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Abstract

Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment;
astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging
device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength
bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 mg per g fish.
A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a
RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The
acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as
a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets.
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Introduction

Color is a highly important quality parameter in relation to the

commercial production of salmonid fishes. The consumers

associate increased intensity of red in salmonid fishes with superior

quality, being fresher and having a better flavor [1,2]. As the

change in surface color is the first quality parameter evaluated by

the consumer, it is of great economic importance that the color of

the salmonid fishes meets consumer preferences. The color of

salmonid fishes is caused by deposition of cartenoid pigments in

the muscular tissue. Besides being essential for reproduction,

proper growth and survival of the fish, carotenoids, primarily

astaxanthin and castaxanthin, are also important for the red color

in salmonids. As fish cannot synthesize carotenoids de novo their

intake rely on the content of cartenoids in the feed. Wild salmonids

obtain the cartonids from intake of e.g. crusteceans, krill and other

sources rich in carotenids whereas carotenoids primarily astax-

anthin is added to the feed of farmed salmonids. The primary use

of astaxanthin within aquaculture is as a feed additive to ensure

that farmed salmon and trout achieve a coloration that comply

with the consumers preferences.

Astaxanthin is the single most expensive constituent in salmonid

fish feed. Even though astaxanthin constitutes less than 20% of the

total fish feed costs, control and optimization of the concentration

of astaxanthin from feed to fish is of paramount importance for a

cost effective salmonid fish production. Traditionally, astaxanthin

content in fish is determined by spectrophotometric analysis or

high-performance liquid chromatography (HPLC) analysis. In

both methods astaxanthin is extracted from the minced sample

into a suitable solvent such as acetone or hexane before further

analysis. U.S. Food and Drug Administration (21 CFR 73.185)

and Canadian Food Inspection Agency (Registration no. 990535)

have accepted the method based on HPLC analysis for

determining astaxanthin content of a product. Both methods have

several drawbacks. First, the method based on spectrophotometric

analysis overestimate the astaxanthin as other compounds such as

lutein, canthaxanthin and astacene are falsely included. This

means they absorb light at the same wavelength as astaxanthin

and thereby increase the signal. Second, both methods are time

consuming, labor demanding and sample destructive.

For quality assessment of salmonid color there are two widely

accepted color standards in the salmonid industry, which are used

by quality inspectors in their visual assessment of fillets, the

SalmoFanTM card and the SalmoCardTM (Hoffmann-La Roche

Basel, Switzerland). Both methods enable an inspector to score the

color of a salmonid fillet into one of 15 red color categories ranging

from 20 (pale red) to 34 (dark red). This method has the advantage

of being a very straight forward, intuitive and cheap. It is easily

applicable and does require intensive expert training. In spite of

these advantages there may be reasons to inspect the color quality of

fish fillets using other methods. A human operator is required in

order to use the SalmoFan/SalmoCard, which means such a color-

evaluation will be subject to operator bias and fatigue while also

being time-consuming, costly and relatively labor-expensive.

Other instruments previously used for color evaluation are

tricolorimeters, spectrophotometers and standard trichromatic

charged coupled device cameras. These devices probe the visual

spectrum in order to in some sense imitate human visual

perception and objectively quantify colors. A Colorimeter (e.g.

Minolta Chroma Meter II-CR200, Hunterlab Miniscan) makes

use of a stable light source such as Xenon to illuminate a small

surface patch of roughly 1cm2, and measures the reflection of the
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surface in this area. The reflection is then integrated according to

the CIE-XYZ [3] tristimulus curves and transformed to the

uniform L*, a*, b* color space [3]. The L*, a*, b* color space is a

three dimensional color space, where L* represents the lightness of

the color (100 being diffuse white), a* the mix of red and green and

b* the mix of yellow and blue. Examples of studies where a

colorimeter was used in conjunction with studies of fish color

include [4–6] where the latter established that the intensity of

redness (a*) increases with the carotenoid content in the raw flesh

of Atlantic salmon, while lightness (L*) decreases and yellowness

(b*) remains unaffected. While colorimeters acquire very accurate

colors, they do not contain any spatial information, and therefore

no information on surface texture and structure/shape. On the

other hand chromatic images measure a larger spatial area of

reflected photons and thereby provide color as well as spatial

information. A review of vision technology and color cameras in

the food industry may be found in [7]. The actual color evaluation

ability of a trichromatic camera in regard to fish quality inspection

was investigated in [8], where comparisons between trichromatic

camera images and SalmoFan evaluations were performed on

fillets of the Atlantic salmon (Salmo salar). The comparison was

based on measurements from five different locations, more or less

uniformly spatially distributed across the fillet surface. Here the

authors found that there was no significant statistical difference

between SalmoFan and camera-based evaluations. Similar

experiments were performed in [9], where the authors found a

correlation of 0.95 between sensory panel SalmoFan evaluations

and computer vision based color evaluations. Current state-of-the

art vision systems for quality and process control in the fish

processing industries are typically based on traditional trichro-

matic (Red Green Blue) imaging. In this study we are interested in

going one step further, by quantifying the astaxanthin content and

thereby indirectly also the color of the fillet. The relative presence

of some wavelengths and absence of others is a specific

characteristic of many material properties. Consequently the

adaption of multispectral imaging technology can reveal relevant

information and measurement of more biological quality param-

eters such as fat, astaxanthin and cartilage content, simultaneously.

A multispectral image may also be referred to as a surface

chemistry map [10] where a set of neighboring spectra are

recorded, revealing information about the surface chemistry to a

larger degree than in a trichromatic image. Thus, multispectral

imaging is well suited for applications where it is crucial to detect

small differences in texture, color and surface chemistry [11–15].

It is expected that vision systems based on multispectral imaging

will be employed to a much larger extent in the near future [16–

20]. Aquaculture and the fish processing industries are areas where

the added information in a multispectral image can be exploited to

improve the general quality and/or reduce the production cost. In

this study we investigate the use of multispectral images for

estimating natural astaxanthin concentration in rainbow trout

fillets. In order to justify the use of multispectral images we

calibrate and compare multivariate models for multispectral as

well as traditional color images of trout fillets to predict

astaxanthin content. Furthermore we illustrate shortly how the

calibrated model can be used to predict all spectra in an image in a

pixel-wise manner, in order to visualize the predicted spatial

astaxanthin distribution within the fish fillet.

Materials and Methods

Sample preparation
The Rainbow trout (Oncorhynchus mykiss) were from the organic

farm at Bisserup Havbrug and harvested in November 2009. The

fish were fed with commercial organic trout feed of approximately

1.5% of body weight per day throughout the entire rearing in

accordance with commercial practise. According to legislation, the

fish feed were coated with natural astaxanthin [21]. The fish were

slaughtered at 2 years of age, with an average weight of 1.1 kg.

The fish were filleted and trimmed by hand at Bisserup Havbrug

the day after slaughtering and transported to the Technical

University of Denmark on ice at the same day. The fillets were

stored overnight on ice in a 20C chill room. The fillets were then

subsequently cut into three pieces (Figure 1). The middle piece was

used as the experimental sample in the further analysis. The

samples were placed in plastic petri dishes (90 mm diameter) and

stored on ice in styrofoam boxes. Multispectral images of the

samples were captured 30 minutes after placement in the

styrofoam box. Right after image capture each sample was

minced and subsequently frozen at {400C. After 14 days of

storage at {400C the astaxanthin concentrations were determined

using chemical extraction.

Chemical determination of astaxanthin content
Astaxanthin content of the minced fillets was determined in

duplicate from the lipid extracts of the fish meat using an Agilent

1100 series HPLC (Agilent Technologies, Palo Alto, CA),

equipped with a UV diode array detector. The fillet sample were

minced, and 10 g in duplicates was used for extraction using

chloroform and methanol according to the modified protocol of

Bligh and Dyer [22]. A fraction of the lipid extract was evaporated

under nitrogen and redissolved in 2 mL of n-heptane before

injection.Astaxanthin content was determined after injection of an

aliquot (50 mL) of the n-heptane fraction onto a LiChrosorb Si60-5

column (100 mm 63 mm, 5 mm) equipped with a Cromsep Silica

(S2) guard column (10 mm 62 mm; Chrompack, Middelburg,

The Netherlands) and eluted with a flow of 1.2 mL min-1 using n-

heptane/acetone (86:14, v/v) and detection at 470 nm. Concen-

trations of astaxanthin were calculated using authentic standards

from Dr. Ehrenstprfer GmbH (Augsburg, Germany).

Reflection characteristics of astaxanthin
The reflection properties of natural astaxanthin [22] in a

solution of fishoil was recorded by a NIRSystems 6500 absorption

spectrometer and transformed to reflection values using the

standard relation A~{log(R), where A is absorption values

and R is the reflection values.

Multispectral Imaging System
Data acquisition was done using a VideometerLab [10], which

obtains multi-spectral images at 19 different wavelengths ranging

from 385 to 970 nm, fully shown in Table 1. The acquisition

system records surface reflections with a standard monochrome

charged coupled device chip, nested in a Point Grey Scorpion

camera. Figure 2 shows the principal setup of the system where the

object of interest is placed inside an integrating or so called

Ulbricht sphere, with a matte white coating. The coating, together

Figure 1. Trout fillet. This image shows how the fillets were cut in
order to fit under the camera. The middle piece is used in further
analysis.
doi:10.1371/journal.pone.0019032.g001

Determining Astaxanthin Concentration Using Images
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with the curvature of the sphere, ensures a uniform reflection of

the cast light and thereby a uniform light in the entire sphere. At

the rim of the sphere Light Emitting Diodes (LED) are positioned

side by side in a pattern which distributes the LEDs belonging to

each wavelength uniformly around the entire rim. The system is

first calibrated radiometrically using both a diffuse white and dark

target followed by a light setup based on the type of object to be

recorded. The system is geometrically calibrated with a geometric

target to ensure pixel correspondence for all spectral bands [23].

The homogeneous diffuse light, together with the calibration steps,

ensures an optimal dynamic range and minimizes shadows and

shading effects as well as specular reflection and gloss-related

effects. The system has been developed to guarantee the

reproducibility of collected images which means it can be used

in comparative studies of time series or across a large variety of

different samples [24–27].

Color Images
The advantage of going from color to multispectral images is

illustrated by comparing models calibrated using either of the two

types of images. To be able to compare results from the two

models we have transformed the multispectral images to RGB

images. In this paper we used a spectral reconstruction technique

[28] in order to estimate the reflectance spectrum in each pixel

with 5 nm spacing. Each spectrum was then integrated over the

entire recorded spectral range in 3 different intervals, according to

a CIE 1931 20 Standard Observer [3]. The resulting color images

were then transformed to standard RGB images using a

transformation formula described by Wyszecki, G. and Stiles [3].

Figure 3. Reflection properties of astaxanthin. These reflection
properties has been recorded using an absorbance spectrometer and
transformed to reflection properties. The axes shows amount of light
reflected as a function of wavelength.
doi:10.1371/journal.pone.0019032.g003

Figure 4. Distribution of measured astaxanthin. A histogram of
the reference data shows the sample count as a function of mg
astaxanthin per fish, revealing a high number of observations around
2mg.
doi:10.1371/journal.pone.0019032.g004

Table 1. Spectral bands of VidemeterLab.

01) 395 nm. 09) 630 nm. 17) 940 nm.

02) 435 nm. 10) 645 nm. 18) 950 nm.

03) 450 nm. 11) 660 nm. 19) 970 nm.

04) 470 nm. 12) 700 nm.

05) 505 nm. 13) 850 nm.

06) 525 nm. 14) 870 nm.

07) 570 nm. 15) 890 nm.

08) 590 nm. 16) 910 nm.

Narrowbanded lightsources of VideometerLab. The wavelength values shown
are the peak values of all light emitting diodes mounted in the sphere. The
diodes cover the visible and the first part of the near infrared spectrum.
doi:10.1371/journal.pone.0019032.t001

Figure 2. Principal setup of the multispectral system. An
integrating sphere coated with a matte white coating ensures optimal
lighting conditions. In the rim of the sphere a set of narrow band light
emitting diodes ranging from 395 to 970 nm. are mounted. The image
acquisition is performed by a monochrome grayscale CCD camera
mounted in the top of the sphere. The arrows illustrate how the light is
distributed inside the sphere to uniformly illuminate the fillet.
doi:10.1371/journal.pone.0019032.g002

Determining Astaxanthin Concentration Using Images
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Image segmentation and data extraction
Segmenting images into distinct regions is a very important

preprocessing step in image analysis before further analyzing the

images. Having a specific region representing only the area of the

image which should be analyzed is called a region of interest

(ROI). Segmentation of images may be done in a large variety of

ways, where we in this work made use of statistical orthogonal

methods or so called decomposition techniques to highlight

desired features for easy extraction. Specifically we have used a

Maximum Noise Fraction (MNF) [29] transformation to remove

the image background material (petri dish and cardboard under

the petri dish). Canonical Discriminant Analysis (CDA) [30] was

then used to remove areas assumed to be fat and collagen. The

decomposed result with desired features highlighted was then

segmented easily using an adaptive thresholding technique known

as Otsus adaptive thresholding method [31]. Having segmented

the image into a ROI, the image could be transformed to a

spectrum based on a mean calculation. Thus each image

contributed with a single spectrum for the model calibration.

Data Analysis
Partial least square regression (PLSR) [32] was used to estimate

calibration models between the extracted spectra and reference

values (chemically determined) using LOOCV; a total of 59

samples were included in the analysis; 20 for training and 39 for

validation. Models were calibrated using leave one out cross

validation (LOOCV) [33] using a training set and validated using

a testset. The quality of the models was determined based on the

coefficient of determination (R2), the prediction error expressed as

the root mean square error of prediction (RMSEP) and the

standard error of the fit. Spectra were centered by substracting the

mean calculated from each wavelength followed by a scaling with

the standard deviation calculated from each wavelength, com-

monly known as autoscaling or standardization [34]. More

formally this is calculated as

mXj
~ 1

N

PN

i~1

Xi, j~1,2,::,p

sXj
~ 1

N{1

PN

i~1

(Xi{mXj
)2

Xstdij
~

Xij{mXj
sXj

, i~1,2,::,N ^ j~1,2,::,p

ð1Þ

X is here a matrix of size Nxp containing all the spectra in the

calibration, where N is the number of samples and p is the number

of sampled wavelengths. A pixel-wise astaxanthin prediction of the

images was done. The loadings of the astaxanthin PLS model (as

described above) were used to project acquired preprocessed

images into a subspace highlighting the distribution of the

astaxanthin contentbased on electromagnetic reflection properties

Figure 5. Channels ranging from 395 nanometer to 970 nanometer. A multispectral image of a trout fillet is here shown where the reflected
light is seen for each narrowband LED, which gives a 19 dimensional spectrum for each pixel in the image.
doi:10.1371/journal.pone.0019032.g005
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in each fillet. Principal Component Analysis (PCA) was used for

visualizing trends in the multivariate dataset, and identifying

outliers. All extraction, image analysis routines, color transforma-

tions, pixel based predictions and calibration analyses were

programmed in Matlab 7.8 (The Mathworks Inc., Natick, MA,

USA).

Results and Discussion

Reflection characteristics of astaxanthin
The reflection spectrum recorded by the NIRSystems 6500

instrument, seen in Figure 3, shows large reflection properties

starting from around 600 nm as well as large absorption properties

from around 400 nm to 600 nm. This corresponds to having high

absorption in the cyan, green and yellow area while the red and

blue area is highly reflected, giving astaxanthin its characteristic

dark red/purple color. The present measurements are well in

accordance with previous absorption measurements of astaxanthin

[35].

Reference data
The results from the chemical measurements of the astaxanthin

content are presented in Figure 4. The astaxanthin concentration

in the samples ranges from 0.2 to 4.34 mg per g fish with a mean of

1.69 mg per g fish and a standard deviation of 0.95 mg per g fish.

Acquired images and segmentation results
An example of a recorded multispectral image is presented in

Figure 5 with the channels listed according to their wavelength

number in Table 1. It is clearly shown that the general brightness

of the image increases as the wavelength increases and that some

features are more pronounced at certain wavelengths that others

e.g. fat and collagen in meat structure are primarily pronounced at

low wavelengths (395 nm to 570 nm). An example of the final

segmentation results is shown in Figure 6, where the mask

indicates the segmentation of fillet from background the using the

MAF transformation and fat the CDA transformation. The MAF

transformation is a contrast between the extreme bands, ultra blue

(385 nm) and NIR (970 nm), and the middle color bands in the

blue/green area of the visible spectrum (630–700 nm). The

segmentation of meat based on CDA transformation relies

primarily on the blue part of the spectrum (430–470 nm).

Extracted spectra
Figure 7 shows the mean spectrum of each of the 59 recorded

trout fillets. A general scaling difference is seen in the spectra which

have been removed using autoscaling preprocessing, thereby

highlighting the nonlinear differences. The scaling of a spectrum

in the visible range is in general an expression for the brightness of

the sample, which means some fish among the samples set appear

brighter than other. A clear difference in the intensity of the spectra,

which becomes very apparent after treating with autoscaling in

Figure 8, is seen in the area around 450 to 525 nm. This area

corresponds quite well to a known absorption area of astaxanthin,

which also is seen in Figure 3. Further a deviation in the spectra is

seen in the NIR area and below 435 nm.

Calibration models
Figure 9 shows a score plot (PC1 versus PC2) of a PCA of the

entire dataset after autoscaling. The plot shows a clear trend in the

first component describing 80% of the variation with few outliers.

Based on outlier diagnostics seven samples were categorized as

outliers and removed from the data set prior to further analysis. All

outliers were characterized by bad filleting. Table 2 shows the

results of the final PLSR model for astaxanthin prediction based

on a multispectral image. The reported RMSEP of 0.26 from a 7

component PLSR model is based on an independent test set while

the model itself was cross validated on a trainingset. The cross

validation showed a minimum generalization error when using 7

PLS components (Figure 10), which together with a total variance

description on the response variable of 91% led to the choice of 7

Figure 7. Autoscaling of mean spectra. The mean of all mean
spectra is seen together with errorbars indicating one standard
deviation of all mean spectra. Each mean spectrum is calculated as
the mean of all pixels within the region of interest in a multispectral
image.
doi:10.1371/journal.pone.0019032.g007

Figure 6. Example of fillet used in analysis with region of
interest indicated as contours. The colors of the image are
reconstructed from the multispectal image, while the mask is created
using the maximum autocorrelation decomposition and otsu’s thresh-
old method.
doi:10.1371/journal.pone.0019032.g006

Determining Astaxanthin Concentration Using Images
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components in the model. The variance decription percentages for

the 7 components in the response variable were 48, 69, 75, 83, 86,

89 and 91% which shows that the performance of the model

drastically increases with the first 4 components. The loadings for

these components are shown in Figure 11. The first 2 components

clearly show high response in the area around the absorption peak

of astaxanthin in the blue/green area of the visual spectrum. The

components naturally reflect the areas of largest variation in the

preprocessed spectra shown in Figure 8. Table 2 also contain a

PLSR model fitted on the same data after transformation to sRGB

images. This means only a total of 3 variables exists for the

regression problem which could basically be handled using a full

multiple linear regression. This was tested together with a PLS

model, which was found to yield equal results. The RGB model in

Table 2 is seen to have a higher RMSEP value, indicating reduced

prediction abilities than the multispectral mode. Among the two

models the multispectral models has best variance description with

an R2 value of 0.86 versus and R2 value of 0.66 for the RGB

model. Furthermore the variance in the residuals is seen to be

smaller for the multispectral model with a standard error of 0.02

against 0.05 for the RGB model. Previously similar techniques has

been investigated using VIS spectroscopy and digital photography

in [36], for calibration against chemically measured astaxathin.

VIS spectroscopy was here found to have a correlation coefficient

of 0.92 with a RMSEP of 0.42. For digital photography a

correlation of 0.92 was found together with an RMSEP of 0.41.

They reported a cross validation error based on all samples,

meaning this error was used to chose the correct number of

components. Compared to our results, we managed to achieve an

RMSEP of 0.27 on an independent testset, to get a truly unbiased

model, for the multispectral images.

Figure 9. Directions of maximum variation in the autoscaled
meanspectra. A scoreplot for a principal component analysis of the 19
dimensional mean spectra shows a definite trend in the the data along
the first principal component which accounts for 80% of the variation in
the dataset. The second principal component on the y axis accounts for
a total of 14%. Each label in the plot represents a multispectral image of
a trout fillet, and the number is the concentration in the corresponding
fillet in mg.
doi:10.1371/journal.pone.0019032.g009

Figure 10. Generalization error calculated as RMSECV. To select
a proper model, a leave one out cross validation scheme has been used,
where the sum of squared errors (RMSECV) are shown here as a
function of components included in the model. The lowest error is
indicated with a vertical line, corresponding to a total of 7 components.
doi:10.1371/journal.pone.0019032.g010

Table 2. Prediction results obtained using multispectral and
sRGB images.

Multispectral sRGb

R2 (testset) 0.86 0.66

RMSEP (testset) 0.27 0.45

Std. Error (testset) 0.02 0.05

doi:10.1371/journal.pone.0019032.t002

Figure 8. Autoscaling of mean spectra. Autoscaled spectra show
significant lower variation in general except for the area between 400
and 500 nm which is now highlighted.
doi:10.1371/journal.pone.0019032.g008

Determining Astaxanthin Concentration Using Images
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The calibrated PLS model makes it possible to predict the

astaxanthin concentration in each pixel of the image - a so called

pixel-wise prediction. The pixel-wise prediction can therefore be

used to estimate the astaxanthin distribution in the fillet. An

illustration of this is seen in Figure 12, where a multispectral image

of a trout piece is projected pixel-wise, in order to get an

impression of the spatial distribution of the astaxanthin concen-

tration. The pixel-wise prediction is color-coded according to the

amount of astaxanthin predicted in each pixel, so that pixels with

high values of astaxanthin appears red, while low value

astaxanthin pixels appear blue. The projected image clearly shows

that the upper part of the fillet contain the largest concentration of

astaxanthin. This technique is well suited for visualization

purposes. However, since the PLS model in this study was based

on the preprocessed mean spectra from the entire salmonid pieces,

the accuracy of this pixel-wise predictions remains to be validated

properly in a further study.

Conclusion
In this paper an experiment was conducted to examine the

possibilities of using multispectral imaging to assess the concen-

tration of cartenoids, with focus on astaxanthin, in rainbow trout

Figure 11. Loadings from PLS model of the multispectral images. The PLS model used to make astaxanthin predictions is based on seven
loadings where the first four are shown here. Each loading is shown with a unique symbol, and indicates that especially the area in the beginning of
the visible spectrum is important for astaxanthin prediction.
doi:10.1371/journal.pone.0019032.g011

Figure 12. Projected PLS image. Chemically measured average astaxanthin content for the entire piece: 2.26mg The multispectral image is
unfolded and projected using the loadings from calibrated prediction model. The result is reshaped to an image which then gives a spatial overview
of the astaxanthin within the fillet, based on the light properties of the surface.
doi:10.1371/journal.pone.0019032.g012

Determining Astaxanthin Concentration Using Images
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fillets. The recorded images ranged spectrally throughout the

visible area and up into the first part of the near infra red area.

The astaxanthin concentration of the investigated fillets ranged

from 0.2 to 4.34 mg per g fish with a mean of 1.69 mg per g fish. A

total of 7 images were classified as outliers using PCA scoreplots

for identification. A PLSR model was calibrated based on mean

values of spectral value in a region of interest in the image. A

training set was used for model training in a leave one out cross

validation scheme, while a separate test set was used to evaluate

the model in terms of RMSEP and and R2. The result was

compared to a similar model based on color images extracted from

the multispectral images, in order to motivate the use of

multispectral images in a study like this. As a consequence of

offering more spectral information about the sample, it is possible

to gain more knowledge about which area of the spectrum yields

the information we are interested in. The RMSEP obtained from

the test set was 0.27 for the multispectral images and 0.45 for the

color images, showing a somewhat higher prediction certainty for

the multispectral images. Furthermore, the goodness of fit (R2) was

similarly somewhat better for the multispectral model, being 0.86.

The most significant components of the PLSR model revealed that

the area between 470 and 525 nm. carried the largest amount of

variation, which corresponds very well with absorption peaks of

pure astaxanthin being in the vicinity of 450 to 600 nm. In

conclusion, the current study has shown that multispectral imaging

is a promising method for rapid analysis of the astaxanthin

concentration of rainbow trout, and thereby a qualified candidate

for replacement of ordinary laborious and destructive sampling of

astaxanthin for concentration prediction.
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