinguish-
ing patients with acute myeloid leukemia from those 
with acute lymphoblastic leukemia.

Lung cancer data set
This data set from Gordon et al19 consists of expres-
sion levels of 12,533  genes in 181 tissue samples 
from patients with malignant pleural mesothelioma 
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(31  samples) or adenocarcinoma (150  samples) 
of the lung. We randomly selected 32  samples, 
16 from each group to create a learning set. The 
remaining 149  samples were used as an indepen-
dent validation set. It was downloaded from http://
datam.i2r.a-star.edu.sg/datasets/krbd/LungCancer/
LungCancer-Harvard2.html.

Prostate cancer data set
Unlike the leukemia and lung cancer data sets, the 
prostate cancer data set is proteomics data set con-
sisting of surface-enhanced laser desorption ioniza-
tion time-of-flight (SELDI-TOF) mass spectrometry 
intensities of 15,154 proteins.20 Data are available 
for 322 patients (253 controls and 69 with pros-
tate cancer). We randomly selected 60 patients (30 
controls and 30 cancer patients) to create a learn-
ing set and an independent validation set with 262 
patients (223 controls and 39 cancer patients). The 
data were downloaded from http://home.ccr.cancer.
gov/ncifdaproteomics/ppatterns.asp.

Performance assessment
To evaluate the performance of the voting classifiers, 
we used LOOCV and MRV. For MRV, we randomly 
partitioned each data set into training and test sets at a 
fixed ratio of 60:40 while maintaining the group dis-
tribution of the full data set. We generated 1,000 of 
these training:test set pairs. For each training:test set 
pair, we conducted feature selection and constructed 
classifiers using the training set and applied the clas-
sifier to the corresponding test set.

We compared the voting classifiers to random 
forest and support vector machines. The random forest 
procedure was implemented using the randomForest 
package version 4.5-3421 for R.22 Default values of 
the randomForest function were used. Support vec-
tor machines were generated using the svm function 
in the package e1071.23 A radial kernel was assumed 
and 10-fold cross validation using only the training 
set was used to tune gamma and cost parameters 
for each training:test set pair. Gamma values rang-
ing from 0.0001 to 2 and cost values of 1 to 20 were 
evaluated. As with the voting classifiers, random for-
est and SVM classifiers were developed using the 
training set of each training:test set pair within the 
LOOCV and MRV strategies and using features iden-
tified through the jackknife procedure rather than all 

features, ie, for a training:test set pair, all features that 
occurred in the top 1% or 5% of the features across 
the jackknife iterations were used in developing the 
classifiers.

Application to independent 
validation sets
The lung and prostate cancer data sets were large 
enough to create independent validation sets. For 
these data sets, we used the training sets to develop 
classifiers to apply to these sets. To identify fea-
tures to include in the voting classifiers, we identi-
fied the m most frequently occurring features for each 
training:test set pair, with m equal to odd numbers 
from three to 51. For each m number of features, we 
ranked the features according to their frequency of 
occurrence across all the jackknife samples. Voting 
classifiers with three to 51 features were constructed 
using all of the training set samples and applied to 
the independent validation sets. Random forest and 
SVM classifiers were constructed using any feature 
that occurred at least once in the feature sets iden-
tified through the jackknife strategy procedure. We 
constructed classifiers using the top 1% and 5% fea-
tures identified through the jackknife procedure for 
both validation strategies (LOOCV and MRV).

Results
Performance evaluation and comparison 
with random forest and support vector 
machines
We evaluated our method and compared it to random 
forest and SVM through application to three well-
studied data sets from cancer studies (Table 1). Two of 
these data sets (leukemia13 and lung cancer)19 consist 
of gene expression data; the third (prostate cancer)20 
is proteomics data. We evaluated accuracy of the vot-
ing classifiers for each data set using the top 1% and 
5% of features of the jackknife training sets for two 
validation strategies—LOOCV, and MRV using 1,000 
randomly generated training:test set pairs.

Accuracy of the two voting classifiers increased 
with the number of features included in the classi-
fier (Figs. 1 and 2). However, the largest improvem
ents in accuracy occurred as the number of features 
increased from 3 to about 11 after which further 
increases were small. In fact, accuracies within 5% of 
the maximum accuracy could be achieved with fewer 
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than 13 features. The feature selection step influenced 
accuracy of the voting classifiers more strongly than 
the number of features included in the classifier. For 
both weighted and unweighted voting classifiers, 
accuracy was usually higher when the classifier was 
constructed based on the top 1% of features rather 
than the top 5% (Figs. 1 and 2), suggesting that a 
classifier with a small number of features could be 
developed. The weighted voting classifier generally 
yielded higher accuracy than the unweighted voting 
classifier; however, the differences tended to be small, 
within a few percentage points (Figs. 1 and 2).

The voting classifiers performed similarly to ran-
dom forest and SVM but classifier performance var-
ied considerably for the three data sets evaluated 
(Fig.  3). All classifier methods performed well for 
the lung cancer data set with mean accuracies greater 
than 95%. Both the weighted and unweighted voting 
classifiers achieved greater than 90% accuracy with 
only three features and greater than 98% accuracy 
with only nine features. SVM yielded a relatively low 

accuracy based on the top 5% of features for the lung 
cancer data set (84.6%); accuracy potentially could 
be improved with more extensive parameter tuning. 
Classifier accuracy also was high for the leukemia data 
set with all classifiers achieving over 95% accuracy. 
The voting classifiers performed slightly better than 
random forest for this data set; SVM had the high-
est accuracy when the top 5% of features were used 
to construct the classifier. In contrast, for the pros-
tate cancer data set, classifier accuracy was consider-
ably lower and more variable than for the other data 
sets. Accuracy ranged from a low of 56.5% for SVM 
under MRV using the top 5% of features to a high 
of 83.3% for SVM using the top 1% in LOOCV. In 
general, though, random forest tended to produce the 
highest accuracies with the voting classifiers yielding 
intermediate performances.

The poor performance of all classifiers for the 
prostate data set suggested greater heterogeneity in 
one of the groups. Control samples in this data set 
consisted of patients with normal prostates as well as 

Table 1. Characteristics of data sets.

Data set Ref Data type # features Training set Independent  
validation set# cases # control

Leukemia 13 Gene expression 3,051 11a 27 No
Lung cancer 19 Gene expression 12,533 16 16 149 (15 controls,  

134 cases)
Prostate  
cancer

20 Proteomics 15,154 30 30 262 (223 controls,  
39 cases

Note: aPatients with acute myeloid leukemia were considered “cases” and those with acute lymphoblastic leukemia were used as “controls”.
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Figure 1. Multiple random validation results for voting classifiers. Mean accuracy for voting classifiers (unweighted and weighted) with varying numbers of 
features included in the classifier based on 1,000 random training:test set partitions of two gene expression data sets (leukemia, lung cancer) and a pro-
teomics data set (prostate cancer). Features to include in the classifiers were identified through a jackknife procedure through which features were ranked 
according to their frequency of occurrence in the top 1% or 5% most significant features based on t-statistics across all jackknife samples.
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patients with benign prostate hyperplasia (BPH). In 
Petricoin et al’s original analysis,20 26% of the men 
with BPH were classified as having cancer. They 
noted that some of these apparent misclassifications 
actually could be correct because over 20% of sub-
jects identified as not having cancer based on an 

initial biopsy were later determined to have cancer. 
Thus, the poorer classification performance for the 
prostate data set could result from BPH patients 
having incorrectly been considered controls which 
led to increased within-group variation relative to 
between-groups variation.
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Figure 2. Leave-one-out cross validation (LOOCV) results for voting classifiers. Accuracy for voting classifiers (unweighted and weighted) with varying 
numbers of features included in the classifier based on LOOCV of two gene expression data sets (leukemia, lung cancer) and a proteomics data set 
(prostate cancer). Features to include in the classifiers were identified through a jackknife procedure through which features were ranked according to their 
frequency of occurrence in the top 1% or 5% most significant features based on t-statistics across all jackknife samples.
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Figure 3. Comparison of voting classifiers, random forest and SVM. Accuracy (mean ± SE) for unweighted (Unwgt) and weighted (Wgt) voting classifiers, 
random forest (RF) and support vector machines (SVM) based on 1,000 random training:test set partitions of two gene expression data sets (leukemia, 
lung cancer) and a proteomics data set (prostate cancer). Features to include in the classifiers were identified through a jackknife procedure through 
which features were ranked according to their frequency of occurrence in the top 1% or 5% most significant features based on t-statistics across all 
jackknife samples. Horizontal bars show LOOCV results. Results presented for weighted and unweighted voting classifiers are based on the number of 
features yielding the highest mean accuracy. For the leukemia data set the 49 or 51 features yielded the highest accuracy for the voting classifiers in the 
MRV procedure while for LOOCV, the best numbers of features for the unweighted voting classifier were 17 and 11 using the top 1% and 5% of features, 
respectively and were 13 and 51, respectively for the weighted voting classifier. For the lung cancer data set, 3 and 5 features were best with LOOCV for 
the weighted and unweighted classifier. Under MRV, 51 features yielded the highest accuracy for the weighted voting classifier while 19 or 39 features 
needed for the unweighted voting classifier based on the top 1% and 5% of features, respectively. With the prostate cancer data set, the unweighted voting 
classifier used 31 and 49 features with MRV and 35 and 17 features with LOOCV based on the top 1% and 5% of features, respectively. For the weighted 
voting classifier, these numbers were 49, 51, 31 and 3, respectively. The number of features used in random forest and SVM varied across the training:test 
set partitions. Depending on the validation strategy and percentage of features retained in the jackknife procedure, the number of features ranged from 67 
to 377 for the leukemia data set, from 233 to 2,692 for the prostate cancer set and from 247 to 1,498 for the lung cancer data set.
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features could easily form the basis of a diagnostic 
test for clinical application consisting of the mean 
and variances of these features in a large sample of 
patients with adenocarcinoma and mesothelioma.

Classifier performance was quite variable when 
applied to the prostate cancer validation data set. 
Accuracy was generally highest for the random forest 
classifier (Table 4). When features to use in the clas-
sifier were derived from the LOOCV procedure, the 
voting classifiers had relatively low accuracy (68.5% 
to 76.5%) while SVM and random forest had accura-
cies greater than 90%. Accuracy of the voting classi-
fiers improved when features were derived through 
MRV and were within 5% of random forest and 
SVM. Sensitivity and positive predictive value were 
highest with random forest and similar between the 
voting classifiers and SVM. As seen in the LOOCV 
and MRV analyses, the performance of all classifiers 
increased when BPH samples were excluded from 
the control group. When applied to the independent 
validation set, the weighted voting classifier achieved 
accuracies of 93% to 99%; random forest and SVM 
were similar with accuracies of 97% to 99% and 89% 
to 99%, respectively.

Data set variability and classifier 
performance
Classifier performance varied considerably among 
the three data sets. Accuracy was high for the leuke-
mia and lung cancer data sets but lower for the pros-
tate cancer data set. These differences likely reflect 

Table 2. Accuracy of classifiers applied to prostate cancer data set excluding benign prostate hyperplasia samples.

Classifier
Unweighted Weighted Random forest SVM

LOOCV
  Top 1% 88.3a 93.3c 93.3h 95.0h

  Top 5% 98.3b 96.7a 91.7i 95.0i

60:40 partitions
  Top 1% 84.8 ± 10.2d 87.5 ± 8.6f 89.6 ± 7.3j 91.7 ± 6.8j

  Top 5% 76.2 ± 11.4e 81.3 ± 10.3g 89.5 ± 7.3k 91.5 ± 6.4k

Notes: Accuracy of voting classifiers (unweighted and weighted), random forest and SVM applied to the prostate cancer data set excluding benign 
prostate hyperplasia samples from the control group. Features to include in the classifiers were derived using the top 1% or 5% of features based on 
t-statistics through a jackknife procedure using training sets in leave-one-out cross validation (LOOCV) or multiple random validation (60:40 partitions). 
Mean ± SD accuracy reported for 1,000 60:40 random partitions. aHighest accuracy achieved with 7 features in classifier; bHighest accuracy achieved 
with 9 features in classifier; cHighest accuracy achieved with 13 features in classifier; dHighest accuracy achieved with 21 features in classifier; eHighest 
accuracy achieved with 47 features in classifier; fHighest accuracy achieved with 23 features in classifier, gHighest accuracy achieved with 51 features 
in classifier. The number of features used in random forest and SVM varied across the training:test set partitions. The ranges were: h265–340 features; 
i1,194–1,268 features; j212–533; k1,412–1,970 features.

We further analyzed the prostate cancer data set 
excluding BPH patients from the control group. The 
performance of all classifiers increased markedly 
with exclusion of BPH patients. For the LOOCV and 
MRV procedures, random forest and SVM achieved 
accuracies of 90% to 95% and the accuracy of the 
voting classifiers ranged from 76% to 98%. These 
values were 10% to 20% greater than with inclusion 
of the BPH samples (Table 2).

Independent validation set evaluation
In cases where data sets are too small, overfitting can 
be a severe issue when assessing a large number of 
features. Therefore, it is very important to evaluate the 
accuracy of classifier performance with an independent 
validation set of samples that are not part of the devel-
opment of a classifier. Hence, we constructed voting, 
random forest and SVM classifiers using only the train-
ing sets and applied them to independent validation sets 
from the lung cancer and prostate cancer data sets.

All classifiers had very high accuracies when 
applied to the lung cancer data set (Table 3). Sensitivity 
and the positive predictive value of the classifiers also 
were very high, 99% to 100%. The one exception 
was SVM with features selected through MRV which 
had considerably lower accuracies and sensitivities. 
The weighted voting classifier had 100% accuracy 
using 49 features. However, with just three features 
(37205_at, 38482_at and 32046_at), the unweighted 
voting classifiers had greater than 90% accuracy and 
the weighted more than 93% accuracy. These three 
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Table 3. Performance of classifiers applied to independent validation set of lung cancer data set.

Unweighted Weighted Random forest SVM
Accuracy
LOOCV
  Top 1% 99.3a 100b 98.7e 100e

  Top 5% 99.3a 100b 98.7f 100f

60:40 partitions
  Top 1% 98.7c 100d 99.3g 94.6g

  Top 5% 98.7c 100d 100h 84.6h

Sensitivity
LOOCV
  Top 1% 100 100 99.2 100
  Top 5% 100 100 99.2 100
60:40 partitions
  Top 1% 99.2 100 100 94.0
  Top 5% 99.2 100 100 82.8
Positive predictive value
LOOCV
  Top 1% 99.3 100 99.2 100
  Top 5% 99.3 100 99.2 100
60:40 partitions
  Top 1% 99.2 100 99.3 100
  Top 5% 99.2 100 100 100
Notes: Accuracy, sensitivity, and positive predictive value of voting classifiers (unweighted and weighted), random forest and SVM applied to independent 
data sets from the lung cancer data set. Features to include in the classifiers were derived using the top 1% or 5% of features based on t-statistics 
through a jackknife procedure using training sets in leave-one-out cross validation (LOOCV) or multiple random validation (60:40 partitions). aHighest 
accuracy achieved with 37 features in classifier; bHighest accuracy achieved with 23 features in classifier; cHighest accuracy achieved with 15 features in 
classifier; dHighest accuracy achieved with 49 features in classifier. The number of features used in developing SVM and random forest classifiers were: 
e452 features; f1,791 features; g4,172 features; h9,628 features.

differences in the “signal-to-noise” ratio of features 
in these data sets. We used BSS/WSS to characterize 
the “signal-to-noise” ratio of each data set and investi-
gated classifier performance in relation to BSS/WSS. 
First, we calculated BSS/WSS for each feature using 
all samples of the leukemia data set, and all learning 
set samples for the prostate and lung cancer data sets. 
Classifier accuracy was highest for the lung cancer data 
set and this data had the feature with the highest BSS/
WSS of 3.50. Classifier accuracy was also high for 
the leukemia data set although slightly lower than for 
the lung cancer data set and accordingly the maximum 
BSS/WSS of features in this data set was smaller at 
2.92. Finally, the maximum BSS/WSS for any feature 
in the prostate cancer data set was less than 1 (0.98) 
and classifier accuracy was lowest for this data set.

The “signal-to-noise” ratio of features in the clas-
sifier can also explain the better performance of clas-
sifiers constructed with the top 1% of the features as 
compared to the top 5%. For the prostate cancer and 
leukemia training sets, the mean BSS/WSS of features 

in the voting classifiers was always higher when the 
features were derived based on the top 1% than the 
top 5% (Fig. 4). By considering the top 5% of fea-
tures for inclusion in the classifier, more noise was 
introduced and the predictive capability of the clas-
sifiers was reduced. SVM and random forest showed 
this effect as well (Fig. 3).

We further evaluated the relationship between 
classifier performance and the BSS/WSS of features 
in the classifier using the weighted voting classifier 
with just the first three features in order of frequency 
of occurrence in MRV repetitions. Three features 
accounted for much of the classifier’s performance 
particularly for the lung cancer and leukemia data 
sets. Accuracy generally increased as the mean BSS/
WSS of the three features included in the classifier 
increased in the training and test sets (Fig.  5). The 
lung cancer and leukemia data sets had the highest 
mean BSS/WSS values and also the highest accura-
cies while the lowest BSS/WSS values and accuracies 
occurred for the prostate cancer data set. Considering 
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the test sets, when the mean BSS/WSS of these three 
features was greater than 1, the mean accuracy of the 
weighted vote classifier was greater than 80% for all 
data sets (Leukemia: 89%, Lung Cancer: 95%, Pros-
tate Cancer: 81%) and was considerably lower when 
the mean BSS/WSS was less than 1 (Leukemia: 82%, 
Lung Cancer: 80%, Prostate Cancer: 66%).

Interestingly, accuracy was less than 70% for some 
partitions of the leukemia despite relatively high mean 
BSS/WSS values (.3) in the test set. These partitions 
tended to have one feature with a very high BSS/
WSS (.10) resulting in a large mean BSS/WSS even 
though the other features had low values. Further, 
for these partitions, the mean values of the features 
in the test set for each group, particularly those with 
low BSS/WSS values, tended to be intermediate to 
those in the training set, resulting in ambiguous clas-
sification for some samples. Thus, even though the 
test set features of some partitions had a high mean 
BSS/WSS, the classification rule developed from the 
training set was not optimal. Overall, the results show 

Table 4. Performance of classifiers applied to independent validation set of prostate cancer data set.

Unweighted Weighted Random forest SVM
Accuracy
LOOCV
  Top 1% 68.5a 76.5b 92.7g 93.5g

  Top 5% 74.5c 81.9c 91.6h 92.4h

60:40 Partitions
  Top 1% 86.3d 88.2c 91.6i 89.7i

  Top 5% 86.7e 89.9f 90.5j 86.6j

Sensitivity
LOOCV
  Top 1% 74.4 76.9 87.2 84.6
  Top 5% 89.7 79.5 87.2 74.4
60:40 Partitions
  Top 1% 74.4 76.9 82.0 65.0
  Top 5% 69.2 74.4 84.6 64.1
Positive predictive value
LOOCV
  Top 1% 43.9 53.6 70.8 75.0
  Top 5% 50.7 62.0 66.7 74.4
60:40 Partitions
  Top 1% 52.7 57.7 68.1 66.7
  Top 5% 54 61.7 63.5 54.3
Notes: Accuracy, sensitivity, and positive predictive value of voting classifiers (unweighted and weighted), random forest and SVM applied to independent 
data sets from the prostate cancer data set. Features to include in the classifiers were derived using the top 1% or 5% of features based on t-statistics 
through a jackknife procedure using training sets in leave-one-out cross validation (LOOCV) or multiple random validation (60:40 partitions). aHighest 
accuracy achieved with 37 features in classifier; bHighest accuracy achieved with 43 features in classifier; cHighest accuracy achieved with 45 features in 
classifier, dHighest accuracy achieved with 49 features in classifier; eHighest accuracy achieved with 47 features in classifier; fHighest accuracy achieved 
with 27 features in classifier. The number of features used in developing SVM and random forest classifiers were: g685 features; h2,553 features; i9,890 
features; j14,843 features.
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Figure 4. Mean BSS/WSS of features in voting classifiers. Mean BSS/
WSS of features included in the voting classifiers constructed from vary-
ing numbers of features for the leukemia and prostate cancer data sets. 
Mean values were calculated using the training sets from 1,000 random 
training: test set partitions. Features to include in the classifiers were iden-
tified through a jackknife procedure through which features were ranked 
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significant features based on t-statistics across all jackknife samples.
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samples. Mean BSS/WSS was calculated separately using the training and test set portions of each random partition.

that classification accuracy increases as the “signal-
to-noise” ratio increases but even for data sets with 
a strong signal, some partitions of the data can yield 
low classification accuracies because of random vari-
ation in the training and test sets.

Feature frequency
An underlying goal of feature selection and classifi-
cation methods is to identify a small, but sufficient, 
number of features that provide good classification 
with high sensitivity and specificity. Our jackknife 
procedure in combination with a validation strat-
egy naturally yields a ranked list of discriminatory 
features. For each training:test set pair, features are 
ranked by their frequency of occurrence across the 
jackknife samples and the m most frequently occur-
ring features used to build the classifier for that 
training:test set pair. Features used in the classifier 
for each training:test set pair can be pooled across 
all training:test set pairs and features ranked accord-
ing to how frequently they occurred in classifiers. 
The features that occur most frequently will be the 
most stable and consistent features for discriminating 
between groups.

We compared the frequency of occurrence of 
features in the top 1% and 5% of features for the 

LOOCV and MRV validation strategies. LOOCV 
did not provide as clear of feature ranking as MRV. 
With LOOCV, many features occurred in the top per-
centages for all training:test set pairs, and thus were 
equally ranked in terms of frequency of occurrence. 
In contrast, few features occurred in the top percent-
ages for all 1,000 training:test set pairs with MRV and 
thus, this procedure provided clearer rankings. Using 
the more liberal threshold of the top 5% resulted in 
more features occurring among the top candidates. 
As a result, more features were represented in the list 
of features compiled across the 1,000 training:test set 
pairs and their frequencies were lower. For example, 
for the leukemia data set, 31 features occurred in the 
top 5% of all 1,000 training:test set pairs while only 
two occurred in the top 1% of every pair.

The frequency distributions of the features in the 
voting classifiers generated in the MRV strategy was 
indicative of the performance of the classifier for 
each data set. Considering the voting classifiers with 
51 features, we tallied the frequency that each feature 
occurred in the classifier across the 1,000 training:test 
set pairs. All classifiers performed well for the lung 
cancer data set; the frequency distribution for this data 
set showed a small number of features occurring in 
all random partitions (Fig. 6). The leukemia data set 
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Figure 6. Frequency of occurrence of features in voting classifiers. Frequency of occurrence of features used in voting classifiers containing 51 features 
across 1,000 random training: test set partitions of two gene expression data sets (leukemia, lung cancer) and a proteomics data set (prostate cancer). 
Features to include in the classifiers were identified through a jackknife procedure through which features were ranked according to their frequency of 
occurrence in the top 1% or 5% most significant features based on t-statistics across all jackknife samples.

had the next best classification accuracy. With the top 
1% of features, this data set showed a small number 
of features occurring in every partition like the lung 
cancer data set but with using the top 5% of features, 
none of the features in the leukemia data set occurred 

in all partitions. In fact, the most frequently occur-
ring feature occurred in only 600 of the training:test 
set pairs. Accordingly, classifier accuracy for the leu-
kemia data set was lower using the top 5% features 
as compared to the top 1%. Finally, the prostate data 
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set had the poorest classification accuracy and the 
frequency distribution of features differed substan-
tially from the lung cancer and leukemia data sets. 
None of the features occurred in all random partitions 
and with a 5% threshold, the most frequently occur-
ring features occurred in the classifier in only about 
300 of the training:test set partitions. The best perfor-
mance for the voting classifiers occurred when there 
were a small number of features that occurred in a 
large number of the classifiers constructed for each of 
the training:test set pairs.

The instability of the most frequently occurring 
features for the prostate cancer data set could result in 
part from the BPH patients. While each training:test 
set partition had the same number of control and 
cancer patients, the relative number of BPH patients 
varied among partitions. Because of the variability 
within this group, the top features would be expected 
to be more variable across partitions than for the other 
data sets.

Discussion
In this study, we showed that voting classifiers per-
formed comparably to random forest and SVM and in 
some cases performed better. For the three data sets 
we investigated, the voting classifier method yielded a 
small number of features that were similarly effective 
at classifying test set samples as random forest and 
SVM using a larger number of features. In addition to 
using a small set of features, voting classifiers offer 
some other distinct advantages. First, they accom-
plish the two essential tasks of selecting a small num-
ber of features and constructing a classification rule. 
Second, they are simple and intuitive, and hence they 
are easily adaptable by the clinical community. Third, 
there is a clear link between development of a voting 
classifier and potential application as a clinical test. In 
contrast, clinicians may not understand random forest 
and SVM such that the significance and applicability 
of results based on these methods may not be apparent. 
Further, demonstrating that these methods can accu-
rately separate groups in an experimental setting does 
not clearly translate into a diagnostic test.

We used a frequency approach to identify impor-
tant, discriminatory features at two levels. First, for 
each training:test set pair, we used a jackknife pro-
cedure to identify features to include in the classi-
fier according to their frequency of occurrence. For 

the prostate and lung cancer data sets which had an 
independent validation set, we then selected features 
that occurred most frequently in classifiers to con-
struct the final classifier applied to the independent 
validation set. The results from MRV were better for 
this step than LOOCV because the feature rankings 
were clearer under MRV. With LOOCV many features 
occurred in all classifiers and hence many features had 
the same frequency rank. In contrast, for MRV few 
features occurred in the classifiers of every random 
partition, resulting in a clearer ranking of features.

Our approach for feature selection differs from a 
standard LOOCV strategy in that we use a jackknife 
at each step in the LOOCV to build and test a clas-
sifier such that feature selection occurred completely 
independently of the test set. Baek et  al18 followed 
a similar strategy but used V—fold cross validation 
rather than a jackknife with the training set to iden-
tify important features based on their frequency of 
occurrence. Efron24 showed that V—fold cross vali-
dation has larger variability as compared to bootstrap 
methods, especially when a training set is very small. 
Because the jackknife is an approximation to the 
bootstrap, we elected to use a jackknife procedure in 
an attempt to identify stable feature sets.

In the jackknife procedure, we ranked features 
according the absolute value of t-statistics and 
retained the top 1% and 5% of features. Many other 
ranking methods have been used including BSS/
WSS, Wilcoxon test, and correlation and our method 
easily adapts to other measures. Popovici et  al25 
compared five features selection methods including 
t statistics, absolute difference of means and BSS/
WSS and showed that classifier performance was 
similar for all feature-ranking methods. Thus, our 
feature selection and voting classifier method would 
be expected to perform similarly with other ranking 
methods. Of significance in our study was the per-
formance differences between classifiers developed 
based on the top 1% and 5% of features. All classifi-
ers (voting, random forest and SVM) generally had 
higher accuracy when they were constructed using 
the top 1% of the features as compared to those 
using the top 5%. Baker and Kramer26  stated that 
the inclusion of additional features can worsen clas-
sifier performance if they are not predictive of the 
outcome. When the top 5% were used, more fea-
tures were considered for inclusion in the classifier 
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and the additional features were not as predictive 
of the outcome as features in the top 1% and thus 
tended to reduce accuracy. This effect was evident 
in the lower BSS/WSS values of features used in 
the voting classifiers identified based on the top 5% 
versus the top 1%. Thus, the criterion selected for 
determining which features to evaluate for inclu-
sion in a classifier (eg, top 1% versus top 5% in our 
study) can affect identification of key features and 
classifier performance and should be carefully con-
sidered in classifier development.

To estimate the prediction error rate of a classifier, 
we used two validation strategies. Cross-validation 
systematically splits the given samples into a training 
set and a test set. The test set is the set of future sam-
ples for which class labels are to be determined. It is 
set aside until a specified classifier has been developed 
using only the training set. The process is repeated a 
number of times and the performance scores are aver-
aged over all splits. It cross-validates all steps of fea-
ture selection and classifier construction in estimating 
the misclassification error. However, choosing what 
fraction of the data should be used for training and 
testing is still an open problem. Many researchers 
resort to using LOOCV procedure, in which the test 
set has only one sample and leave-one-out is carried 
out outside the feature selection process to estimate the 
performance of the classifier, even though it is known 
to give overly optimistic results, particularly when 
data are not identically distributed samples from the 
“true” distribution. Also, Michelis et  al17  suggested 
that selection bias of training set for feature selection 
can be problematic. Their work demonstrated that the 
feature selection strongly depended on the selection 
of samples in the training set and every training set 
could lead to a totally different set of features. Hence, 
we also used 60:40 MRV partitions, not only to esti-
mate the accuracy of a classifier but also to assess the 
“stability” of feature selection across the various ran-
dom splits. In this study, we observed that LOOCV 
gave more optimistic results compared to MRV.

The proteomics data of prostate cancer patients 
was noisier than the gene expression data from leuke-
mia and lung cancer patients as evidence by the lower 
BSS/WSS values and lower frequencies at which 
features occurred in the classifiers of the random 
partitions. For all classifiers, classification accuracy 

was lower for this data set than the gene expression 
data sets. For “noisy” data sets, studies with large 
sample sizes and independent validation sets will be 
critical to developing clinically useful tests.

Three benchmark ‘omics datasets with differ-
ent characteristic were used for comparative study. 
Our empirical comparison of the feature selection 
methods demonstrated that none of the classifiers 
uniformly performed best for all data sets. Random 
forest tended to perform well for all data sets but did 
not yield the highest accuracy in all cases. Results for 
SVM were more variable and suggested its perfor-
mance was quite sensitive to the tuning parameters. 
Its poor performances in some of our applications 
could potentially be improved with more extensive 
investigations into the best tuning parameters. The 
voting classifier performed comparably to these 
two methods and was particularly effective when 
applied to the leukemia and lung cancer data sets 
that had genes with strong signals. Thus, voting clas-
sifiers in combination with a robust feature selec-
tion method such as our jackknife procedure offer 
a simple and intuitive approach to feature selection 
and classification with a clear extension to clinical 
applications.
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