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University of Science and Technology, Trondheim, Norway

Abstract

Tobamoviruses encode a silencing suppressor that binds small RNA (sRNA) duplexes in vitro and supposedly in vivo to
counteract antiviral silencing. Here, we used sRNA deep-sequencing combined with transcriptome profiling to determine
the global impact of tobamovirus infection on Arabidopsis sRNAs and their mRNA targets. We found that infection of
Arabidopsis plants with Oilseed rape mosaic tobamovirus causes a global size-specific enrichment of miRNAs, ta-siRNAs, and
other phased siRNAs. The observed patterns of sRNA enrichment suggest that in addition to a role of the viral silencing
suppressor, the stabilization of sRNAs might also occur through association with unknown host effector complexes induced
upon infection. Indeed, sRNA enrichment concerns primarily 21-nucleotide RNAs with a 59-terminal guanine. Interestingly,
ORMV infection also leads to accumulation of novel miRNA-like sRNAs from miRNA precursors. Thus, in addition to canonical
miRNAs and miRNA*s, miRNA precursors can encode additional sRNAs that may be functional under specific conditions like
pathogen infection. Virus-induced sRNA enrichment does not correlate with defects in miRNA-dependent ta-siRNA
biogenesis nor with global changes in the levels of mRNA and ta-siRNA targets suggesting that the enriched sRNAs may not
be able to significantly contribute to the normal activity of pre-loaded RISC complexes. We conclude that tobamovirus
infection induces the stabilization of a specific sRNA pool by yet unknown effector complexes. These complexes may
sequester viral and host sRNAs to engage them in yet unknown mechanisms involved in plant:virus interactions.
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Introduction

RNA silencing is a sequence-specific mechanism that coordinates

the expression, protection, stability, and inheritance of eukaryotic

genomes. It is involved in tuning critical developmental, stress-

responses, and bodyguard functions by regulating the expression of

genes at the transcriptional and post-transcriptional levels, or by

triggering the formation of heterochromatic DNA regions [1,2,3].

RNA silencing is mediated by 21–24 nt small RNAs (sRNAs) that

are processed from long dsRNA by RNase III enzymes of the

DICER family (DICER-Like - DCL in plants). These sRNAs are

classified into small interfering RNAs (siRNAs) and microRNAs

(miRNAs) depending on their origin [2,4,5]. siRNAs and miRNAs

associate with proteins of the ARGONAUTE (AGO) family to form

RNA-Induced Silencing Complexes (RISC) in which they serve as

guides to complementary RNA or DNA targets [4,6]. AGO-

containing RISCs can then mediate degradation of complementary

endogenous or viral RNAs, translational repression of mRNAs, or

transcriptional silencing of transposons and DNA repeats.

Plants encode several members of these protein families. For

instance, the Arabidopsis thaliana genome contains four DCL and ten

AGO genes. Several sRNA classes that depend on different pairs of

DCL and AGO proteins have been identified. For example,

whereas DCL1-dependent miRNAs guide AGO1, AGO7, or

AGO10 to corresponding target RNA transcripts, DCL3-depen-

dent siRNAs guide AGO4, AGO6 or AGO9 to DNA targets

[7,8,9,10,11,12,13,14]. During their transfer from DCL proteins to

AGOs, sRNAs are stabilized by methylation of their 39 terminal

nucleotide by HEN1, which provides protection against oligo-

uridinylation and degradation by nucleases of the SDN family

[15,16,17]. Loading of sRNAs into AGOs appears to be restricted

by DCL-AGO interactions and to depend at least in part on the

identity of the first 59 nucleotide of the sRNAs [14,18,19]. Thus, 21-

nt sRNAs with 59-terminal uridine (59U) are predominantly bound

to AGO1 and, in one specific case, to AGO7, with 59A to AGO2,

and with 59C to AGO5, whereas 24-nt sRNAs with a 59A are bound

to AGO4. It is still unknown which of the remaining AGOs (if any)

could preferentially bind sRNAs with 59G.
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RNA silencing is known to play a critical role in defense against

viruses in plants and insects [20,21,22]. Thus, viral RNAs are used

by the RNA silencing machinery to generate viral sRNAs

(vsRNAs) that can potentially be loaded into specific AGOs to

further target viral RNAs for cleavage and degradation or for

translational repression. As part of the ongoing host-virus arms

race, viruses have evolved potent RNA silencing suppressors

(VSRs). As they evolved independently, the VSRs of different

viruses inhibit different RNA silencing pathway components

[23,24]. We and others have shown that Tobacco mosaic virus

(TMV) and related tobamoviruses encode a VSR that resides in

the small subunit of their replicase [25,26,27]. This subunit binds

siRNA and miRNA duplexes in vitro and interferes with their

methylation [25,26,28,29], a modus operandi that was also

reported for several other VSRs like the Hc-Pro of Tobacco etch

virus (TEV) or p19 of tombusviruses [30]. Consistently, miRNAs

levels are generally increased in plants infected with TMV, TMV-

Cg, cr-TMV, or Oilseed rape mosaic virus (ORMV)[25,26,29,31,32].

Studies of few cases have demonstrated that the increased miRNA

levels triggered by tobamovirus infection results in increased levels

of cognate mRNA targets [25,31] and suggested that sRNA

binding by tobamovirus replicase interferes with RISC loading or

activity. This model is supported by the ability of cr-TMV

suppressor protein to bind sRNA duplexes and to inhibit RISC

assembly in vitro [25]. However, a recent report indicates that a

positive correlation between miRNA enrichment and increased

mRNA target levels may not be necessarily mediated by miRNA

sequestration. Thus, it was shown that the enrichment of miR168

in plants infected with Cymbidium ringspot virus occurs through an

activity independent of binding by the VSR p19 and that miR168

functions in translational repression rather than in mRNA

cleavage despite of the increased AGO1 mRNA levels [33].

Moreover, the movement protein (MP) of TMV enhances the

spread of silencing [34] suggesting that the impact of tobamo-

viruses on the sRNA profile and gene expression may not be

limited to infected cells but may be able to spread ahead of the

leading front of infection. These examples clearly indicate that

further studies are needed to understand the impact of virus

infection on the host sRNA profile and gene expression and its role

in virus susceptibility and/or defense.

So far our knowledge on changes of sRNA and transcriptome

profiles induced by a virus in its host is limited. Our current

knowledge is based on the analysis of a limited number of sRNAs

and of their targets by Northern blots or on small-scale sRNA

cloning [25,31]. Analysis of the full sRNA complement of cells can

be achieved by deep sequencing using a variety of available

platforms [35] and first reports describing changes in the plant

sRNA profile in response to pathogens are appearing [36]. While

deep sequencing analyses of virus-infected plants allowed to

describe the profile of virus-derived siRNAs [37,38,39,40,41,42], a

comprehensive view on the global impact of virus infection on the

profile of host plant sRNAs and their mRNA targets is still lacking.

We have used a combination of mRNA profiling and sRNA

deep sequencing to understand the impact of ORMV infection on

the Arabidopsis sRNA and transcriptome profiles. We describe

here a global analysis of viral sRNAs and the changes in cellular

sRNA profiles during systemic infection. Our analysis shows that

virus infection changes the pattern of sRNAs that are processed

from miRNA and ta-siRNA precursors. The virus-induced sRNA

profile is inconsistent with the proposed stabilization of sRNA

duplexes by the replicase as a sole mechanism and suggests that

the observed changes in the sRNA profile involve additional

mechanisms. In particular, we found that ORMV infection leads

to the specific enrichment of 21 nt sRNAs with a 59 terminal

guanine. This suggests that these sRNAs associate with size-

specific and 59 nucleotide-specific effector complexes of yet-

unknown nature. Our mRNA profiling data demonstrate that

increased levels of miRNAs and siRNAs do not correlate with

significant changes in target transcript levels indicating that the

virus-induced sRNA fraction is sequestered or active at different

levels. Virus infection also leads to the accumulation of novel

miRNA-like siRNAs (ml-siRNAs) encoded by miRNA precursors

that might be part of a specific plant response to pathogens.

Results

To gain insights into the effects of ORMV infection on the

Arabidopsis sRNA profile we conducted Illumina sequencing of

sRNA populations extracted from ORMV-infected and mock

control-inoculated Arabidopsis Col-0 plants at 7 days post-

inoculation (dpi). Following removal of adapter sequences the

reads were mapped to the virus and Arabidopsis thaliana genomes

(Figure S1, A) and only the reads with perfect match were further

analyzed. Of 1,787,490 mapped sRNA reads found in the virus-

treated sample, 80.1% (1,431,362 reads) originated from Arabi-

dopsis and the remaining 19.9% (356,128) of the reads originated

from the virus (Figure S1, A and B). Consistent with their

biogenesis by DCL4 [29] ORMV vsRNAs are predominantly

21 nt in length (Figure S1, C). The vsRNAs map all along the viral

genome, with 88.1% being homologous to the positive strand and

11.9% to the negative strand (Figure S1, E). A similarly strong

positive strand bias in vsRNA accumulation has also been reported

in the case of TMV-Cg infected samples [40] and may reflect the

strong (+)strand-specific accumulation of viral RNA in infected

cells [43,44]. The origin of the conspicuous vsRNA hotspots along

the viral genome is yet unknown but may be caused by

predominant DCL cleavage of structured, double-stranded RNA

regions.

ORMV infection causes size-specific and 59nucleotide-
specific enrichment of plant sRNAs

Comparison of the profiles of the mapped Arabidopsis-encoded

sRNA obtained for mock and virus-treated samples reveals a

significant impact of virus infection. The normalized, size-specific

distribution of sRNAs shows a significant decrease in the

proportion of 24 nt sRNAs, whereas the proportion of 21 nt

sRNAs is increased (Figure 1). Consistently, there is a reduction in

the proportion of sRNA reads derived from transposons and

Figure 1. Size-distribution of Arabidopsis sRNAs in ORMV-
infected and non-infected plants.
doi:10.1371/journal.pone.0019549.g001

Virus Infection on Arabidopsis Small RNA Profile
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centromeric regions, whereas the proportion of reads for miRNAs

and ta-siRNAs is increased 4.5-fold (Table 1).

Arabidopsis ta-siRNAs are derived from four families of TAS

genes. The biogenesis of ta-siRNAs is initiated by AGO-mediated

cleavage of TAS transcripts guided by miR173 (TAS1a/b/c and

TAS2), miR390 (TAS3a,b,c), or miR828 (TAS4) [14,45,46,47,48].

Cleaved transcripts are then converted by RDR6 to long dsRNAs

that are subsequently processed by DCL4 into phased ta-siRNAs

that are in register with the cleavage site [45,47,49,50,51]. The

majority of ta-siRNAs sequenced in both of our datasets were

derived from TAS1a,b,c and TAS2 loci (Table S1). Interestingly,

although TAS family loci in Arabidopsis produce ta-siRNAs of

different sizes, as observed previously [52], only the 20 and 21 nt

ta-siRNAs are significantly enriched (6.5. and 7.5 fold, respective-

ly) in ORMV-infected plants (Figure 2A, Table S1). To confirm

this size-specific enrichment, we analyzed the sRNAs from mock-

and virus-treated samples by RNA blot hybridization using several

probes detecting ta-siRNAs of different sizes and from different

phases [47,53]. Figure 2B shows for TAS1c 39D5(+) that infection

leads to the enrichment of the 21-nt siRNA species, whereas the

level of the 24 nt siRNA species remains constant. The blots

confirm that the enriched ta-siRNA species can be derived from

either strand of the TAS RNA duplex. For example, whereas

TAS2 39D6(+) siRNA strand is enriched in infected tissues, the

complementary strand (TAS2 39D6(-)) of the ta-siRNA duplex is

not. Conversely, specific enrichment is observed for the TAS2 D7

(-) siRNA strand, whereas the level of the complementary TAS2

39D7(+) strand remains unchanged. Consistent with previous

observations [25,29], the level of siR255, which derives from

TAS1a,b,c and other loci, does not show any increase upon virus

infection.

Since the loading of AGO proteins depends on the identity of

the first 59 nucleotide of sRNAs, we analyzed the distribution of

the 59 nucleotide of the enriched sRNA pool. Figure 2A shows that

the degree of over-representation of 21 nt ta-siRNAs caused by

ORMV-infection differs according to the 59 terminal nucleotide in

the order G.A = U.C (Figure 2A). Interestingly, we found a

correlation between the 59 nucleotide-specificity of the 21 nt ta-

siRNAs and the specific precursor TAS RNAs from which they are

derived. Specifically, enriched ta-siRNAs with a 59G are

predominantly derived from TAS2 including the validated

39D6(+) and 39D7(-) species (Figure 2B and C), although as for

the other TAS loci, the unique TAS2 ta-siRNAs with a 59G (and

also those with a 59C) are underrepresented compared to ta-

siRNAs starting with A or U (Table S2). It should be noted,

however, that size- and 59-terminal guanine are unlikely to

represent sufficient criteria to dictate sRNA enrichment since some

21-nt siRNAs initiating with a 59G are not enriched upon ORMV

infection (data not shown). Size-specific selection may occur at the

level of the sRNA duplex, since infection enriches 24 nt long

miRNA163. Although this sRNA is 24 nt in length, it assumes a

shorter physical length upon forming a bulge when paired with its

21 nt long passenger strand. Thus, the presence of miRNA163 as

a duplex may represent an important prerequisite for its selection

and subsequent stabilization in ORMV-infected plants.

To test whether infection has an effect on the phased processing

of ta-siRNAs, we mapped the frequency of unique ta-siRNA

species with more than 5 reads to TAS1a, TAS1b, TAS1c, TAS2,

and TAS3a genes (Figure 3). A change in ta-siRNA phasing was

not observed indicating that the initial miRNA-guided cleavage

mediated by AGO1 (TAS1/2) and AGO7 (TAS3a) and subsequent

processing of the TAS RNA duplexes by DCL4 are not affected in

infected cells. The distribution of the mapped ta-siRNA reads

mapped to the TAS genes confirms that the enrichment is

restricted to specific ta-siRNAs and that in most cases only one of

the two strands of the processed ta-siRNA duplexes is enriched.

Collectively, these observations indicate that the virus-induced

enrichment of ta-siRNAs occurs at a post-processing step,

presumably through stabilizing associations with specific effector

complexes, as is suggested by the strand, size and nucleotide

specificity of the ta-siRNAs.

We note that the specific enrichment of 20–21 nt siRNAs is not

restricted to TAS loci. A similar effect is indeed also observed for

other RDR6/DCL4-dependent, secondary siRNA-generating loci

[52] (Table S3) or for IR71, which is one of the long inverted

repeats of Arabidopsis that generates all size classes of siRNAs in

an RDR-independent fashion [53,54,55,56,57] (Table S4).

Next, we investigated the impact of virus infection on the profile

of miRNAs. Previous studies using specific Northern blot probing

or small-scale sequencing indicated an enrichment of miRNAs in

tobamovirus infected tissues [25,26,31]. The results of our global

profiling analysis confirm this trend. We found that all but four of

the 35 miRNA families with sequencing reads in both samples

showed an increased number of reads upon infection (Table S5).

Interestingly, virus infection caused a much higher increased

accumulation of miRNA* sequences compared to that of the

corresponding miRNAs. Thus, whereas the sRNAs derived from

miRNA precursor RNAs in mock-treated plants comprise 97%

miRNAs and only 2% miRNA passenger strands, the relative

amount of miRNAs in ORMV-infected plants is reduced to 84%

Table 1. sRNA reads* mapped to the Arabidopsis genome.

Mock Infected

Type Unique Reads Total Reads Unique Reads Total Reads

Known miRNA precursors 380 48514 1032 276483

Known TAS precursors 1220 10195 2425 48303

Gene 42003 133451 59901 236165

Tandem repeats 22559 76359 26261 81339

Inverted repeats 14560 66799 19287 78722

Transposons 70568 126655 67768 113376

Centromeric region 2160 11248 2627 10113

rRNA, tRNA, snoRNA and snRNA 8486 98765 10386 161872

*Reads are RPM
doi:10.1371/journal.pone.0019549.t001
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whereas that of miRNA* sequences is increased to 14%

(Figure 4A). Generally, the number of reads and the degree of

accumulation in virus-infected plants differs between miRNAs and

their passenger strands (Fig. S5). These observations were

confirmed by sRNA blot hybridizations (Figure 4B). Further

analysis showed that this strong enrichment of miRNA* sequences

primarily concerns those initiating with a 59G resulting in

miRNA* sequences with a 59G as the predominant miRNA*

species in infected cells (Figure 4A). A summary of the virus-

induced enrichment of miRNA gene-derived sRNAs is shown in

Figure 4C. The increase in accumulation seen for sRNAs initiating

with a 59U is to the majority caused by virus-enriched miRNAs,

whereas the increase seen for sRNAs starting with a 59G reflects

the accumulation of miRNA* sequences (see also Figure 4A). The

passenger strands of miRNA160, miRNA396, and miRNA398

exhibit the strongest contribution to the increased pool of miRNA*

sequences starting with a 59G in virus-infected plants (highlighted

in Table S5). However, a 59G is not the only determinant for

enrichment of passenger strands. For example, strong increases in

accumulation are also shown by the passenger strands of

miRNA408 and miRNA472, although these miRNA* sequences

initiate with a 59C and 59U, respectively (Table S5). Nevertheless,

the overaccumulation of miRNA* strands compared to miRNA

guide strands and the preference for 59G-miRNA* is again

indicative of specific sRNA-associated effector complexes formed

upon virus infection.

Figure 2. Effect of ORMV infection on the ta-siRNA profile. (A) ta-siRNA reads for ORMV-infected (O) and non-infected (mock-treated, M)
plants are sorted according to size (nt) and 59 terminal nucleotide. Although ta-siRNAs occur in different sizes, only 20 nt and 21 nt ta-siRNAs are
enriched in ORMV-infected plants. Enriched ta-siRNAs have a 59A, 59U, or 59G. (B) Northern blots confirming the size-specific enrichment of ta-siRNAs
in infected (inf) compared to mock-treated (m) plants. The enrichment of ta-siRNAs in infected tissues (inf) is also strand-specific – usually, only one
strand of the DCL-processed ta-siRNA duplex is enriched. The enrichment of miR163 suggests that size selection occurs at the duplex level just after
cleavage by DCL (details in the text). The TAS1a/b/c-derived siR255 is not enriched, as has been previously reported. (C) 21 nt long ta-siRNA reads for
ORMV-infected (O) and non-infected (M) plants sorted according to their 59 terminal nucleotide and the TAS genes from which they are derived. ta-
siRNAs with a 59 terminal A or U are derived from different TAS genes, whereas ta-siRNAs with a 59G are exclusively derived from the TAS2 gene.
doi:10.1371/journal.pone.0019549.g002
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Effect of ORMV infection on the host plant transcriptome
Although ORMV starts to spread systemically within 2–3 days

after inoculation of individual leaves (Niehl and Heinlein,

unpublished), viral symptoms are only observed after 10 days.

From this time onward the newly emerging leaves and

progressively also the older leaves show curling and retarded

growth, and the oldest leaves show signs of necrosis. Three weeks

after inoculation, the plants show a clear growth retardation

phenotype (Figure 5A).

To test whether the significant virus-induced changes in the

sRNA profile seen at 7 dpi correlate with significant effects on

transcript levels, we profiled mRNA transcripts at 7, 14, and

21 dpi using Affimetrix ATH1 arrays. In this time-course

experiment we observed a gradual increase in accumulation of

ORMV genomic RNA and vsRNAs (data not shown) and a

gradual increase in symptom severity (Figure 5A). The total RNA

extracts for profiling transcripts at 7 dpi were the same as those

used for sRNA deep sequencing described above and the extracts

for the later time points were prepared and processed exactly the

same way. The Venn diagram of RMA-normalized data

(Figure 5B) highlights the 3216 genes differentially expressed

upon ORMV infection with a log2 fold-change cut-off of 2 and a

significance value of p,0.001. Of those, 175, 605, and 1119 genes

displayed differential expression in virus-infected compared to

mock-inoculated samples exclusively at 7, 14 and 21 dpi,

respectively. 179 genes were differentially expressed upon ORMV

infection at all the three time points. In addition, 75 genes were

regulated upon ORMV infection at the two earlier time points

(7 dpi and 14 dpi), 40 genes were differentially expressed upon

ORMV infection only at 7 dpi and 21 dpi, and 1023 genes

exhibited differential expression at the two later time points

(14 dpi and 21 dpi). Independent samples were used for qPCR

analysis, which reproduced the infection-induced changes in the

expression of the tested genes (data not shown). The quality of the

Figure 3. ta-siRNAs mapped to TAS transcripts. The TAS transcripts, the sites of miRNA cleavage, and the phased ta-siRNA windows are shown.
Mapped unique ta-siRNA reads present in non-infected plants (Mock) and ORMV infected plants (ORMV) are shown as blue and red bars, respectively.
Bar thickness indicates the number of reads for each unique ta-siRNA. ORMV infection does not change the phasing and complexity of the unique ta-
siRNA population; only the frequency of the unique ta-siRNAs is changed. ORMV infection does not affect initial miRNA-guided TAS mRNA cleavage.
doi:10.1371/journal.pone.0019549.g003
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data was also validated by principal component analysis (PCA,

Figure 5C) and hierarchical clustering (Figure 5D), indicating that

the replicates show very similar responses and that the datasets for

mock-inoculated and virus-infected samples are clearly separated.

Importantly, for the virus-infected samples, the 7 dpi time point is

clearly distinct from the later time points. This suggests that

expression changes at 14 and 21 dpi may be related to secondary

effects that are related to tissue crinkling and chlorosis, whereas the

earlier time point reflects more specific responses to the virus

infection and its spread.

Functional GO term enrichment analysis (log2.2; p,0.001)

reveals that at 7 dpi there are responses of gene classes related to

responses to biotic stimuli, other organisms, stress, defence, and

immune system processes, whereas responses at the later time

points are focussed to gene classes rather responding to metabolic

processes and abiotic stimuli (Table S6). This finding may indicate

Figure 4. Effect of ORMV infection on the miRNA profile. (A) ORMV infection produces a significantly higher fold-change in the levels of
miRNA* sequences (miRNA passenger strands) than in the level of miRNAs. The virus-induced fold-change is strongest for miRNA* sequences carrying
a 59 G nucleotide. (B) Northern blots confirming the virus-induced enrichment of miRNAs and the much stronger enrichment for their corresponding
miRNA* sequences. m, mock; inf, infected; dpi, days post inoculation. (C) Normalized miRNA reads (RPM) for ORMV-infected (O) and non-infected
(mock-treated, M) plants sorted according to size (nt) and 59 terminal nucleotide. The majority of miRNAs starts with a 59 U nucleotide and these
miRNAs are strongly enriched in infected plants. The virus-induced peak of sRNAs starting with a 59G is mostly due to enriched miRNA* sequences (as
seen in A).
doi:10.1371/journal.pone.0019549.g004

Virus Infection on Arabidopsis Small RNA Profile
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that at late time points, when the virus has accumulated to high

levels, secondary effects on the plant metabolism and nutritional

status play a role in addition to the responses to virus.

Effect of ORMV infection on mRNA targets of miRNA and
ta-siRNA

We next addressed whether the strong increases in the levels of

ta-siRNAs and miRNAs are correlated with similarly strong

changes in the level of their mRNA targets. Although our

transcriptome data revealed significant changes in the transcript

levels of many genes (Figure 5), the levels of the majority of the

miRNA and ta-siRNA target transcripts appeared rather stable

(Figure 6 and Figure 7). The general down-regulation of targets

expected if all over-accumulated miRNAs would engage in target

cleavage was not observed. Rather, some of the targets show

increases in their abundance. Examples are members of the SPL

transcription factor family (targets of miR156/157), a member of

the pentatricopeptide family (AT1G62670; target of miR161 and

miR400), a GRF gene family transcription factor (AT2G36400,

target of miR396), Auxin response factors (ARF) 16 and 17

(AT1G77850 and AT4G30080; targets of miR160), and genes

encoding LRR disease resistance gene motifs (AT1G122280 and

AT1G15890; targets of miR472). Consistent with previously

published observations by others [25,33], a strong increase was

also found for AGO1 (AT1G48410), the target of miR168.

Overall, stronger changes in miRNA and ta-siRNA target

transcript levels are seen at later infection stages (21 dpi), whereas

there are rather mild changes, if any, at the time point of sRNA

analysis (7 dpi). Only two of the 248 tested miRNA and ta-siRNA

target transcripts show reduced levels at all three time points, while

16 targets exhibit increased levels at all three time points. Twenty-

one targets display increased expression levels at later time points

(starting at 14 or at 21 dpi), and 20 targets show reduced

expression levels at later time points (starting at 14 or at 21 dpi).

Notably, changes in the levels of miRNAs targeting multiple genes

(e.g. miR163, 164, 169, 171, 393, 156/157) did not trigger similar

changes in all their known target transcripts. Rather, the targets

belonging to groups controlled by the same miRNAs exhibit

Figure 5. Effect of ORMV infection on the Arabidopsis transcriptome. (A) Disease symptoms of ORMV-infected plants as compared to mock-
inoculated, non-infected plants at 7, 14, and 21 dpi. (B) Venn-diagram depicting the genes differentially expressed upon ORMV infection. A log2 fold-
change cut-off value of 2 and a significance threshold of 0.001 were used for data analysis. (C) Principal component analysis on RMA-normalised
expression values illustrating reproducibility between specific profiles and a clear data separation between the specific treatments. (D) Hierarchical
clustering of expression values.
doi:10.1371/journal.pone.0019549.g005
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diverse changes. These observations indicate that the changes in

miRNA and ta-siRNA levels in ORMV-infected cells do not lead

to corresponding changes in the transcriptome.

ORMV infection promotes expression of novel miRNA-
like sRNAs from miRNA precursors

Our sequencing data revealed the presence of a substantial

number of unique sRNAs derived from miRNA primary

transcripts that do not represent the known miRNA or miRNA*

sequences (Figure 8). Their unique accumulation upon virus

infection was verified by sRNA blot hybridization (Figure 9). This

finding indicates that miRNA precursors can generate multiple

sRNAs including novel pathogen-inducible species. Apparently,

these miRNA-like sRNAs (ml-sRNAs) are produced at very low

levels under normal conditions whereas they are better processed

or stabilized, and thus enriched, in plants challenged with ORMV.

These ml-sRNAs are in phase with the canonical miRNAs,

suggesting that they are produced during phased processing of the

miRNA precursor RNAs by DCL1 [58]. Among the 19 ml-sRNAs

identified in our experiment, eight were recently shown to be also

induced by the bacterial pathogen Pseudomonas [36] (Table 2).

Thus, accumulation of ml-sRNAs appears to be a common feature

of bacterial and viral infection.

To determine whether enriched ml-sRNAs could play a role in

RISC-mediated degradation of target transcripts, we used them as

queries for a DegradomeSearch with StarBase (http://starbase.

sysu.edu.cn/index.php), a public platform for exploring micro-

RNA-target interaction maps from Argonaute CLIP-Seq (HITS-

CLIP) and degradome sequencing (Degradome-Seq, PARE) data

[59]. Using a penalty score of $4.5 and searching for targets

indicated by $1 cleavage tags, we identified potential targets of 4

of the eleven newly identified ml-siRNAs in our database

(miR163-IP1, miR163-IP2, miR841-IP1, and miR841-IP2). To

further investigate the potential role of ml-siRNAs in target

mRNA degradation we searched sequenced libraries of AGO-

associated sRNAs [14,19]. Indeed, here we found several

indications of associations of ml-sRNAs with AGO proteins.

Thus, miR163-IP1 was associated with AGO1, 2, 4, 5, and 7,

miR163-IP2 was associated with AGO1, 4, 5, and 7, and miR846-

IP1occurred in association with AGO2. These findings suggest

that at least some of the virus-induced ml-sRNAs may function in

the regulation of mRNA targets in association with specific AGO

complexes. It will be interesting to determine the functions of these

ml-siRNAs during infection and during normal plant develop-

ment.

Discussion

Plant-virus interaction triggers multiple plant defense pathways

[60], including RNA silencing [21,22]. To counteract RNA

silencing, plant viruses encode diverse types of VSR that act at

different steps in the silencing pathway [24]. Up to now, most of

the investigated plant VSRs are pathogenic proteins [61,62,63].

Their activities contribute to the development of virus-induced

disease symptoms by interfering with endogenous gene expression

and endogenous sRNA pathways [25,31,64]. The small replicase

subunit of tobamoviruses was identified as a pathogenicity

determinant [65] and was shown to function as VSR

[25,26,27,66]. In vitro experiments indicate that this protein binds

double-stranded sRNAs [25,28,30] and this binding has been

proposed to account for the enrichment of both miRNAs and

miRNA* sequences seen in infected plants [25,26,31]. A fraction

of the accumulated sRNAs lacks methylation at the 39 end,

suggesting that replicase binding to sRNAs may interfere with

their methylation by HEN1 [25,26]. Point mutation in the

methyltransferase domain of the replicase interferes with the

silencing suppressing capacity of the protein, coupled with

weakened pathogenic symptoms in plants and decreased accumu-

lation of non-methylated miRNAs/siRNAs [26]. Although the

ability of the replicase to bind sRNA duplexes in vitro may explain

the enrichment for both miRNAs and miRNA* sequences seen in

infected plants [25,26,31], it remained unclear whether the in vivo-

enriched miRNAs and miRNA* sequences are indeed derived

from replicase-stabilized duplexes or whether other virus-induced

mechanisms play a role in sRNA enrichment. Moreover, it

remained unclear whether the sRNA enrichments would impose

changes in the host transcriptome. We have now gained critical

insights into the tobamovirus interaction with RNA silencing, and

sRNAs in particular, by characterizing the sRNA and transcrip-

tome profiles of ORMV-infected Arabidopsis plants.

ORMV infection causes global size-specific sRNA
enrichment in systemically infected plants

Our deep sequencing data indicate that ORMV infection leads

to a global enrichment of sRNA species that are predominantly

21 nt in length, including miRNAs and ta-siRNAs, other RDR6-

dependent siRNAs, as well as siRNAs processed from inverted

repeat loci. The observation that ORMV infection enriches 20–

21 nt sRNAs but not 24 nt sRNAs is in agreement with an earlier

study [29] and consistent with the observation made in vitro that

the tobamoviral VSR protein binds sRNA duplexes in a size-

specific manner [25]. Tagami et al (2007) found that infection by

TMV-Cg leads to specific enrichment of miRNAs [31]. Our

work now extends this conclusion by the demonstration that

ORMV infection causes a general enrichment of 20–21 nt RNAs

irrespective of their origin.

Viral suppressor binding may not be the sole
determinant of the enriched sRNA profile

The ability of the tobamoviral silencing suppressor to bind

sRNA duplexes in a size-specific manner in vitro [25,28,30] has

been proposed to explain the enrichment of miRNA* sequences

along with their corresponding miRNAs observed in vivo

[25,26,31]. However, our results rather suggest that additional

factors play a role in the in vivo enrichment of sRNAs. In

particular, we found that the enrichment of size-specific sRNAs is

selective. Enriched ta-siRNAs and miRNA* sequences are

characterized by a strong bias for those carrying a 59 terminal

guanine. Among ta-siRNAs, this bias is found for ta-siRNAs

derived from TAS2 but not for those derived from other TAS

genes. For miRNAs, we find this bias for the miRNA passenger

strands rather than for the guide strands. The particular

enrichment of miRNA* and TAS2-derived sequences with a

59G cannot be explained by a bias in the population of sRNAs

generated from the different precursors. Although the proportion

of unique TAS ta-siRNAs with a 59G is increased from 15% to

19% upon ORMV infection, their total number is increased from

25% to 69% of the total TAS2 ta-siRNA population (Table S2).

The same is true for miRNA* sequences. Whereas the number of

sequenced unique miRNA* sequences initiating with a 59G is

increased from 13 to 15 upon infection, their total number is

increased 45 fold, i.e. from less than 500 reads to more than 20000

reads (Table S5). This represents a strong degree of enrichment of

unique ta-siRNAs and miRNA* sequences starting with 59G.

Since RISC-associated AGO proteins were shown to preferentially

associate and stabilize sRNAs according to their 59 nucleotides

[14,18,19], this finding suggests the involvement of specific AGO-
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associated effector complexes in the virus-induced sRNA enrich-

ment. Interestingly, we found that the 59nucleotide specific pattern

of enrichment of ta-siRNAs (G.A = U.C) mimics that of

vsRNAs (Figure S1, D). This may suggest that vsRNAs and ta-

siRNAs are stabilized by similar complexes.

A role for host effector complexes in addition to the binding by

the viral suppressor in the stabilization of sRNAs is also supported

by the observation that ORMV infection causes a stronger

increase in the levels of miRNA* sequences relative to that of the

respective miRNAs. For example, miR160*, miR396*, and

miR398*, are particularly highly over-represented as compared

to their miRNA. This observation cannot solely be explained by

the ability of the tobamoviral replicase to bind sRNA duplexes

since this should lead to equal accumulation of both strands of the

different duplexes. Another less likely possibility, which is in

contradiction with earlier in vitro binding assays indicating that

replicase does not bind single-stranded sRNAs [25,28], is that the

replicase binds only one of the two strands of sRNA duplexes and

exhibits some kind of 59 nucleotide preference similar to that of

AGO proteins. However, we noted the enrichment of miRNA163

in infected plants. Given the preference for enrichment of 21 nt

sRNAs, this 24 nt long miRNA may only be enriched when

present in a duplex with its passenger strand, which forces the

24 nt miRNA to bulge out and thus to assume a length

characteristic for 21 nt sRNA. This finding may suggest that the

size selection for enrichment occurs at the level of duplexes. Thus,

it may be conceivable that the ability of the viral suppressor to

bind 21 nt sRNA duplexes plays a role in sRNA size selection

whereas the final enrichment of single strands is caused by

association with other proteins.

Possible functions of enriched sRNAs during ORMV
infection

Our observation that the enriched miRNA and ta-siRNA levels

have no strong effects on the levels of their mRNA targets does not

necessarily indicate that they are inactive. First, the targets of these

sRNAs may be robustly regulated by feedback mechanisms (e.g. at

the level of transcription) or may be controlled by established

RISCs that are stable and thus resistant against virus-induced

changes in sRNA levels. Second, since some of the mRNA targets

show changes in expression levels, the virus-induced sRNA

enrichment may occur predominantly in specific tissues in which

the majority of the corresponding targets is not expressed. The

enriched sRNAs may also function in sRNA-guided translational

repression rather than in target transcript cleavage. Translational

suppression by sRNA-guided AGO complexes is a common

phenomenon in plants and animals [12,67,68]. For example, as we

could confirm in parallel experiments (not shown), in Arabidopsis,

accumulation of miR168 caused by distinct RNA viruses leads to

AGO10-mediated translational inhibition rather than to AGO1-

mediated cleavage of the AGO1 mRNA [33]. Moreover, recent

reports suggest that plant miRNAs can also mediate DNA

methylation [11,69], which adds yet another dimension by which

the enriched sRNAs may act.

With regard to functional diversification it is also important to

note that a large proportion of the sRNAs that accumulate in

tobamovirus-infected plants is not methylated [25,26,29]. Al-

though non-methylated sRNAs are usually degraded [70,71], they

may be stabilized upon association with specific effectors. A

precedent for this hypothesis is provided by miRNAs in

Drosophila that bind to either AGO1 or AGO2 proteins,

Figure 6. Changes in the level of miRNA target transcripts upon ORMV infection at 7, 14, and 21 dpi. Heatmap shows log2-fold change
values for the mRNA targets of specific miRNAs. The miRNA reads in mock-treated (m) and ORMV-infected (inf) plants is shown. Although some
miRNA targets show increased (red) and decreased (green) levels of expression upon infection, the majority of the miRNA target mRNAs does not
show a change in the level of expression.
doi:10.1371/journal.pone.0019549.g006

Figure 7. Changes in the level of ta-siRNA target transcripts upon
ORMV infection at 7, 14, and 21 dpi. Heat map shows log2-fold change
values for the mRNA targets of specific ta-siRNA classes. The majority of the
ta-siRNA target mRNAs shows stable expression during infection.
doi:10.1371/journal.pone.0019549.g007
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Figure 8. ml-siRNAs produced from miRNA precursor RNAs upon infection. The foldback structures of several miRNA precursor RNAs are
shown. The sequences of mature miRNAs and miRNA* sequences are indicated in red and blue color, respectively. ml-siRNAs are depicted in green
and yellow color. Since the ml-siRNAs are produced in phase (IP) with the miRNA and miRNA* sequences, they are designated according to the
particular miRNA with the extension ‘‘IP’’ (for example, ‘‘miR159 IP’’). The normalized reads (RPM) obtained for miRNAs, miRNA*, and ml-siRNA
sequences for mock-treated (mock) and ORMV-infected plants (inf) are shown.
doi:10.1371/journal.pone.0019549.g008
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dependent on whether they are methylated at the 39 end by

HEN1, or not [72,73,74]. Moreover, unlike the methylated sRNAs

associated with AGO2, the AGO1-bound non-methylated sRNAs

undergo target-guided tailoring and trimming, which contributes

to the efficiency of sRNAs with limited complementarity to the

target [75]. Thus, the enrichment of size- and nucleotide-specific

Arabidopsis sRNAs that are not methylated and thus potentially

changed at their 39 end may represent an important mechanism

by which ORMV and potentially other viruses could diversify

sRNA function during infection. Our analysis revealed the

particular enrichment of sRNAs with 59 terminal guanine.

Notably, it is not known which of the AGO proteins is

predominantly associated with 21 nt 59G-sRNAs. It is also possible

that non-AGO proteins may functionally associate with 59G-

sRNAs and other enriched sRNAs to form effector complexes with

potentially diverse and yet unknown functions.

The enrichment of miRNA*s suggests that they might have a

conditional function, as may also be supported by their association

with predicted targets and the presence of potential target RNA

cleavage products in degradome databases [76].

miRNA precursors produce novel sRNAs in response to
pathogen infection

In addition to miRNA* sequences, virus infection also causes

the accumulation of ml-sRNAs, which also may play important

roles during infection. The detection of ml-sRNAs indicates that

miRNA precursors can produce additional sRNAs in Arabidopsis

upon virus infection. Processing of multiple miRNAs from one

precursor is a common phenomenon in animals where miRNA

precursors often fold into complex secondary structures with

Figure 9. Northern blot analysis confirms the accumulation of
ml-siRNAs in infected tissues. m, mock; inf, infected.
doi:10.1371/journal.pone.0019549.g009

Table 2. MIR-encoded ml-siRNAs.

Reads

MIR ml-siRNA ml-siRNA sequence size m inf AGO1 PARE2

miR159A 159A_IP* ATTGCATATCTCAGGAGCTTT 21 2 350 1,2,7 AT5G24620

miR159B 159B_IP* ATGCCATATCTCAGGAGCTTT 21 0 64 1,2,7

miR319A 319A_IP AATGAATGATGCGGTAGACAA 21 2 14 1,2,4,5

319A_IP1 AATGAATGATGCGGTAGACAAA 22 0 2 1,2,4,5

miR319B 319B_IP* AATGAATGATGCGAGAGACAA 21 6 39 1,2

miR319C 319C_IP TGTGAATGATGCGGGAGATAT 21 1 65 1

miR163 163_IP1 ATTATCCCCCGTGTTTTGTCC 21 0 3 1,2,4,5,7 AT4G11680

163_IP2 CCAAAACCCGGTGGATAAAAT 21 0 5 1,4,5,7 AT3G52150

miR169F 169F_IP* TGAAGGAATAACGAATGGAAT 21 2 0 1

miR169L 169L_IP TGGCGAAAAGAGTCATGTTTAA 22 1 6

miR447 447_IP1* ACTCGATATAAGAAGGGGCTT 21 2 44 1,2,4,5,7

447_IP2* TATGGAAGAAATTGTAGTATT 21 1 61 1,2,4,5,7

miR822 822_IP* AAACAATATACGTTGCATCCC 21 2 15 1,2,4,7

miR840 840_IP AAAGGTAAACGGCTCAGTGTG 21 1 370

miR841 841_IP1 CACATGCAACTCAAGACTAGA 21 10 1 AT1G01790

miR846 846_IP1 AATTGGATATGATAAATGGTA 21 0 8 2 AT4G38740,
AT5G57520

846_IP2* AATTGGATATGATAAATGGTAA 22 1 9

miR863 863_alter ATGCGATTGAGAGCAACAAGACAT 24 158 207

863_alter TGCGATTGAGAGCAACAAGAC 21 17 136 1,4

*Present also in plants infected with Pseudomonas syringae (Zhang et al., 2010). 1Potential association of ml-siRNA with specific AGO proteins. 2Potential targets of ml-
siRNA. Reads are RPM.
doi:10.1371/journal.pone.0019549.t002
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multiple hairpins, each coding for one or more miRNAs. In plants,

miRNA precursors usually form one hairpin coding for one

miRNA. However, in rare cases, plant miRNA precursors can

code for more than one miRNA. In these cases, miRNAs were

shown to be processed sequentially from the longer hairpins by

DCL1 from the hairpin base [58]. In rice, in addition to DCL1,

other DCLs are also involved in processing multiple miRNAs from

one-hairpin precursors [77].

The ml-sRNAs that we have identified here are rare or absent in

non-infected tissues and accumulate to high levels upon ORMV

infection. We identified 19 ml-siRNAs derived from 14 precursors

(Table 2). The enrichment and identification of ml-siRNAs

emphasizes the advantage of virus infection for the identification

of novel sRNAs [31]. Interestingly, a significant number of

different ml-siRNAs is also generated in Arabidopsis plants

infected with Pseudomonas syringae [36] suggesting that the synthesis

or stabilization of ml-siRNAs respond to common factors triggered

by infection with bacterial or viral pathogens. Sequences with

homology to ml-siRNAs occur in sRNA databases of a wide range

of organisms indicating that they play important roles and have

been conserved during evolution [36]. Similar to Zhang and

colleagues (2010), we found ml-siRNAs arranged in phase with

miRNAs and miRNA*s. The ml-siRNAs of miR159 and miR319

precursors are located towards the loop of the precursors,

separated by one phase from the miRNA sequence at the lower

stems. Since miR159 and miR319 are generated by sequential

DCL cleavage of the precursors starting at the loop [78,79], the

ml-siRNAs are likely generated during normal miRNA processing.

However, whereas the miR159/319 ml-siRNAs may be unstable

under normal conditions, they may be stabilized in virus-infected

tissues. A loop-based processing mechanism may also apply to the

precursors of miR840 and miR846, since also here the ml-siRNAs

identified in our data are located towards the loop. We also found

other cases, for example pre-miR447, where two ml-siRNAs

located near the hairpin base are processed from phases directly

adjacent to the miRNA located next to the loop. This situation is

consistent with the canonical base-to-loop processing mode, where

miRNA processing is initiated by a cut close to the base of the stem

[80]. Although the same applies to ml-siRNAs of the miR169 and

miR822 precursors according to our data, Zhang et al. (2010)

found ml-siRNAs located on either side of miR822. Whether the

ml-siRNAs and miRNAs of the stem-based pathway may originate

by consecutive, in-phase cleavage as in the case of the miR159/

319 precursors or whether these sRNAs are produced via

independent cleavage and release from different precursor

molecules remains to be seen. Although the number of unique

ml-siRNAs found by Zhang et al (2010) is higher, we found ml-

siRNAs derived from miR840 and miR319c precursors, which

were not detected in the previous study. Further studies are needed

to determine whether this difference is specific to stimuli (e.g.

infection by bacteria versus virus) or whether this only reflects the

efficiency by which unique sRNAs are sequenced. It appears likely

that the ml-siRNAs accumulating in virus-infected tissues are

caused by stabilization by the VSR or by another virus-induced

effector complex. Bacteria were recently shown to encode silencing

suppressors [81]. Thus, ml-siRNAs may represent potential anti-

pathogen agents triggered by both viral and bacterial pathogens.

Materials and Methods

Plant materials and virus infection
Arabidopsis thaliana col-0 plants were grown in humidity-

controlled growth chambers at 21uC using a 12 h/12 h light/

dark cycle. Nicotiana benthamiana plants were grown under

greenhouse conditions at 24uC using a 16 h/8 h light/dark cycle.

To generate the inoculum for ORMV infection, N. benthamiana

plants were inoculated with ORMV RNA in vitro transcribed from

an infectious clone. Crude, virus-containing extracts (sap) from

these infected plants as well as virus-free extracts from non-

infected plants were used for mechanical inoculation of young

Arabidopsis plants (5 leaves stage). The rosette leaves were

harvested at 7 dpi, 14 dpi, and 21 dpi. The harvested leaves of

16–20 mock- or ORMV-inoculated plants were pooled per

sample. Three independent samples of each treatment and time

point were prepared.

Sample preparation for RNA profiling and deep
sequencing

Total RNA extracts were prepared by using classical Trizol

(Invitrogen, Switzerland) extraction protocols following the instruc-

tions of the producer. The quality of the samples was verified by

hybridization with specific probes to detect viral RNA and viral/

endogenous sRNAs. Affimetrix gene chip hybridization for RNA

profiling was performed at the Functional Genomics Center

Zurich. The resulting Affimetrix microarray dataset was analyzed

by using the R environment (http://www.R-project.org) [82] and

Bioconductor software (http://www.biocinductor.org). For sRNA

analysis, the total RNA samples were separated by gel electro-

phoresis. 18–30 nt sRNAs were isolated form the gel, ligated with

adapters and sequenced using Solexa technology (ServiceXS B.V.,

Leiden, Netherlands; http://www.servicexs.com/).

Processing of deep sequencing data
sRNA libraries were sequenced on an Illumina Genome

Analyzer using the 36-cycle Solexa Sequencing Kit. The Illumina

Gerald pipeline was used to process and extract the first 36 bases

of the runs and a total of 6,658,605 raw sequence tags (3,447,032

reads for mock-inoculated samples and 3,211,573 reads for virus-

inoculated samples) were generated. Following removal of adapter

sequences the reads were grouped and counted according to

sequence identity using a customized Python script (available upon

request). The reads were mapped against the ORMV and A.

thaliana genomes using Bowtie software [83]. All read counts were

normalized to adjust for differences in library size and coverage to

reads per million (RPM) according to the total read count in each

library. Thus, each raw read count is multiplied by 106 and then

divided by the total read count of the whole library. This

normalization step allows for direct comparisons between the data

sets.

Verification of sRNA and mRNA levels
sRNAs were detected by Northern blot hybridization using

radiolabeled oligonucleotide probes as previously described [84].

The quality of RNA profiling and the infection-induced response

at the level of transcripts were verified by quantifying several

transcripts by qRT-PCR.

Target prediction and PARE database mining
sRNA targets were identified by searching degradome databases

with the StarBase on-line tool [59], using a penalty score $4.5 and

$1 cleavage tags.

Potential associations of sRNAs with AGO proteins were

identified by searching databases of AGO-associated sRNAs. The

GEO (http://www.ncbi.nlm.nih.gov/geo/) datasets used in the

assay were GSM253622 (AGO1), GSM253623 and GSM304285

(AGO2), GSM253624 (AGO4), GSM253625 (AGO5), and

GSM304283 (AGO7).
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Supporting Information

Figure S1 The viral and endogenous sRNA profile. (A)
Number of normalized sRNA reads (RPM) mapped to the

Arabidopsis thaliana (A.t.) and viral genomes. (B) Proportion of

virus- and plant-derived sRNA reads in the population of

sequenced and mapped sRNAs of ORMV-infected plants. (C)
Size distribution of vsRNAs. Virus infection increases the number

of 21 nt sRNAs whereas the number of 24 nt sRNAs is reduced.

(D) The normalized frequency (RPM) of vsRNAs according to

their specific 59 nucleotide. (E) vsRNAs mapped to the plus strand

(black) and minus strand (grey) of the ORMV genome.

(TIF)

Table S1 Size-specific profile of ta-siRNAs in mock- and
ORMV-treated plants (7 dpi).
(DOC)

Table S2 59nucleotide-specific accumulation of TAS2-
derived 21 nt siRNAs in ORMV-infected tissue (7 dpi).
(DOC)

Table S3 Size-specific profile of siRNAs encoded by
RDR6-dependent loci in mock- and ORMV-treated
plants.
(DOC)

Table S4 Size-specific profile of siRNAs encoded by
IR71 in mock- and ORMV-treated plants (7 dpi).

(DOC)

Table S5 miRNA and miRNA* reads in mock and
ORMV-infected plants.

(DOC)

Table S6 Functional annotations for genes with modu-
lated expression (log2-fold change, p,0.001) upon
ORMV infection.

(DOC)
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resources for RNA profiling using Affimetrix oligonucleotide arrays.

Author Contributions

Conceived and designed the experiments: MH MP. Performed the

experiments: QH CK AA AN DG DW FV. Analyzed the data: QH

MK AN JH MP MH. Contributed reagents/materials/analysis tools: MK

JH MP MH. Wrote the paper: QH AN MP MH FV  

whole activity

MH.

References

1. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe.

Nat Rev Genet 10: 94–108.

2. Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and

biological scopes of plant small RNAs. Trends Plant Sci 15: 337–345.

3. Charon C, Moreno AB, Bardou F, Crespi M (2010) Non-protein-coding RNAs

and their interacting RNA-binding proteins in the plant cell nucleus. Mol Plant

3: 729–739.

4. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13: 350–358.

5. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, et al. (2008) Criteria

for annotation of plant MicroRNAs. Plant Cell 20: 3186–3190.

6. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGO-

NAUTE proteins. Plant Cell 22: 3879–3889.

7. Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA

accumulation, DNA methylation and transcriptional gene silencing. EMBO J

26: 1691–1701.

8. Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, et al. (2010)

The Arabidopsis RNA-directed DNA methylation argonautes functionally

diverge based on their expression and interaction with target loci. Plant Cell

22: 321–334.

9. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-

specific siRNA accumulation and DNA and histone methylation. Science 299:

716–719.

10. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, et al. (2004)

Genetic and functional diversification of small RNA pathways in plants. PLoS

Biol 2: e104.

11. Chellappan P, Xia J, Zhou X, Gao S, Zhang X, et al. (2010) siRNAs from

miRNA sites mediate DNA methylation of target genes. Nucl Acids Res 38:

6883–6894.

12. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P,

Yamamoto YY, et al. (2008) Widespread translational inhibition by plant

miRNAs and siRNAs. Science 320: 1185–1190.

13. Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of

ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA

pathway are crucial for plant development. Genes Dev 18: 1187–1197.

14. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, et al. (2008)

Specificity of ARGONAUTE7-miR390 interaction and dual functionality in

TAS3 trans-acting siRNA formation. Cell 133: 128–141.

15. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of

exoribonucleases in Arabidopsis. Science 321: 1490–1492.

16. Yu B, Yang Z, Li J, Minakhina S, Yang M, et al. (2005) Methylation as a crucial

step in plant microRNA biogenesis. Science 307: 932–935.

17. Boutet S, Vazquez F, Liu J, Beclin C, Fagard M, et al. (2003) Arabidopsis

HEN1: a genetic link between endogenous miRNA controlling development and

siRNA controlling transgene silencing and virus resistance. Curr Biol 13:

843–848.

18. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The

mechanism selecting the guide strand from small RNA duplexes is different

among Argonaute proteins. Plant Cell Physiol 49: 493–500.

19. Mi S, Cai T, Hu Y, Chen Y, Hodges E, et al. (2008) Sorting of small RNAs into
Arabidopsis argonaute complexes is directed by the 59 terminal nucleotide. Cell

133: 116–127.

20. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism.
Adv Virus Res 75: 35–71.

21. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:

632–644.

22. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell
130: 413–426.

23. Diaz-Pendon JA, Ding S-W (2008) Direct and indirect roles of viral suppressors

of RNA silencing in pathogenesis. Annu Rev Phytopathol 46: 303–326.

24. Wu Q, Wang X, Ding SW (2010) Viral suppressors of RNA-based viral

immunity: host targets. Cell Host Microbe 8: 12–15.

25. Csorba T, Bovi A, Dalmay T, Burgyan J (2007) The p122 subunit of Tobacco

mosaic virus replicase is a potent silencing suppressor and compromises both small

interfering RNA- and microRNA-mediated pathways. J Virol 81: 11768–11780.

26. Vogler H, Akbergenov R, Shivaprasad PV, Dang V, Fasler M, et al. (2007)
Modification of small RNAs associated with suppression of RNA silencing by

tobamovirus replicase protein. J Virol 81: 10379–10388.

27. Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication
protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:

11016–11026.

28. Kurihara Y, Inaba N, Kutsuna N, Takeda A, Tagami Y, et al. (2007) Binding of
tobamovirus replication protein with small RNA duplexes. J Gen Virol 88:

2347–2352.

29. Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A,
et al. (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA

virus induced silencing. Nucl Acids Res 34: 6233–6246.

30. Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, et al. (2006)
Small RNA binding is a common strategy to suppress RNA silencing by several

viral suppressors. EMBO J 25: 2768–2780.

31. Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y (2007) Specific

enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus.

DNA Res 14: 227–233.

32. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and

coaccumulation of Tobacco mosaic virus proteins alter microRNA levels,

correlating with symptom and plant development. Proc Natl Acad Sci U S A
104: 12157–12162.

33. Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z (2010) Plant virus-

mediated induction of miR168 is associated with repression of ARGONAUTE1
accumulation. EMBO J 29: 3507–3519.

34. Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, et al. (2008) Tobacco

mosaic virus movement protein enhances the spread of RNA silencing. PLoS
Pathog 4: e1000038.

35. Morozova O, Marra MA (2008) Applications of next-generation sequencing

technologies in functional genomics. Genomics 92: 255–264.

36. Zhang W, Gao S, Zhou X, Xia J, Chellappan P, et al. (2010) Multiple distinct

small RNAs originate from the same microRNA precursors. Genome Biol 11:
R81.

Virus Infection on Arabidopsis Small RNA Profile

PLoS ONE | www.plosone.org 14 May 2011 | Volume 6 | Issue 5 | e19549

through governmental grants and co-ordinated the

. Provided funding

:



37. Martinez G, Donaire L, Llave C, Pallas V, Gomez G (2010) High-throughput

sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and
phloem. Mol Plant Pathol 11: 347–359.

38. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, et al. (2009)

Deep-sequencing of plant viral small RNAs reveals effective and widespread
targeting of viral genomes. Virology 392: 203–214.

39. Wu Q, Luo Y, Lu R, Lau N, Lai EC, et al. (2010) Virus discovery by deep
sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad

Sci U S A 107: 1606–1611.

40. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals a role for
Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis.

PLoS One 4: e4971.
41. Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A, et al. (2010) Deep

sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine.
Virology 408: 49–56.

42. Szittya G, Moxon S, Pantaleo V, Toth G, Rusholme Pilcher RL, et al. (2010)

Structural and functional analysis of viral siRNAs. PLoS Pathog 6: e1000838.
43. Buck KW (1999) Replication of Tobacco mosaic virus RNA. Phil Trans R Soc

London B 354: 613–627.
44. Kielland-Brandt MC (1974) Studies on biosynthesis of Tobacco mosaic virus. VII.

Radioactivity of plus and minus strands in different forms of viral RNA after

labelling of infected tobacco leaves. J Mol Biol 87: 489–503.
45. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the

biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19: 2164–2175.
46. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA

slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl
Acad Sci U S A 102: 11928–11933.

47. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed

phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.
48. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and

evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:
3407–3425.

49. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and

SGS2/SDE1/RDR6 are required for juvenile development and the production
of trans-acting siRNAs in Arabidopsis. Genes Dev 18: 2368–2379.

50. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, et al. (2004)
Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis

mRNAs. Mol Cell 16: 69–79.
51. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant

functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing

trans-acting siRNAs. Curr Biol 15: 1494–1500.
52. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, et al. (2007)

Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/
DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and

tasiRNA-directed targeting. Plant Cell 19: 926–942.

53. Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, et al. (2006) Dissecting
Arabidopsis thaliana DICER function in small RNA processing, gene silencing and

DNA methylation patterning. Nat Genet 38: 721–725.
54. Lindow M, Krogh A (2005) Computational evidence for hundreds of non-

conserved plant microRNAs. BMC Genomics 6: 119.
55. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, et al.

(2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for

frequent birth and death of MIRNA genes. PLoS One 2: e219.
56. Vazquez F, Blevins T, Ailhas J, Boller T, Meins F, Jr. (2008) Evolution of

Arabidopsis MIR genes generates novel microRNA classes. Nucl Acids Res 36:
6429–6438.

57. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, et al. (2010) Small RNA

duplexes function as mobile silencing signals between plant cells. Science 328:
912–916.

58. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through
Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101: 12753–12758.

59. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, et al. (2010) starBase: a database

for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq
and Degradome-Seq data. Nucl Acids Res.

60. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant
resistance to viruses. Nat Rev Microbiol 3: 789–798.

61. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, et al. (1998) Viral

pathogenicity determinants are suppressors of transgene silencing in Nicotiana

benthamiana. EMBO J 17: 6739–6746.

62. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a

general strategy used by diverse DNA and RNA viruses of plants. Proc Natl
Acad Sci U S A 96: 14147–14152.

63. Voinnet O (2005) Induction and suppression of RNA silencing: insights from
viral infections. Nat Rev Genet 6: 206–220.

64. Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, et al. (2010) Two
plant viral suppressors of silencing require the ethylene-inducible host

transcription factor RAV2 to block RNA silencing. PLoS Pathog 6: e1000729.

65. Lewandowski DJ, Dawson WO (1993) A single amino acid change in Tobacco

mosaic virus replicase prevents symptom production. Mol Plant Microbe Interact

6: 157–160.

66. Ding XS, Liu J, Cheng NH, Folimonov A, Hou YM, et al. (2004) The Tobacco

mosaic virus 126-kDa protein associated with virus replication and movement
suppresses RNA silencing. Mol Plant Microbe Interact 17: 583–592.

67. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target

recognition and mode of action. Nat Rev Mol Cell Biol 10: 141–148.

68. Chen XM (2009) Small RNAs and their roles in plant development. Ann Rev

Cell Dev Biol 25: 21–44.

69. Wu L, Zhou HY, Zhang QQ, Zhang JG, Ni FR, et al. (2010) DNA methylation

mediated by a microRNA pathway. Mol Cell 38: 465–475.

70. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer
homolog, and HEN1, a novel protein, act in microRNA metabolism in

Arabidopsis thaliana. Curr Biol 12: 1484–1495.

71. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and

siRNAs from a 39-end uridylation activity in Arabidopsis. Curr Biol 15:
1501–1507.

72. Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, et al. (2007) Pimet, the

Drosophila homolog of HEN1, mediates 29-O-methylation of PIWI-interacting
RNAs at their 39 ends. Genes Dev 21: 1603–1608.

73. Horwich MD, Li C, Matranga C, Vagin V, Farley G, et al. (2007) The
Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and

single-stranded siRNAs in RISC. Curr Biol 17: 1265–1272.

74. Pelisson A, Sarot E, Payen-Groschene G, Bucheton A (2007) A novel repeat-

associated small interfering RNA-mediated silencing pathway downregulates

complementary sense gypsy transcripts in somatic cells of the Drosophila ovary.
J Virol 81: 1951–1960.

75. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, et al. (2010) Target
RNA-directed trimming and tailing of small silencing RNAs. Science 328:

1534–1539.

76. German MA, Pillay M, Jeong DH, Hetawal A, Luo SJ, et al. (2008) Global
identification of microRNA-target RNA pairs by parallel analysis of RNA ends.

Nat Biotech 26: 941–946.

77. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, et al. (2010) DNA methylation

mediated by a microRNA pathway. Mol Cell 38: 465–475.

78. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base

processing mechanism underlies the biogenesis of plant microRNAs miR319 and

miR159. EMBO J 28: 3646–3656.

79. Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, et al. (2009) Sliced

microRNA targets and precise loop-first processing of MIR319 hairpins revealed
by analysis of the Physcomitrella patens degradome. RNA 15: 2112–2121.

80. Schwab R, Voinnet O (2009) miRNA processing turned upside down. EMBO J
28: 3633–3634.

81. Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the

microRNA pathway by bacterial effector proteins. Science 321: 964–967.

82. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics.

J Comp Graph Stat 3: 299–314.

83. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol
10: R25.

84. Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, et al. (2006)

Molecular characterization of geminivirus-derived small RNAs in different plant
species. Nucl Acids Res 34: 462–471.

Virus Infection on Arabidopsis Small RNA Profile

PLoS ONE | www.plosone.org 15 May 2011 | Volume 6 | Issue 5 | e19549


