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Dynamic contrast-enhanced (DCE)-magnetic resonance
imaging (MRI) of the breast has emerged as an adjunct
imaging tool to conventional X-ray mammography due
to its high detection sensitivity. Despite the increasing
use of breast DCE-MRI, specificity in distinguishing
malignant from benign breast lesions is low, and
interobserver variability in lesion classification is high.
The novel contribution of this paper is in the definition of
a new DCE-MRI descriptor that we call textural kinetics,
which attempts to capture spatiotemporal changes in
breast lesion texture in order to distinguish malignant
from benign lesions. We qualitatively and quantitatively
demonstrated on 41 breast DCE-MRI studies that
textural kinetic features outperform signal intensity
kinetics and lesion morphology features in distinguishing
benign from malignant lesions. A probabilistic boosting
tree (PBT) classifier in conjunction with textural kinetic
descriptors yielded an accuracy of 90%, sensitivity of
95%, specificity of 82%, and an area under the curve
(AUC) of 0.92. Graph embedding, used for qualitative
visualization of a low-dimensional representation of the
data, showed the best separation between benign and
malignant lesions when using textural kinetic features.
The PBT classifier results and trends were also corrobo-
rated via a support vector machine classifier which
showed that textural kinetic features outperformed the
morphological, static texture, and signal intensity
kinetics descriptors. When textural kinetic attributes
were combined with morphologic descriptors, the result-
ing PBT classifier yielded 89% accuracy, 99% sensitiv-
ity, 76% specificity, and an AUC of 0.91.
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INTRODUCTION

M agnetic resonance imaging (MRI) is cur-
rently used as a complement to conven-

tional X-ray mammography in diagnosis of breast

lesions.1 X-ray mammography remains the gold
standard for breast cancer screening and offers
high two-dimensional (2D) resolution, which is
advantageous for detecting small variations in
tissue composition, such as microcalcifications.2

However, due to the constraints of imaging a
three-dimensional (3D) structure in a single plane,
ultrasound or breast dynamic contrast-enhanced
(DCE)-MRI is often used as a secondary imaging
technique when a suspicious lesion is found on
mammography.2 Ultrasound is very good at detect-
ing tissue composition and hence is able to provide
additional information to the mammogram in situa-
tions where the breast tissue is dense or a cystic mass
needs to be ruled out.3 DCE-MRI is also very good at
imaging dense breasts, but its major advantages over
mammography and ultrasound are the ability to (a)
image the entire breast as thin slices that comprise the
entire breast volume and (b) measure variations in
contrast uptake that provide information about the
vascularity of the breast tissue. Since malignant
tumors often have a high density of blood vessels that
are poorly formed and thus leaky, they take up
contrast dye at a different rate from benign lesions,
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allowing radiologists to distinguish malignant from
benign lesions based on corresponding differences in
contrast kinetics.1,4

On account of breast DCE-MRI's high 3D
resolution and its ability to acquire kinetic contrast
information, its lesion detection sensitivity is close
to 100%,5 much higher than that of either
mammography or ultrasound.1 However, specific-
ity of breast DCE-MRI is low, with rates of
between 30% and 70%5,6 having been reported.
High false positive detection rates on MRI often
lead not only to anxiety for the patient but may
also result in an unnecessary invasive biopsy.1,5 In
a review of the literature, Saslow et al.1 found
biopsy rates were between 3% and 15% when MRI
was used for breast cancer screening in a high risk
population, whereas the biopsy rates for mammog-
raphy were 1–2%. In addition to the problem of low
specificity, another shortcoming of breast MRI is
that only experienced radiologists are able to
accurately distinguish benign from malignant
tumors.1,7 This often leads to high rates of interob-
server variability.7 Ikeda et al.7 reported this
variability with kappa statistics between 0.21 and
0.40, where 1.0 represents complete agreement and
0.0 represents no agreement above the level
expected by random chance. Therefore, one of the
challenges in facilitating increased acceptance of
breast DCE-MRI as a screeningmodality is reducing
false positive detection errors, thereby boosting
detection specificity. Additionally, the interobserver
variability for breast DCE-MRI must be minimized.
To address the issues of low specificity and high

interobserver variability in breast DCE-MRI, the
American College of Radiology proposed the
Breast Imaging Reporting and Data System (BIR-
ADS),8 a semi-quantitative classification protocol
for evaluating breast lesions. Lesions are evaluated
on the basis of shape, margin morphology, internal
enhancement, and kinetic or time–intensity curve
characteristics.9,10 Assuming that the imaging is
complete, the radiologist gives each lesion seen on
DCE-MRI a score between 1 and 6, where 1 is
negative and 6 is known cancer8 based on the
combination of lesion characteristics. Although the
BIRADS system has helped to standardize the
diagnosis of breast lesions, studies1,7,9 continue to
report significant variability in lesion interpretation
among radiologists.
The remainder of this paper is organized as

follows. In “Previous Work and Motivation,” we

discuss the previous work in the analysis of breast
DCE-MRI and computer-aided diagnosis (CAD)
for breast DCE-MRI, as well as the motivation for
the methods proposed in this paper. In “Materials
and Methods,” we provide a description of the data
and notational conventions employed and also
describe our feature extraction schemes. We also
provide details on the classifier methods used to
quantify feature performance in “Materials and
Methods.” In “Experiments and Performance
Measures,” the experiments performed and the
metrics used to evaluate the features are described.
Quantitative and qualitative results showing the
performance of the individual descriptors, as well
as a combination of descriptors via two different
classifiers, are presented in “Results.” Concluding
remarks and future directions are presented in
“Concluding Remarks.”

PREVIOUS WORK AND MOTIVATION

In clinical decision-making, changes in signal
intensity kinetics are an important descriptor for
breast lesion characterization in DCE-MRI.2,4,7,9–11

DCE-MRI involves first injecting a contrast agent
such as gadolinium diethylenetriamine-pentaacid
(Gd-DTPA) into the patient's bloodstream and
concurrently acquiring a time series of MR images
of the breast. Since malignant lesions tend to grow
leaky blood vessels in abundance, the contrast agent
is taken up by tumors preferentially.12 Kuhl et al.4

found that data in the time series MRI could be
plotted as single data points on a temporal curve,
where the shape of the curve is reflective of the
lesion class. It was shown4 that malignant lesions
had a characteristic curve with a steep positive
initial slope indicating rapid uptake of contrast
agent and a subsequent negative slope indicating
rapid washout. Benign lesions had slow contrast
uptake (small positive initial slope) and then
plateaued or did not reach peak intensity during
the image acquisition period. Although signal
intensity kinetics offer a great advantage to DCE-
MRI for studying the functional attributes of breast
lesions compared to other modalities, features
derived from contrast enhancement data contribute
to the high false positive rates reported for breast
DCE-MRI.5 For instance, while both benign and
malignant neoplastic tissue frequently have contrast
enhancement patterns that differ from normal breast
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tissue, it is often difficult for radiologists to differ-
entiate between benign and malignant lesions
simply by visually inspecting the contrast-enhanced
lesion on the postcontrast MRI. Consequently,
several quantitative and semi-quantitative models
have been proposed to measure the manner in which
a lesion takes up the contrast dye.11,13–28

Several computer-based image analysis systems
have been proposed13–26,29,30 with the aim of
reducing interobserver variability on breast DCE-
MRI. CAD approaches for breast MRI are typi-
cally either for automatically (a) detecting a lesion
(computer-aided detection (CADe))13–18,29,30 or
(b) classifying a lesion as benign or malignant
(computer-aided diagnosis (CADx)).13,15,19–26

Automated CADe approaches usually exploit the
fact that malignant lesions typically have different
signal intensity kinetic profiles on DCE-MRI
compared to normal parenchyma.13–18,29,30 Some
of these methods have been shown to have a
detection accuracy comparable to manual detec-
tion.13–18,29,30 However, a CADx system assumes
that the lesion detection has been solved either
manually or via CADe, and it is typically
comprised of two modules: (1) a quantitative
feature extractor and (2) a classifier that employs
the attributes extracted from the lesion to discrim-
inate lesion classes. Several different CADx
classifiers for DCE-MRI have been proposed
including linear discriminant analysis (LDA),17

artificial neural networks,6,15,19,20 and support
vector machine (SVM) classifiers.21 Feature
descriptors employed by CADx systems have
typically included morphological,20 lesion tex-
ture,17,23 contrast enhancement,13,15,21 or a combi-
nation of morphological and contrast enhancement
descriptors.6,19,22 Meinel et al.20 found mean
volume, area, radial length, spiculation, perimeter
length, and compactness to be among the best
morphological features, and their results with a
back-propagation neural network classifier yielded
an area under the curve (AUC) of 0.9748 on a
dataset of 80 lesions using the leave-one-out
method. Zheng et al.17 reported an AUC of 0.97
using temporal enhancement texture features on a
cohort of 36 lesions. Gibbs et al.23 reported an
AUC of 0.80 using co-occurrence texture features
on a cohort of 79 patients. However, by including
patient data in the regression model, Gibbs et al.23

achieved an accuracy of 92% and an AUC of 0.92.
Using contrast enhancement alone, Chen et al.13

achieved an AUC of 0.85 over 121 studies, and
Levman et al.21 obtained an AUC of 0.74 using
empirical enhancement features such as signal
enhancement ratio and time to peak enhancement
over a cohort of 94 studies.
The three-time-point (3TP) model24 and the

pharmacokinetic (PK) model27 are two common
classifier-based approaches that focus on the
kinetic contrast enhancement data and have been
proposed for automated lesion diagnosis on DCE-
MRI. The 3TP model developed by Degani et al.24

assigns a color (red, green, or blue) to the slope of
the contrast uptake portion of the kinetic curve and
a color intensity between 0.0 and 1.0 to the
contrast washout portion of the kinetic curve. The
colormaps allow for a parametric visualization of
the contrast enhancement profile by displaying
each pixel as red if malignant, blue if benign, and
green if suspicious for malignancy. Recently, on a
dataset of 127 lesions,26 the 3TP model yielded a
sensitivity of 75.0% and a specificity of 83.1%,
improving somewhat upon previously reported
specificity results,5,6 but sacrificing sensitivity.
PK models differ from the 3TP method in that
their objective is to provide a physiologic inter-
pretation of the data by determining parameters
such as Ktrans (the transfer constant between the
plasma and tissue compartments), υe (the extrac-
ellular extravascular volume fraction), and kep (the
ratio of Ktrans/υe).

27 Szabo et al.15 reported 71%
sensitivity and 100% specificity using features
derived from the Hayton PK model on a cohort
of ten patients using a pixel-wise classifier. Velt-
man et al.31 reported an AUC of 0.83 with the
Tofts PK model on a cohort of 102 lesions in 96
patients. While Ktrans, υe, and kep have been shown
to discriminate between lesion classes,27 the
computed values are highly sensitive to the choice
of initial conditions.28 Moreover, it has been noted
in some recent studies2,5,13 that the heterogeneity
of lesion enhancement poses problems for the
correct selection of pixels for the calculation of
signal enhancement features.
The use of signal intensity kinetic profiles for

lesion classification is also limited by other
technical hurdles including MR artifacts such as
bias field inhomogeneity32 and intensity non-
linearity.33 An alternative to using temporal signal
intensity profiles to characterize the lesion is to
quantify the lesion texture, a somewhat nebulous
term broadly used to refer to localized spatial
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variations in signal intensity. Lesion texture has
also been acknowledged as an important lesion
descriptor as evidenced by the incorporation of
internal enhancement as a BIRADS descriptor for
breast MRI lesion classification.8 While internal
enhancement is intended for the assessment of the
MRI at a single time point after contrast injection,
it may also be useful to capture a measure of the
change in this feature as a function of contrast
enhancement. The concept of studying spatiotem-
poral textural patterns has been previously
explored in Zheng et al.17 and Woods et al.18

Zheng et al.17 computed the discrete Fourier
transform coefficients of kinetic changes in Gabor
filter features to create parametric maps of the
lesions. The authors reported an AUC of 0.97
using a leave-one-out LDA classifier on a cohort
of 36 lesions. Woods et al.18 computed a four-
dimensional co-occurrence matrix to calculate tex-
ture features in a pixel-wise fashion to differentiate
between normal and malignant tissue. They were
able to distinguish malignant and benign tissue areas
with a sensitivity of 96.22% and a specificity of
99.85% on a dataset comprising four invasive ductal
carcinomas and four benign lesions.
In this paper, a scheme is presented to analyze

textural kinetic1 curves, which quantify the spatio-
temporal patterns of lesion texture during contrast
uptake and diffusion. Instead of reducing the data
into a single 2D image representation as in Zheng
et al.17 and Woods et al.,18 the data here is
presented in a manner familiar to radiologists and
analogous to the signal intensity kinetic curves.
Hence, the texture measures associated with the
lesion at each pre- and postcontrast enhancement
time point are plotted on a time series curve.
Unlike previous studies,17,18 the textural kinetic
curves can be defined in multiple different para-
metric spaces (including Gabor, first-order statisti-
cal, and Haralick). Parameters obtained from model
fitting these textural kinetic curves are employed in
conjunction with a classifier to distinguish lesion
classes. This allows for powerful multi-feature
classifiers involving parameters from multiple
textural and morphological representations to be
easily constructed, unlike in previous studies,17,18

which only consider spatiotemporal changes of

certain attributes (Gabor17 and Haralick18). To
illustrate the discriminability associated with the
textural kinetic features, the signal intensity and
corresponding textural kinetic curves for a second-
order textural kinetic feature (contrast entropy) for
ten benign (blue curves) and ten malignant lesions
(red curves) are shown plotted in Figure 1(a) and
(b), respectively. Each lesion was first manually
segmented by an expert radiologist. The mean
signal intensity, as well as the texture at each pre-
and postcontrast time point, was calculated and then
plotted. Figure 1(a) and (b) reveal that the textural
kinetic feature was able to separate the benign from
the malignant lesions better than signal intensity
kinetics. The improved separation of lesion classes
using the textural kinetic features appears to
reinforce the fact that textural attributes may be
more robust to bias field and intensity non-stand-
ardness33 than image signal intensity.
The main components of our methodology for

assessing the performance of textural kinetic
features as a lesion classifier on breast DCE-MRI
are illustrated in the flowchart shown in Figure 2.
Textural kinetic features are compared to signal
intensity kinetic, morphologic, and pre- and peak
contrast static texture descriptors of the lesion in
distinguishing between benign and malignant
breast lesions. The texture operators used include
Gabor filters, first-order textural features, and
second-order textural features. Gabor filters have
been modeled on the patterning of the human
visual cortex34 and have found widespread appli-
cation in image analysis.17,33,34 First-order textural
features (mean and median) give a global picture
of lesion enhancement, whereas standard deviation
and range yield insight into lesion heterogeneity.
Second-order textural features, calculated via co-
occurrence matrices,35 reflect regional heterogene-
ity in the lesion. This may be particularly
important, for example, in deciding if the malig-
nant-type signal enhancement in a single pixel
location in a lesion is an artifact or if there are
neighboring pixels with similar signal intensities
that corroborate the enhancement characteristics of
a malignant lesion. Since both the SVM and
probabilistic boosting tree (PBT) classifiers have
been successfully employed for a variety of
biomedical applications,36 the classification per-
formance of each feature is assessed with both an
SVM classifier, which yields a hard benign or
malignant classification, and a PBT classifier,

1Protected by PCT International Application No. PCT/
US2009/034505.
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which assigns a probability of malignancy to each
lesion. In addition to the classifiers, graph embed-
ding37 is used to observe the clustering of the

different lesions in a reduced-dimensional embed-
ding space. After evaluating the individual fea-
tures' performance, the features are combined to

Benign
Malignant

Benign
Malignant

a b

Fig 1. (a) Signal intensity and (b) a second-order textural kinetic curves (contrast entropy) for ten malignant (dotted red line) and ten
benign (solid blue line) tumors over the course of contrast administration. Time=0 is precontrast; progression along the normalized time
axis denotes postcontrast time points. Time is normalized due to variability in the number of postcontrast time points among the datasets.

Feature Extraction

Morphology
Signal Intensity 

Kinetics
Precontrast Texture Textural Kinetics

Manual Lesion 
Detection/ Segmentation

Peak Contrast
Texture

Non-linear dimensionality 
reduction of features

Support Vector 
Machine classifier

Probabilistic Boosting 
Tree classifier

Qualitative Analysis Quantitative Analysis

Fig 2. Flowchart illustrating the steps comprising the methodology presented in this paper. Following manual lesion detection and
segmentation, four different feature classes are extracted (morphological, signal intensity kinetics, precontrast texture, and peak
contrast texture) to compare against textural kinetics. Quantitative evaluation of the five feature classes is done via support vector
machine and probabilistic boosting tree classifier accuracy, while graph embedding is used for qualitative evaluation.
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build a multi-feature classifier that aims to further
improve lesion classification.

MATERIALS AND METHODS

Data Description

A total of 41 (24 malignant and 17 benign)
breast DCE-MRI studies were obtained from the
Hospital at the University of Pennsylvania. All of
these were clinical cases where a screening
mammogram revealed a lesion suspicious for
malignancy. All studies were collected under
Institutional Review Board approval, and lesion
diagnosis was confirmed by biopsy and histolog-
ical examination. Sagittal T1-weighted, spoiled
gradient echo sequences with fat suppression
consisting of one series before contrast injection
of Gd-DTPA (precontrast) and three to eight series
after contrast injection (postcontrast) were
acquired at either 1.5 Tesla or 3 Tesla (Siemens
Magnetom or Trio, respectively). Single slice
dimensions were 384×384, 512×512, or 896×
896 pixels with a slice thickness of 3 mm.
Temporal resolution between postcontrast acquis-
itions was a minimum of 90 s. The region of
interest (ROI) associated with the lesion was then
manually segmented via MRIcro imaging soft-
ware38 by an attending radiologist with expertise in
MR mammography. The radiologist selected a 2D
slice of the MRI volume that was most representa-
tive of each lesion, and the analyses were
performed only for that 2D slice.

General Notation Used

We define a 2D section of a 3D MRI volume as
C=(C, f t), where C is a spatial grid of pixels c∈C,
and f t is the function that assigns a signal intensity
value at every pixel c∈C and at each time point
t∈{0, 1, 2,..., T−1} in the DCE-MRI time series. t
=0 refers to the time at which the precontrast
image is acquired, and t∈{1,..., T−1} refers to the
times at which the subsequent postcontrast images
are acquired. The segmentation performed by the
radiologist defines the boundary of the lesion,
where the set of boundary points, R ¼
dð0Þ; dð1Þ; . . . ; d n�1ð Þ; dðnÞ� �

, is a subset of the
pixels contained in the lesion, L, where L⊂C. The
set of pixels in R ¼ dð0Þ; dð1Þ; . . . ; d n�1ð Þ; dðnÞ� �

constitutes an eight-connected boundary such that
f o r i 2 0; . . . ; n � 1f g, dð0Þ ¼ d nþ1ð Þ, a n d
dðiÞ � d iþ1ð Þ�� ��

2e
ffiffiffi
2

p
, assuming unit spacing

between the pixels in C. The coordinates of the
centroid of L are defined as c ¼ x; yð Þ, where
c ¼ 1

jLj
P
c2L

c, and |L| is the cardinality of set L.
Notation and symbols commonly used in this paper
are shown in Table 1.

Feature Extraction

Texture Features

A total of 92 precontrast texture features, 92
peak contrast texture features, and 92 textural
kinetic features are calculated to describe the
texture of each lesion in the dataset. After rescaling
each image to a fixed grayscale intensity range,
multiple different texture operators, ��; 1�eK,
where K ¼ 276 represents the total number of
features, are explored. The application of
��; � 2 1; . . . ;Kf gto each lesion L yields a
unique feature value, F � , associated with that
lesion. The texture of the lesion before contrast
agent injection (precontrast texture), the lesion
texture at peak contrast enhancement, and the
textural kinetic feature classes are obtained via
application of several steerable, non-steerable, and
statistical filters. Table 2 summarizes all texture
features employed in this work.

Gradient features Eleven non-steerable gradient
features are obtained using Sobel and Kirsch edge
filters and first-order spatial derivative operations.
The Gabor filters, comprising the steerable class of
gradient features, are defined by the convolution of
a 2D Gaussian function with a cosine.39 Hence, for
every c∈L, where c ¼ x; yð Þ,40,41 the Gabor filter
bank response can be expressed as

l�;�;’ðcÞ ¼ e�
x02þy02
2�2 cos 2

p
�
x0

� �
ð1Þ

where Λ is the wavelength of the sinusoid which
controls the spatial frequency (scale) of the
oscillations. The width of the Gaussian envelope
Ω is used to define filters as a function of Λ such
that Ω=0.56Λ as derived in Kruizinga et al.34

Filter orientation, φ, dictates the coordinate trans-
format ions: x0 ¼ x cos’þ y sin’ and y0 ¼
�x sin’þ y cos’. Six different scales ð� 2
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Table 1. List of Notation and Symbols Commonly Used in This Paper

Symbol Description Symbol Description

C 2D MRI scene hq ðcÞ Texture feature value for c 2 L; q 2 1; . . . ;Qf g
C 2D grid of pixels, c 2 C N sðcÞ Square neighborhood of length s associated

with each c 2 L
�c Spatial location of a pixel in C,

where c ¼ x; yð Þ
�� Feature operator, where 1e�eK

L Set pixels corresponding to a lesion F � Average feature value for operator �� over
all c 2 L

R A set of pixels defining the boundary
of a lesion, L

� 2 SVM, 3TP, PBTf g Classifier type

c Centroid of a lesion, defined by the
2D center of mass

V� Classifier output where V� 2 �1;þ1f g

r Maximum radial distance of the lesion NTP;�;NTN;�;NFP;�;NFN;�

� �
Number of lesions identified as true positive,
true negative, false positive, and false
negative, respectively, using classifier �

t A time point in the MRI time series,
t 2 0; 1; 2 . . . ; T � 1f g

Y 2 �1;þ1f g Ground truth label of lesion, L

f t ðcÞ Signal intensity value associated with a pixel,
c, at time point, t 2 0; 1; 2 . . . ; T � 1f g

E ¼ L1;L2; . . . ;LMf g Dataset comprised of M lesions

Table 2. Summary of All Textural Features Considered in This Paper with Associated Parameter Values

Texture feature class Individual attributes Parameters

Gabor filters 6 scales � 2 �
2
ffiffi
2

p ; �4; . . . ;
�
16

n o
,

8 orientations ’ 2 0; �8; . . . ;
7�
8 g

�
Kirsch filters X-direction Window size, s ¼ 3

Y-direction
XY-diagonal

Sobel filters X-direction Window size, s ¼ 3
Y-direction
XY-diagonal
YX-diagonal

Gray level (first-order textural) Mean Window size, s 2 3; 5; 7f g
Median
Standard deviation
Range
x-Gradient
y-Gradient
Magnitude of gradient
Diagonal gradient

Haralick (second-order textural) Contrast energy Window size, s ¼ 3
Contrast inverse moment
Contrast average Maximum intensity,g ¼ max

d2C
f ðdÞ½ �

Contrast variance
Contrast entropy
Intensity average
Intensity variance
Intensity entropy
Entropy
Energy
Correlation
Info. measure of correlation 1
Info. measure of correlation 2

These features were used in the calculation of precontrast, peak contrast, and textural kinetics features
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f �
2
ffiffi
2

p ; �4 ; . . . ;
�
16gÞ a n d e i g h t o r i e n t a t i o n s

’ 2 0; �8 ; . . . ;
7�
8

� �� 	
are considered in construct-

ing the Gabor filter bank.

First-order statistical features Four first-order
statistical features (mean, median, standard
deviation, and range) for three different square
window sizes, s∈{3, 5, 7}, are calculated for the
gray values of pixels within the sliding window N s .
At every c 2 C ;N sðcÞ ¼ d 2 C jd 6¼ c; d � ck k2 e s

� �
,

and �k k2 is the L2 norm. Hence, average intensity,
f ðcÞ, within window N sðcÞ is calculated as

f ðcÞ ¼ 1

N sðcÞj j
X

d2N sðcÞ
f ðdÞ; ð2Þ

where c∈C is the center pixel of the square
window N sðcÞ. Median, standard deviation, and
range of image intensities within each N sðcÞ for
each c∈C are also calculated.

Second-order statistical features To calculate the
second-order statistical (Haralick) feature scenes,35

a pixel window, N s , s=3, is defined. The
parameter s=3 is chosen to capture spatial
variations at a high resolution because some of the
smaller lesions in the dataset have an area just above
100 pixels. We then compute from each N sðcÞ, c∈
C, a g × g spatial gray level co-occurrence matrixGc,
where g is the maximum grayscale intensity of the
image Cðg ¼ max

d 2 C
f ðdÞ½ �Þ. The value Gc u;w½ � at

any location, u;w 2 1; . . . ; gf g, represents the
frequency with which two distinct pixels,
d; k 2 N sðcÞ, with associated image intensities,
f ðdÞ ¼ u; f ðkÞ ¼ w, are adjacent (i.e., within the
same 8-pixel neighborhood of N sðcÞ). A total of 13
second-order statistical35 features (see Table 2) are
extracted within each N sðcÞ for every pixel c 2 C
for s=3.

Textural Kinetic Features

For each d 2 L, htqðdÞ represents each of the Q
different pixel-based pre- and postcontrast texture
feature values, where q 2 1; . . . :;Qf g and t 2
0; . . . ;T � 1f g. The mean feature value, h

t
q ,

within each lesion L and at each time point
t is then expressed as h

t
q ¼ 1

Lj j
P
d2L

htqðdÞ; q 2
1; . . . ;Qf g, and a corresponding textural kinetic

vector, ĥq ¼ ½h0q ; h
1
q ; . . . ; h

T�1
q �, is created. A third-

order polynomial is fitted to ĥq to characterize its
shape as

~htq ¼ �q;3t
3 þ �q;2t

2 þ �q;1t þ �q;0; ð3Þ

where �q;3; �q;2; �q;1; �q;0

 �

are the model coeffi-
cients obtained by minimizing the root mean
squared difference error between ĥq and ~htq , where
t 2 0; . . . ;T � 1f g and q 2 1; . . . :;Qf g.

Signal Intensity Kinetic Feature

Signal intensity kinetic curves are calculated
from the mean signal intensity within the lesion
ROI in a manner similar to the curve generated
and described in “Textural Kinetic Features.” The
average lesion intensi ty is obtained as
f
0
; f

1
; f

2
; . . . ; f

T�1
h i

; t 2 0; . . . ;T � 1f g. T h e

model coefficients ½�3; �2; �1; �0� of a third-order
polynomial are obtained by the minimization
procedure described in “Textural Kinetic Features.”

Morphological Features

For mass-like lesions, two important lesions
descriptors in the BIRADS lexicon are lesion
shape (e.g., round, oval, lobular, and irregular)
and lesion margin (e.g., smooth, irregular, and
spiculated).8 In this study, we consider six differ-
ent quantitative descriptors modeled on the BIR-
ADS attributes (Table 3 and Fig. 3).42,43 The Area
overlap ratio is a measure of lesion roundness, and
the normalized average radial distance ratio,
standard deviation of normalized distance ratio,
variance of distance ratio, compactness, and
smoothness are all descriptors for quantifying
irregularity of the lesion boundary.

Classification

Support vector machine (SVM) The SVM classifier,
VSVM, is employed to evaluate the ability of the lesion
descriptors to discriminate between benign and
malignant breast lesions on DCE-MRI. We
construct VSVM by using a kernel function (∏) to
project training data Etra � E, where E ¼
L1;L2; . . . ;LMf g is the set of all lesions, onto a

higher-dimensional space. This higher-dimensional
space allows the SVM to construct a hyperplane to
separate the two data classes (benign and malignant in
our case). The VSVM is then evaluated by projecting

TEXTURAL KINETICS FOR BREAST LESION CLASSIFICATION ON DCE-MRI 453



testing data, Etes � E, where Etes \ Etra ¼ ; into the
same space and recording the location of the newly
embedded datapoint with respect to the hyperplane. In
our implementation, the radial basis function (RBF)
kernel was employed to project the attributes with
F � Lið Þ and F � Lj

� 	
, � 2 1; . . . ;Kf g, where i; j 2

1; . . . ;Mf g and i 6¼ j , into a higher-dimensional
space. The functional form of the RBF is given by44

Y
F g Lið Þ;F g Lj

� 	� 	 ¼ e�d F g Lið Þ�F g Ljð Þk k2 ; ð4Þ

where δ is a scaling parameter. The general form
of the SVM classifier is given as

� Lið Þ ¼
Xt
z¼1

xzY Lz
� 	Y F g Lið Þ;F g Lz

� 	� 	þ b; ð5Þ

where � 2 1; 2; . . . ; �f g represents the � marginal
training samples (i.e., support vectors), b is the

hyperplane bias estimated for Etra, and 	� is the
model parameter determined by maximizing an
objective function subject to constraints which
control the trade-off between empirical risk and
model complexity.45,46 Y Lj

� 	 2 þ1;�1f g repre-
sents the class labels, malignant and benign,
respectively. � Lið Þ represents the displacement
from image Li to the hyperplane, and the output of
the SVM classifier, VSVM Lið Þ, is equal to
sign � Lið Þ½ �.

Probabilistic boosting tree (PBT) AdaBoost47 is a
popular ensemble machine-learning algorithm
which yields a class label prediction by
combining the outputs from several weak
classifiers. However, in AdaBoost, the weighting
scheme sometimes penalizes samples that are
misclassified by a weak classifier even if they

Table 3. List of Morphological Features and Their Mathematical Descriptions

Morphological feature Description

Area overlap ratio Lj j
�r 2 where r ¼ max

d2R
d � ck k½ � (see Fig. 3(a))

Normalized average radial distance ratio
1
Rj j
P

d2R d�ck k
max
d 2 R

d�ck k½ �

Standard deviation of normalized distance ratio 
� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Rj j
P

d2R �ðdÞ � ��ð Þ2
q

,

where �ðdÞ ¼ d�ck k
max
d 2 R

d�ck k½ � and �� ¼ 1
Rj j

P
d2R

�ðdÞ

Variance of distance ratio 
2
�

Compactness D Rð Þ½ �2
Lj j; where D Rð Þ ¼ the perimeter of R,

D Rð Þ ¼ P
d2R

n�1
i¼0 d iþ1ð Þ � dðiÞ�� ��

Smoothness
P

d2R;i2 0;...;n�1f g
B dðiÞ� 	

, where

B dðiÞ� 	 ¼ dðiÞ � c
�� ��� d i�1ð Þ�ck kþ d iþ1ð Þ�ck k

2

����
���� (see Fig. 3(b))

Fig 3. Schematics illustrating the calculation of morphological features: (a) lesion boundary (red) and circle enclosing it (green) used to
calculate area overlap ratio; (b) vectors used for calculation of lesion smoothness. c is the lesion centroid, and
d i�1ð Þ; dðiÞ; d iþ1ð Þ; i 2 1; . . . ; n � 1f g are consecutive points on the lesion boundary.
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were previously correctly classified by a different
weak classifier. Additionally, the order of features
considered during classification is not preserved
via Adaboost. The PBT algorithm48 addresses
these issues by iteratively generating a tree
structure of length, B, in the training stage where
each node of the tree is boosted with H weak
classifiers. The hierarchical tree is obtained by
dividing training samples, Etra, into two subsets of
Etra;Right and Etra;Left based on the learned strong
classifier at each node using the standard
AdaBoost algorithm47 and recursively training the
left and right subtrees. To avoid overfitting, the error
parameter ϵ is introduced such that samples falling in
the range 1

2 � "; 12 þ "

 �

are assigned to both subtrees
with probabilities p F � Lð Þ þ1jð Þ ! Etra;Right and
p F � Lð Þ �1jð Þ ! Etra;Left, where the function
p F � Lð Þ þ1jð Þ represents the posterior class
conditional probability of L belonging to class +1
(malignant lesion). The algorithm stops when
misclassification error hits a predefined threshold, θ.
ϵ is set to 0.1 and � ¼ 0:45 as suggested in Tu.48

During testing, the posterior class conditional
probability of the sample being malignant is
calculated at each node based on the learned
hierarchical tree. The discriminative model is
obtained at the top of the tree by combining the
probabilities associated with probability propagation
of the sample at various nodes. The output of the PBT
classifier, VPBT, is defined such that if p L þ1jð Þ,
thenV

PBT ¼ þ1, elseV
PBT ¼ �1, where 2 0; 1½ �.

For both the VSVM and VPBT, we use leave-one-
out strategy for classifier training and evaluation. The
training dataset, Etra, is related to the test dataset, Etes,
by Etes ¼ E� Etra; Etes \ Etra ¼ ;. During each
iteration, Etes contains only one lesion, one that was
not considered as Etes during previous iterations.

Three-time-point (3TP) modeling We compare our
kinetic texture classifier to the popular 3TP
classifier V3TPð Þ. The methods described in
Degani et al., Weinstein et al., and Hauth et
al.24–26 are used to create a parametric map of
signal intensity kinetics in the hue, saturation, and
value (HSV) color space for each pixel d in each
lesion L. Thus, the contrast washout rate Fwoutð Þ is
assigned to the hue channel, and the contrast
uptake rate Fwinð Þ is assigned twice to both the
saturation and value channels. Each pixel, d 2 L,
is assigned a red hue when representing highest
likelihood of malignancy, green when representing

moderate likelihood of malignancy, or blue when
representing a low likelihood of malignancy. At
each pixel , d 2 L, FwinðdÞ ¼ f 1ðdÞ�f 0ðdÞ

t1�t0
and

FwoutðdÞ ¼ f 2ðdÞ�f 1ðdÞ
t2�t1

, where t0 is the precontrast
time point, t1 is the first postcontrast time point, and t2
is the second postcontrast time point. FwinðdÞ and
FwoutðdÞ are rescaled between 0 and 1 for all d 2 L.
The empirical thresholds for the hue channel are as
follows: if FwoutðdÞ0:4, then d is assigned red (0 rad);
if FwoutðdÞ90:5, then d is assigned blue �=3ð Þ; else if
0:4eFwoutðdÞe0:5 then d is assigned green 2�=3ð Þ.
Both the saturation and value channels are set equal to
the normalized Fwin value. A lesion is classified as
malignant if it contains any red pixels V3TP ¼ þ1ð Þ
and benign if it contains no red pixels V3TP ¼ �1ð Þ.

EXPERIMENTS AND PERFORMANCE MEASURES

Experiments

Discriminating Benign vs. Malignant Lesions
Based on Individual Attributes from

Morphological, Signal Intensity Kinetics,
Precontrast Texture, Peak Contrast Texture, and

Textural Kinetics Feature Classes

A total of 41 images (17 benign and 24 malignant)
were analyzed. The separability of lesion classes (17
benign and 24 malignant) using individual descrip-
tors from the feature classes (textural kinetic, precon-
trast texture, peak contrast texture, morphological,
and signal intensity kinetics) was first qualitatively
evaluated using graph embedding, a nonlinear
dimensionality reduction technique.37 We then com-
pared the 283 individual descriptors to discriminate
between benign and malignant lesions using two
different quantitative classifiers, SVMs and PBTs.
We also compare the SVM and PBT classification
results to the 3TP classifier.

Discriminating Benign vs. Malignant Breast
Lesions Based on a Combination of Features

Following identification of the top-performing
features (“Discriminating Benign vs. Malignant
Lesions Based on Individual Attributes from
Morphological, Signal Intensity Kinetics, Precon-
trast Texture, Peak Contrast Texture, and Textural
Kinetics Feature Classes”), all 283 individual
attributes are combined in a pair-wise fashion to
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construct both a combined SVM and a combined
PBT classifier. The performance of each combined
multi-feature classifier (SVM and PBT) is then
evaluated against individual attributes.

Performance Measures

Qualitative evaluation via graph embedding
Graph embedding is a nonlinear dimensionality
reduction scheme that is used to transform
the high-dimensional set of image features into a
low-dimensional embedding while preserving
relative distances between images in the original
feature space.37,45 Given lesions Li and Lj

with corresponding feature vectors F � Lið Þ and
F � Lj

� 	
, w h e r e i; j 2 1; . . . ;Mf g a n d � 2

1; . . .Kf g, an M�M confusion matrix W i; j½ � ¼
e� F � Lið Þ�F � Lið Þk k2 2 RM�M is constructed. The
optimal embedding vector, X, is obtained from
the maximization of the following function:

"ðX Þ ¼ 2 M� 1ð Þ�trace XT A�Wð ÞX
XTAX

; ð6Þ

where A is the diagonal matrix where each diagonal
e l emen t i s d e f i ned a s A i; i½ � ¼ �jW i; j½ �;
8 2 1; 2; . . . ;Mf g. The lower-dimensional
embedding space is defined by the Eigenvectors
corresponding to the � smallest Eigenvalues of
A�Wð ÞX ¼ �AX . The matrix X ðEÞ 2 RM�� of
the first � Eigenvectors is constructed such that
X ðEÞ ¼ X L1ð Þ;X L2ð Þ; . . . ;X LMð Þf g. I n o u r

case, � ¼ 3 so that the embedding basis vectors
can be denoted, e1; e2; e3 for any X Lið Þ, where
i 2 1; . . . ;Mf g. Embedding plots of the data
reduced to three dimensions were used to visualize
each feature's ability to cluster the lesions into
distinct categories.

Quantitative evaluation For all three classifiers,
V�, where � ¼ SVM, PBT, 3TPf g, each lesion is
identified as either a true positive (TP), false
positive (FP), false negative (FN), or a true
negative (TN) by comparing the classifier output,
V� Lð Þ, to the true label, Y Lð Þ. If V� Lð Þ ¼
Y Lð Þ ¼ �1, lesion L is identified as a TN; if
V� Lð Þ ¼ Y Lð Þ ¼ þ1, lesion L is identified as a
TP; if V� Lð Þ ¼ þ1 and Y Lð Þ ¼ �1, lesion L is
identified as an FP error; and if V� Lð Þ ¼ �1 and
Y Lð Þ ¼ þ1, lesion L is identified as an FN error.
For each classifier, � 2 SVM, PBT, 3TPf g, the
number of TP NTP;�

� 	
, TN NTN;�

� 	
, FP NFP;�

� 	
,

and FN NFN;�

� 	
lesions over the entire set E are

calculated. Sensitivity SN�

� 	
, specificity SP�

� 	
,

and accuracy AC�

� 	
for each classifier are then

calculated as

SNf ¼ NTP;f

NTP;f þ NFN;f
;SPf ¼ NTN;f

NTN;f þ NFP;f
; and

ð7Þ
ACf ¼ NTP;f þ NTN;f

Ej j ; ð8Þ

where Ej j is the cardinality of set, E.

Benign

Malignant

Benign

Malignant

a b

Fig 4. Embedding plots obtained by plotting the three dominant graph embedding vectors (e1; e2; e3) for (a) signal intensity kinetics and
(b) gradient kinetics in the X-direction. Note that the increased separation of benign (blue) and malignant (red) lesions for the textural
kinetics feature (b) compared to signal intensity kinetics (a).
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Receiver operator characteristic curves Receiver
operating characteristic (ROC) curves representing
the trade-off between sensitivity and specificity for
breast cancer diagnosis were generated for both
VPBT and VSVM. For VPBT, a true ROC curve is
generated since α, the probability decision
threshold of the PBT, can be varied. Each point
on the ROC curve corresponds to the sensitivity

SN
PBT

� 	
and 1-specificity 1� SP

PBT

� 	
over E for

some probability threshold  2 0; 1½ �, where the
interval between α values, 	, is 0.05. In contrast
to PBTs, SVM classifiers are typically used to
generate a hard decision.46 However, a pseudo-
threshold can be generated for the SVM by
converting the distance of each object to be
classified from the SVM decision hyperplane into

Table 4. Results of Support Vector Machine Classifier for Top Five Performing Individual Features in Distinguishing Benign from
Malignant Lesions Using Leave-One-Out Validation

Feature class Feature ACSVM SNSVM SPSVM AUCSVM

Morphological Smoothness 0.73 0.88 0.53 0.77
First-order textural kinetics Gabor filter � ¼ �

8
ffiffi
2

p ; ’ ¼ �
8 0.71 0.67 0.76 0.73

Gabor filter � ¼ �
8
ffiffi
2

p ; ’ ¼ 7�
8 0.76 0.75 0.76 0.78

Median gray level 0.76 0.75 0.76 0.78
Second-order textural kinetics Contrast inverse moment 0.73 0.88 0.52 0.70

Fig 5. Examples of the contrast enhancement patterns associatedwith (a–d) a benign fibroadenoma, (e–h) a benign sclerosing adenosis, and
(i–l) a malignant invasive ductal carcinoma. a, e, i Precontrast image. b, f, j Postcontrast image at peak enhancement. c, g, k 3TP maps
corresponding to the studies in a, e, and i. d, h, l Textural kinetic maps for the median filter feature. The third and fourth columns are magnified
to illustrate details of the lesion. Note that d, h, and l appear to capture heterogeneity of lesion enhancement (highest in l).
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a soft likelihood of belonging to the object class.
Thus, the greater the distance of the object from
the hyperplane, the higher the likelihood that it
belongs to a particular class; the proximity of an
object to the hyperplane reflects higher ambiguity
in the class assignment. The ROC curves for
SVMs can be generated by varying the location
of the decision hyperplane. As the distance of the
objects from the decision hyperplane changes, the
corresponding object-class probabilities also
change. At each location of the decision
hyperplane, classification sensitivity and
specificity estimates are obtained. The trade-off
between sensitivity SNSVMð Þ and specificity
SPSVMð Þ obtained at each of the different
locations of the hyperplane is used to generate an
ROC curve.

RESULTS

Qualitative Results

Figure 4 shows the embedding plots for the two
features that separated the benign from malignant
lesions best. The morphologic features and pre-
contrast texture features did not clearly segregate
the lesions, whereas the signal intensity kinetic
feature and various textural kinetic features did
indeed separate the data reasonably well into
benign and malignant lesion categories. Although
signal intensity kinetics produces a clustering of
data classes that is similar to textural kinetic
features (Figure 4(a)), the clusters appear better
separated in the textural kinetic embedding space
(Figure 4(b)).

Parametric maps Figure 5 shows representative
images for two types of benign lesions and one
type of malignant lesion. Each row shows the

precontrast image (Fig. 5a, e, i), the postcontrast
image corresponding to the peak lesion
enhancement (maximum signal intensity across
the time series) (Fig. 5b, f, j), the 3TP parametric
map (Fig. 5c, g, k), and a parametric map for the
textural kinetics feature for median, a first-order
statistical feature (Fig. 5d, h, l). Note the
differences in internal intensity in the textural
kinetics maps (see Fig. 5d, h, l), especially
between the malignant lesion and the two benign
lesions. The malignant lesion in Figure 5(l)
appears more heterogeneous in color than the two
benign lesions, suggesting a higher heterogeneity
in lesion enhancement patterns. In addition, the
textural kinetic map of the malignant lesion in

Table 5. Results of Support Vector Machine Classifier for Top-Performing Individual Attributes from Each Feature Class in Distinguishing
Benign from Malignant Lesions Using Leave-One-Out Validation

Feature class Feature ACSVM SNSVM SPSVM AUCSVM

Morphological Smoothness 0.73 0.88 0.53 0.77
Precontrast texture Gabor filter � ¼ �

8
ffiffi
2

p ; ’ ¼ 7�
8 0.63 0.90 0.25 0.65

Postcontrast texture Intensity variance 0.68 0.83 0.47 0.70
Signal intensity Signal intensity kinetics 0.63 0.67 0.59 0.75
First-order textural kinetics Gabor filter � ¼ �

8
ffiffi
2

p ; ’ ¼ 7�
8 0.76 0.75 0.76 0.78

Second-order textural kinetics Contrast inverse moment 0.73 0.88 0.52 0.70

Fig 6. For the top-performing feature in each feature class,
the receiver operating characteristic (ROC) curves for VSVM were
generated by varying the distance of each lesion to be classified
from the decision hyperplane. The individual features for which
ROC curves have been plotted are second-order textural kinetic
feature, contrast inverse moment; first-order textural kinetic
feature, Gabor filter channel corresponding to � ¼ �

8
ffiffi
2

p ; ’ ¼ 7�
8 ;

morphology feature, smoothness; the Gabor filter channel
corresponding to � ¼ �

8
ffiffi
2

p ; ’ ¼ 7�
8 for the precontrast image; peak

postcontrast texture, intensity variance; and kinetic signal
intensity.
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Figure 5(l) illustrates the difference between the
enhancement pattern at the center of the lesion and
at the periphery of the lesion.

Quantitative Results

Classification of Lesions Using Individual
Features with a Support Vector Machine Classifier

Table 4 shows that in conjunction with the SVM
classifier, the best textural kinetic feature, contrast
inverse moment, had greater values of accuracy
than the best-performing morphology feature,
smoothness, and signal intensity kinetics per-
formed worse than smoothness. We also observed
that textural kinetics of some of the Gabor filter
features as well as some of the gray level features
performed best in classifying the lesions. Note that
when the VSVM was employed, the best-performing
first-order (Gabor filters and median gray level)
textural kinetic features also outperformed signal
intensity kinetics in terms of accuracy, sensitivity,
specificity, and AUC (Tables 4 and 5). These results
are also reflected in the ROC curves shown in
Figure 6, which correspond to the features shown in
Table 5.

Classification of Lesions Using Individual
Features with Probabilistic Boosting Trees

For VPBT, we found similar results to those
obtained using VSVM. Using results from the
operating point on the ROC curve (defined by
the point on the curve that minimizes the Eucli-
dean distance from the feature's ROC curve to the
ideal 100% sensitivity, 100% specificity point on
the graph) and the AUC, Tables 6 and 7 show that
the kinetic second-order statistical feature, contrast
inverse moment, performed the best from among
both the top-performing features overall for VPBT

(Table 6) and for each feature class (Table 7). The
ROC curves in Figure 7 show that contrast inverse
moment had the highest accuracy, sensitivity, and
specificity at the operating point among the differ-
ent feature classes.

Classification of Lesions Using 3TP Parametric
Maps

The classification of all lesions in the dataset
using the 3TP parametric maps V3TPð Þ produced
an accuracy of 78%, sensitivity of 92%, and
specificity of 59%.

Table 6. Results of Probabilistic Boosting Tree Classifier for Top Five Performing Individual Features in Distinguishing Benign from
Malignant Lesions Using Leave-One-Out Validation

Feature class Feature ACPBT SNPBT SPPBT AUCPBT

Morphological Smoothness 0.85 0.91 0.76 0.91
First-order textural kinetics Gabor filter � ¼ �

2
ffiffi
2

p ; ’ ¼ 3�
4 0.89 0.98 0.76 0.78

Gabor filter � ¼ �
2
ffiffi
2

p ; ’ ¼ 7�
8 0.89 0.99 0.74 0.86

Median gray level 0.90 0.97 0.81 0.83
Second-order textural kinetics Contrast inverse moment 0.90 0.95 0.82 0.92

Table 7. Results of Probabilistic Boosting Tree Classifier for Top-Performing Individual Attributes in Distinguishing Benign from Malignant
Lesions Using Leave-One-Out Validation

Feature class Feature ACPBT SNPBT SPPBT AUCPBT

Morphological Smoothness 0.85 0.91 0.76 0.91
Precontrast texture Gabor filter � ¼ �

2
ffiffi
2

p ; ’ ¼ 7�
8 0.84 0.94 0.71 0.86

Postcontrast Texture Intensity variance 0.70 0.92 0.41 0.58
Signal intensity Signal Intensity kinetics 0.79 0.94 0.59 0.78
First-order textural kinetics X -gradient 0.83 0.88 0.76 0.85
Second-order textural kinetics Contrast inverse moment 0.90 0.95 0.82 0.92

Note that the ACPBT, SNPBT, and SPPBT values reported here are for the operating point on each feature's respective receiver operating
characteristic curve. The operating point is defined as the point on the curve that minimizes the distance between the curve and the
point (0,1), which corresponds to 100% sensitivity and 100% specificity on the graph
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Performance of Multi-feature Classifiers

We created multi-feature classifiers by combin-
ing each texture (pre-, peak contrast, and kinetic),
kinetic signal intensity, and morphological feature
in pair-wise combinations in conjunction with the
SVM and PBT classifiers. The top-performing
combination for both VSVM and VPBT are shown
in Table 8. By combining smoothness and the
textural kinetic feature for the Sobel filter oriented
along the X-direction (X-direction Sobel filter) in
conjunction with an SVM classifier VSVMð Þ, a
classification accuracy of 82%, sensitivity of 85%,
specificity of 71%, and an AUC of 0.78 using the
leave-one-out strategy was obtained. By combin-
ing smoothness and the textural kinetic feature,
contrast inverse moment kinetics, in conjunction
with a PBT classifier VPBTð Þ, a classification
accuracy of 89%, sensitivity of 99%, specificity
of 76%, and an AUC=0.91 using the leave-one-

out strategywas obtained. In Figure 8, the embedding
plot of the reduced feature space of a multi-feature
classifier using graph embedding is shown. The
embedding plot combining the textural kinetic feature
X-gradient with the morphological feature, smooth-
ness, appears to show good separation between the
lesion classes and corroborates the performance of
the multi-feature SVM and PBT classifiers.

CONCLUDING REMARKS

In this paper, we presented a new attribute,
textural kinetics, for discriminating between
benign and malignant lesions on breast DCE-
MRI by quantifying the spatiotemporal patterns
of lesion texture during the contrast enhancement
time series. We showed that textural kinetic
features outperformed the signal intensity kinetics
feature on a dataset of 41 (17 benign and 24
malignant) breast lesions in terms of accuracy,
sensitivity, and specificity. An SVM classifier in
conjunction with the textural kinetic descriptors

Table 8. Results of Classifiers Obtained by Combination of Multiple Attributes in Distinguishing Benign from Malignant Lesions Using
Leave-One-Out Validation

Classifier combination AC SN SP AUC

Smoothness+X-direction Sobel filter+VSVM 0.82 0.92 0.71 0.78
Smoothness+contrast inverse moment+VPBT 0.89 0.99 0.76 0.91

Fig 7. Receiver operating characteristic (ROC) curves gener-
ated for VPBT by varying probability threshold, αZ[0, 1], for the
top-performing feature in each feature class. ROC curves for
second-order textural kinetic feature, contrast inverse moment;
first-order textural kinetic feature, median gray level; morphol-
ogy feature, smoothness; the Gabor filter channel corresponding
to � ¼ �

2
ffiffi
2

p ; ’ ¼ 7�
8 for the precontrast image; peak postcontrast

texture, intensity variance, and kinetic signal intensity are
shown.

Benign
Malignant

Fig 8. Embedding plot obtained by plotting the three dominant
graph embedding vectors (e1; e2; e3) for the combination of the
morphology feature, smoothness, with the first-order textural
kinetic feature, X-gradient. Note that the lesion classes appear
to be better separated compared to Fig. 4.
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yielded an accuracy of 76%, sensitivity of 75%,
specificity of 76%, and an AUC of 0.78, and the
PBT classifier yielded accuracy of 90%, sensitivity
of 95%, specificity of 82%, and AUC of 0.92.
Textural kinetics appear to perform comparably to
other texture-based approaches for lesion classi-
fication such as enhancement variance dynamics
introduced by Chen et al.49 and spatiotemporal
enhancement profiles introduced in Zheng et al.17

Chen et al.49 reported an AUC of 0.85 on a cohort
of 121 datasets, whereas Zheng et al.17 reported an
AUC of 0.97 on a cohort of 36 patients. Although
textural kinetic features performed marginally
worse than spatiotemporal enhancement profiles
introduced in Zheng et al.,17 the study in Zheng et
al.17 employed a smaller dataset (36 lesions), and
the accuracy of their classifier decreased to less
than 90% when the dataset decreased by five
lesions, suggesting that the scheme might be
sensitive to the composition of the dataset. The
textural kinetic features yielded consistently good
classification performance for both the SVM and
PBT classifiers. When the textural kinetic attrib-
utes were combined with morphologic descriptors,
the resulting SVM classifier yielded an 82%
accuracy, sensitivity of 92%, specificity of 71%,
and an AUC of 0.78, and the resulting PBT
classifier yielded an 89% accuracy, sensitivity of
99%, specificity of 76%, and an AUC of 0.91,
suggesting that pairing of morphology and signal
intensity kinetic features with orthogonal lesion
attributes such as textural kinetics could result in
improved diagnosis of breast cancer on breast
DCE-MRI. Previous studies33,50 have suggested
that textural attributes are likely more robust to
MRI artifacts such as bias field and intensity non-
standardness, which may explain the superior
performance of our classifiers. The fact that
textural kinetics appeared to outperform the clas-
sical BIRADS descriptors (albeit on a small
cohort) suggests that this attribute should be
considered when building a CAD system. It is
important to note that what is presented here is not
a full-fledged CAD system, but rather a study in
the utility of textural kinetics in distinguishing
benign from malignant lesions. In future work, we
plan to more rigorously test the robustness of the
features and combinations of features on a larger
cohort. We also plan to incorporate automated
lesion detection and segmentation into the current
workflow.
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